
GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1–6, doi:10.1002/grl.50447, 2013

Azimuthal anisotropy at Valhall: The Helmholtz equation approach
Aurélien Mordret,1 Nikolai M. Shapiro,1 Satish Singh,1 Philippe Roux,2
Jean-Paul Montagner,1 and Olav. I. Barkved3

Received 22 February 2013; revised 2 April 2013; accepted 3 April 2013.

[1] We used 6 h of continuous vertical records from 2320
sensors of the Valhall Life of Fields Seismic network to
compute 2,690,040 cross-correlation functions between
the full set of sensor pair combinations. We applied
the “Helmholtz tomography” approach combined with the
ambient noise correlation method to track the wave front
across the network with every station considered as a
virtual source. The gradient of the interpolated phase travel
time gives us an estimate of the local phase speed and
of the direction of wave propagation. By combining the
individual measurements for every station, we estimated the
distribution of Scholte’s wave phase speeds with respect
to azimuth. The observed cosine pattern indicates the
presence of azimuthal anisotropy. The elliptic shape of the
fast anisotropy direction is consistent with results of
previous shear wave splitting studies and reflects the
strong seafloor subsidence due to the hydrocarbon reservoir
depletion at depth and is in good agreement with
geomechanical modeling. Citation: Mordret, A., N. M.
Shapiro, S. Singh, P. Roux, J.-P. Montagner, and O. I. Barkved
(2013), Azimuthal anisotropy at Valhall: The Helmholtz equation
approach, Geophys. Res. Lett., 40, doi:10.1002/grl.50447.

1. Introduction
[2] Seismic anisotropy information is complementary

to that of isotropic velocity and is becoming more and
more important in exploration and engineering seismology
[e.g., Tsvankin et al., 2010]. Many studies about azimuthal
anisotropy were carried out by analyzing the shear-wave
splitting (SWS) of compressional waves converted at differ-
ent interfaces. However, depending on the depth of the inter-
face where P-waves are converted, the measured anisotropy
integrates the varying anisotropy along the whole ray path
and it may be difficult to infer its depth distribution properly.
Surface-wave dispersion (the larger the period, the deeper
the surface-wave sensitivity) and the fact that they travel
horizontally along the Earth surface allow us to retrieve the
3D distribution of anisotropy using this type of waves. The
azimuthal anisotropy at the global and regional scales is
often retrieved from surface waves emitted by earthquakes
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[e.g., Montagner and Nataf, 1986; Montagner and Tanimoto,
1991; Barmin et al., 2001; Trampert and Woodhouse, 2003;
Smith et al., 2004; Ekström, 2011].

[3] Deterministic signals extracted from cross-
correlations (CCs) of seismic noise [e.g., Gouédard et al.,
2008, and references therein] provide a very attractive
alternative to earthquake or active sources. For receivers
installed on the earth surface, these noise CCs are domi-
nated by fundamental-mode surface waves [Shapiro and
Campillo, 2004]. This technique of noise-based surface-
wave imaging methods developed very rapidly during recent
years. It is particularly advantageous within the context of
modern seismic arrays where computing the CCs between
all pairs of sensors results in very dense and azimuthally
well distributed path coverage. Noise-based surface wave
imaging has been applied at regional and continental scales
to infer isotropic [e.g., Shapiro et al., 2005; Yao et al.,
2006; Yang et al., 2008; Stehly et al., 2009] and anisotropic
[e.g., Lin et al., 2009; Fry et al., 2010; Lin et al., 2010,
2011] structures. Durand et al. [2011] used polarization
analysis of surface waves retrieved from cross-correlations
to infer temporal changes of anisotropy related to the 2004
Parkfield earthquake.

[4] The noise correlation approach has also been applied
to continuous records from industrial seismic networks to
extract reflection response [Draganov et al., 2007] and sur-
face waves [Mordret et al., 2013a]. In the present paper, we
use the data of the Valhall Life of Fields Seismic network
(LoFS, Figure 1) to extract Scholte waves (i.e., interface
waves traveling between a water layer and the subsurface)
from cross-correlation of ambient seismic noise, and to
determine azimuthal anisotropy in the shallow subsurface at
a kilometric scale. The Valhall LoFS network operated by
BP Norge A/S was installed on the North Sea seafloor in
2003 over the Valhall oil field. The network covers 70% of
the field area and is made of 120 km of ocean bottom cables
buried at 1 m depth in the soil where data are continuously
recorded by 2320 four-component seismic sensors (4C: Up,
North, East and Hydrophone) [e.g., VanGestel et al., 2008;
de Ridder and Dellinger, 2011; Mordret et al., 2013a]. After
computing the CCs between all pairs of sensors, we use
the “Helmholtz” technique of Lin and Ritzwoller [2011a]
to infer the variations of the surface wave speed with
respect to the azimuth and to determine azimuthal anisotropy
with a straightforward method not requiring a formal
tomographic inversion.

2. Data and Noise Cross-Correlations
[5] We analyzed !6.5 h (400 min) of continuous sig-

nals recorded at 250 Hz from 2320 sensors of the LoFS
network. The CCs computation is described in detail by
Mordret et al. [2013a] and partly follows the workflow of
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Figure 1. Map of the Valhall LoFS network. Each dot is
a 4C sensor. The distance between the sensors is 50 m and
is 300 m between the lines. The black star shows the posi-
tion of the station 371 used in Figures 2 and 3, the black
dot shows the station 1390 used in the auxiliary Material.
The circles show the approximate positions of the exploita-
tion platforms. In the inset, the location of the Valhall field
is shown by the red star.

Bensen et al. [2007], involving spectral whitening between
0.5 and 2.85 s before computing the CCs. Because the data
do not present strong amplitude variations, we did not use
temporal normalization. In this study, we focused on Scholte
waves and used the ZZ cross-correlations from 2 690 040
station pairs.

[6] Mordret et al. [2013a] showed that the ambient noise
recorded during the considered 6 h is strongly affected by

two operating platforms: one in the center of the network
and another one at the south (Figure 1). The noise source
distribution was found homogeneous only for the 0.5–2.85
s period band, where the CCs were symmetric. At shorter
period, the exploitation platforms act as a strongly dominant
localized noise point source preventing the convergence of
the CCs toward Green functions for most of the station pairs.
Therefore, we only analyze here the CCs above 0.5 s that
contain reconstructed Scholte waves.

3. Method
[7] We consider every station i as a virtual source

recorded by all other stations. We illustrate the process-
ing with one virtual source (station 371, Figure 1) that is
repeated for all 2319 stations. We treat the CCs as vir-
tual seismograms and use them to measure phase travel
times !i(r,!) where r is the position and ! is the angu-
lar frequency. Following the approach of Lin and Ritzwoller
[2011a] and Mordret et al. [2013b], we use the frequency
dependent Eikonal equation derived from the 2D Helmholtz
wave equation [Biondi, 1992] to compute phase speeds c(r) :

1
ci(r)2 = |r!i(r)|2 –

"Ai(r)
Ai(r)!2 , (1)

where A is the spectral amplitude at frequency !. The sym-
bols r and " stand for the gradient and the Laplacian,
respectively. As a result, at every position r we obtain a
set of local phase speeds and a set of local wave propa-
gation directions (taken as the gradient direction) measured
for every virtual source i. We then study the dependence
of this phase speed on the local wave propagation direction
 to evaluate the different Fourier series expansion of the
azimuthal anisotropy in azimuth , taken positive clockwise
with respect to North.

3.1. Helmholtz Tomography
[8] Our approach of Helmholtz tomography is described

in details by Mordret et al. [2013b]. We briefly summa-
rize here main steps highlighting when there are differences

Figure 2. Symmetric CCs between station 371 and every surrounding stations in a 10 wavelengths radius (at 0.7 s) sorted
with respect to the distance between the stations and filtered between 0.67 and 2.85 s. The solid black lines show the window
move-out where the signal is analyzed. The black dots are the phase travel time picks at 0.7 s that passed the quality criterion
steps. The black dashed lines stand for 2 and 6 wavelengths where the travel times are kept.
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Figure 3. Azimuthal distribution of the phase velocity at 0.7 s for the cell containing station 371. The small blue dots are
the phase velocity measurements. The large red dots with error bars are the phase velocity averaged over 20ı. The thick red
curve is the best fits for the 1 , 2 , 3 , and 4 azimuthal variation for the averaged velocity measurements. The values of
the fitted parameters are shown. The inset shows a schematic diagram that illustrates the anisotropy measurements (vectors
C(C, ) with C, the phase velocity as magnitude and  , the azimuth of propagation as the vector direction) at one cell of the
model (small black square) related to three surrounding stations or virtual sources (colored triangles). Each colored vector
field shows the velocity field of the waves emitted by the corresponding colored virtual source (see auxiliary material).
The vectors in the particular cell are enlarged for clarity.

from Mordret et al. [2013b]. Figure 2 shows an example of
symmetric CCs computed for one reference station (station
371, see Figure 1) and arranged with increasing inter-station
distance. We first perform a waveform selection similar to
Mordret et al. [2013b], rejecting symmetric CCs between 0.5
and 2.85 s, which have a signal-to-noise ratio (SNR) lower
than 3 (contrary to Mordret et al. [2013b] who keep signals
with SNR above 1.5) in the move-out window defined by
the black lines in Figure 2. The white strips show the CCs
that did not pass the selection criteria. Finally, we do not
consider as virtual sources stations where after the selection
there are less than 30 CCs and where the azimuthal cover-
age of all selected paths to other stations is less than 180ı.
On average, we reject ! 55% of the CCs based on the above
criteria. We measure the phase travel time using the equation
of the spectral phases '(!) of a single-mode surface waves
[Mordret et al., 2013b]:

'(!) = –!t + n " 2# + '0, (2)

where ! is the angular frequency, n " 2# is the intrinsic
2# phase ambiguity (n 2 integer) and '0 is a real constant
term containing the spatial propagation term and the initial
source phase.

[9] For every selected CC, we then compute the
frequency-dependent phase travel time : tc(!) as

tc(!) =
–'(!) + n " 2# + '0

!
, (3)

We do not need to solve for the initial phase ambigu-
ity because the constant term in equation (3) cancel each
other when computing travel-time gradients. At this stage,
we also measured the spectral amplitudes A(!) that are
used in equation (1). To compute the gradient of the
travel time and the Laplacian of the amplitude, we inter-
polate the phase travel times and the amplitude onto a
regular grid (see auxiliary material, Figure S1) following
Mordret et al. [2013b].

[10] Computing the right-hand term of equation (1) for
every virtual source results in a set of vectors whose direc-
tions characterize the local wave propagation direction and
whose amplitudes are equal to local phase slowness. The
inset in Figure 3 shows a set of three vectors, associated with
one cell of the model, in which the local phase velocity and
local direction of wave propagation are inferred from three
different virtual sources. Depending on its location in the
model (at the periphery or in the center of the network) each
cell is spanned by the measurements from 0 up to !300 vir-
tual sources. We used the inferred relationship between the
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Figure 4. (a) 2 azimuthal anisotropy fast direction and amplitude map at 0.7 s measured with the Helmholtz equation.
(b) 2 azimuthal anisotropy fast direction and amplitude map at 0.7 s measured with average phase velocities.

local phase velocities and local directions of propagation to
compute the azimuthal anisotropy at each point of the grid.

3.2. Parameterization of the Azimuthal Anisotropy
[11] Smith and Dahlen [1973] showed that for a slightly

anisotropic medium at any given frequency, the surface-
wave phase velocity relationship with the azimuth  is in
the form of an even order sinusoid with 180ı and 90ı peri-
odicity. Similarly to Lin and Ritzwoller [2011a], we find that
overlaying the usual 2 and 4 component, there is also
sometimes a 360ı periodicity or 1 component. We thus
chose the following functional form to fit our phase velocity
measurements with respect to the azimuth:

c( ) = c0 +
A0

2c0
cos(1( – $1)) +

B0

2c0
cos(2( – $2))

+
C0

2c0
cos(3( – $3)) +

D0

2c0
cos(4( – $4)). (4)

Equation (4) represents a truncated Fourier series analysis
of our data. Here c0 is the average phase velocity for one
station, A = A0/c0, B = B0/c0, C = C0/c0 and D = D0/c0 are
the peak-to-peak relative amplitude of the 1 , 2 , 3 , and
4 terms and $1, $2, $3, and $4 define the orientation of the
fast axes for the 1 , 2 , 3 , and 4 terms, respectively.

[12] To reduce uncertainties, we follow Lin et al. [2009]
and combine together all measurements from a 550 m #
550 m super-cell (11#11 cells). These combined measure-
ments are represented by the small blue dots in Figure 3.
Then, we average the measurements in 20ı azimuthal bins to
retrieve the mean speeds and their standard deviations (large
red dots with error bars in Figure 3). We fitted these final
averaged measurements in a weighted least-square sense
with equation (4) and obtained the red curve in Figure 3. We
defined the misfit of our inversion at a single station as the
standard deviation between the measured and the predicted
phase speeds. We only keep for interpretation the stations
with a misfit smaller than 15 m/s.

4. Results
[13] Because in this study we have a similar data cover-

age as Mordret et al. [2013a], we assume that the spatial

resolution of our anisotropy measurements has the same
order of magnitude, i.e., about 320 m at 0.7 s period. Thus,
to have independent anisotropy measurements at 0.7 s, we
inverted for the azimuthal anisotropy at every 6th station
(every 300 m in the along cable direction). Figure 4a shows
the map of the fast axis and amplitude of the 2 anisotropy
obtained at 0.7 s with the Helmholtz tomography approach.
The 2 anisotropy exhibits an elliptic pattern roughly cen-
tered on the main exploitation platform with a high ampli-
tude anisotropy ring about 2–3 km from the platform. Our
data quality criterion selection removed all stations in a 1.5
km radius circle around the platform because of the low
SNR of the CCs in this area [Mordret et al., 2013a] and
also some measurements on the western and eastern lines
because the measurements are less constrained on the edges
of the network and because these regions are more heteroge-
neous with strong velocity gradients [Mordret et al., 2013a].
We also observe in these parts significant 1 and 3 com-
ponents (Figure S2, auxiliary material) suggesting that they
might be partially caused by a poor azimuthal coverage. On
average, the amplitudes of the 3 and 4 terms are about
twice smaller than the 2 and 1 amplitudes (Figure 3 and
Figures S2, S3,and S6 of the auxiliary material) and we do
not consider them in the following.

5. Discussion and Conclusion
[14] The elliptic pattern of the 2 anisotropy at Val-

hall is well-known and is due to the production-induced
subsidence of the seafloor [Olofsson et al., 2003; Zwartjes
et al., 2008]. A similar pattern has been observed at another
field [e.g., Van Dok et al., 2003]. Geomechanical modelings
done by Herwanger and Horne [2005, 2009] and Hatchell
et al. [2009] showed that such a subsidence created a max-
imum principal horizontal stress that was tangential to the
subsidence bowl.

[15] Two different mechanisms may be considered to
explain the observed 2 anisotropy elliptic pattern. First,
the shallow overburden is roughly made of horizontal
sediment layers, which can be seen as a vertical-transverse
isotropic (VTI) medium. Because of the subsidence, the VTI
medium becomes tilted on the edge of the bowl, which may
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produce the observed anisotropy. Second possible mecha-
nism is the presence of concentric fractures created by the
subsidence-induced strain on the shoulder of the subsidence
bowl. Both mechanisms, would result in elliptic anisotropy
pattern in top hundreds of meters below the surface, which
is in very good agreement with our observations (0.7 s
the Scholte waves are sensitive to a depth !100–150 m)
as well as results from shear-wave splitting [Olofsson et al.,
2003; Barkved et al., 2005; Maultzsch et al., 2006; Zwartjes
et al., 2008].

5.1. Anisotropy From Average Phase Velocities
[16] To check the robustness of the obtained results, we

measured the phase velocity variations with the azimuth with
a different method. We started the analysis with the same set
of phase travel times for each station. By dividing the dis-
tances between the central station and the surrounding ones
by the phase travel times between these stations and sorting
these average phase velocities as a function of the azimuth
(Figure S5), we were able to retrieve a clear anisotropic
pattern (Figure 4b). The fit of these data with equation (4)
gives results that are generally consistent with our previ-
ous method (Figure S5). Because this method averages the
velocity fluctuations along the straight ray between the vir-
tual source and the stations, it results in a smoother circular
shape and stronger 1 anisotropic signals (Figure 4b and
Figures S2, S3, and S5 of the auxiliary material). Although
a priori less accurate than using local gradients, this method
is a good proxy for the azimuthal anisotropy measurements
with very dense seismic networks.

5.2. 1 Term
[17] The 1 component has already been highlighted at

larger scale in Western US by Lin and Ritzwoller [2011a,
2011b] who argue that this feature is a systematic bias caused
by finite frequency effects, particularly unmodeled back-
ward scattering on sharp velocity contrasts near stations. In
general, a 1 component indicates a strong velocity gradi-
ent at the location of the measurement. In our Helmholtz
tomography approach, the large amplitude 1 anisotropy is
seen along the edges of the network where the azimuthal
coverage is poor (around 180ı or less) and the number of
available data smaller. We thus deduce that the 1 compo-
nent is mainly caused by errors related to the unconstrained
fitting (less than 360ı coverage) of the phase velocities. In
our second approach, the phase velocity measurements are
averaged along the distance between the sensors (which can
be up to 2 km). As a result, the sharp isotropic velocity con-
trasts are integrated in the velocity measurements. The 1 
anisotropy is then larger at stations located on strong veloc-
ity gradients and points from the slower structure to the
faster [Mordret et al., 2013a, and Figure S2].

5.3. Conclusion
[18] We measured the exploration-induced anisotropy in a

shallow seafloor by combining two approaches that appeared
during recent years : (1) the passive noise-based interfero-
metric methods and (2) the Helmholtz tomography applied
to the data from a very dense seismic array. We would like
to emphasize two aspects of this study. First, the methods
we used are robust, straightforward, and simple to imple-
ment because, besideS the cosine fitting, they do not involve

formal inversion. Second, we showed that only 6.5 h of con-
tinuous vertical records were sufficient to retrieve the spatial
distribution of the azimuthal anisotropy at the Valhall field.
This paves the way for developing passive time-dependent
measurements of changes in anisotropy in shallow subsur-
face either in context of exploration or for monitoring active
geological objects.
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