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Abstract. The free oscillations of the Earth were observed for the first time in the 1960s.
They can be divided into spheroidal modes and toroidal modes, which are characterized by three
quantum numbers n, l, and m. In a spherically symmetric Earth, the modes are degenerate in
m, but the influence of rotation and lateral heterogeneities within the Earth splits the modes
and lifts this degeneracy. The occurrence of the Great Sumatra-Andaman earthquake on 24
December 2004 provided unprecedented high-quality seismic data recorded by the broadband
stations of the FDSN (Federation of Digital Seismograph Networks). For the first time, it has
been possible to observe a very large collection of split modes, not only spheroidal modes but
also toroidal modes.

1. Introduction
Seismic waves can be generated by different kinds of sources (tectonic, volcanic, oceanic,
atmospheric, cryospheric, or human activity). They are recorded by seismometers in a very
broad frequency band. Modern broadband seismometers which equip global seismic networks
(such as GEOSCOPE or IRIS/GSN) record seismic waves between 0.1 mHz and 10 Hz. Most
seismologists use seismic records at frequencies larger than 10 mHz (e.g. [1]). However, the very
low frequency range (below 10 mHz) has also been used extensively over the last 40 years and
provides unvaluable information on the whole Earth. In this frequency range, free oscillations
of the Earth can be observed. Normal modes of free oscillation were predicted before being
observed. In 1882, Horace Lamb provided the first comprehensive mathematical treatment
of the free oscillations of a non-gravitating sphere, distinguishing spheroidal and toroidal
oscillations. Free oscillations of the Earth result from the constructive interference of traveling
waves in opposite directions. They are characterized by an eigenfrequency and an eigenfunction.
Alterman et al. [2] calculated the theoretical values of the eigenfrequencies for the gravest modes
in a spherically symmetric Earth model. These were first observed unambiguously following
the great Chile earthquake of 1960 by Benioff et al. [3]. Each mode, either spheroidal or
toroidal, is characterized by three quantum numbers, n, l, and m. In a spherically symmetric
Earth, the modes are degenerate in m (degenerate multiplets) and can be sorted according to
n and l. Normal modes have been used since the 1960s for deriving the radial variations of
the isotropic physical quantities characterizing the structure of the Earth (density ρ(r), P-wave
velocity VP (r) and S-wave velocity VS(r)), such as in models 1066A and 1066B [4]. Since normal
mode eigenfunctions constitute a complete basis for the Earth displacement, they are used to
calculate synthetics seismograms (e.g. [5]). A remarkable application of normal mode theory
is the inversion of the centroid moment tensor for large earthquakes [6]. The different singlets
are usually mixed into one multiplet, a complex combination of all singlets. The effects of the
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earth rotation and lateral heterogeneities split the degeneracy of the eigenmodes. The occurence
of the Great Sumatra-Andaman earthquake (Magnitude Mw� 9.3) is a unique opportunity to
reconsider the observations of split modes and to considerably extend the dataset of singlets.
For the gravest modes, individual singlets are very well separated.

2. Basic normal mode theory
In the solid elastic Earth, the basic equation which governs the displacement u(r, t) is the
elasto-dynamic equation [7]:

ρ(∂2
t + H)u(r, t) = f(r, t), (1)

where H is an integro-differential operator and f represents all internal forces. We assume that
f is equal to 0 for t < 0. The solution to the above equation, u(r, t), can be expanded in terms
of a complete set of vector functions, commonly called normal modes.

Let us consider a particular reference Earth model with operator H0 and model density ρ0.
The normal modes uk(r) in this reference model are such that

H0uk(r) = ω2
k uk(r), (2)

where ωk are the eigenfrequencies. The index k denotes a particular set of three quantum
numbers n (radial order), l (spherical harmonic degree), and m (azimuthal order). These
eigenmodes form a complete orthogonal basis. The reader is referred to Aki & Richards [8],
Woodhouse [5] or Dahlen & Tromp [9] for the fundamentals of normal mode theory.

For an elastic spherically symmetric earth model, two independent families of modes exist:
the spheroidal modes resulting from the constructive interference of Rayleigh waves and the
coupling between P and SV waves, and the toroidal modes including Love and SH waves. The
eigenvector uk depends on all three quantum numbers n, l and m, where m is the azimuthal
order such that −l ≤ m ≤ l. In the case of a Spherically symmetric Non-Rotating Elastic
Isotropic (SNREI) reference Earth model, however, the eigenfrequency ωk depends on the two
quantum numbers n and l only; the energy level k is said to be degenerate, with a degree of
degeneracy gk = 2l + 1. The eigenfunctions are orthogonal and normalized according to

∫
⊕

ρ0 u∗
k · uk′ dV = δkk′ . (3)

In a spherical-polar coordinate system (r, θ, φ), the displacement uk in the reference SNREI
can be expressed in terms of three radial eigenfunctions Unl, Vnl, and Wnl:

uk(r) = [Unl(r)r̂ + Vnl(r)∇1]Y m
l (θ, φ) − Wnl(r) r̂ ×∇1Y

m
l (θ, φ), (4)

where Y m
l (θ, φ) are spherical harmonics, and ∇1 is the gradient operator on the unit sphere.

Spheroidal eigenfunctions have W = 0, while toroidal eigenfunctions have U = V = 0.
An example spectrum obtained for a large earthquake is presented in Figure 1. It shows

well resolved spectral peaks, despite the short duration of the observation (two days only). The
spheroidal eigenfrequencies are the same for the longitudinal (R) and vertical (Z) components
of motion, while the toroidal eigenfrequencies are given by the transverse (T) component of
the displacement. The determination of a large collection of eigenfrequencies enables us to
determine more accurate spherically symmetric earth structure models, at first with an isotropic
parameterization (characterized by density, P-wave and S-wave velocities) and more recently for
radially anisotropic parameterization with five elastic parameters in addition to density (PREM:
Preliminary Reference Earth Model) [10]. These models confirm the solid nature of the inner
core and provide an estimate of S-wave velocity there.
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Figure 1. Spcectra of the transverse (T), longitudinal (R), and vertical components of motion
for the 48 hr seismograms recorded at the GEOSCOPE station CAN (Canberra, Australia)
during the Sumatra-Andaman earthquake (26 Dec 2004, Mw=9.3). The seismograms were
corrected for the instrumental response. They display the two families of normal modes,
spheroidal nSl and toroidal nTl modes. The angular degrees, l, of the fundamental modes (red
for toroidal modes and blue for spheroidal modes) are drawn at their respective frequencies.
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A very important point of normal mode theory is that the basis of eigenfunctions is complete.
This implies that any displacement at the surface of the Earth can be expressed as a linear
combination of the eigenfunctions:

u(r, t) = Re
∑
k

akuk(r)eiωkt (5)

These eigenfunctions can be used to calculate the three-component synthetic displacement at
any point r and time t due to an applied body force density f representing, for example, an
earthquake. A point force f at position rS is commonly described by its associated moment
tensor M such that

f(r, t) = −M · ∇δ(r − rS) Θ(t), (6)

where Θ is the Heaviside step function. The solution of the equation (1) is given by [9; 11]:

u(r, t > 0) =
∑
k

ω−2
k M : εk(rS) uk(r) (1 − cos ωkt) e−γkt, (7)

where εk is the strain tensor associated with the displacement uk, with components εij = 1
2(∂iuj+

∂jui). The double dot product means contraction over two adjacent indices, M : ε = Mijεij .
The imaginary part, γk, of the eigenfrequency is non-zero in the presence of attenuation and
the exponential decay serves as a correction. This expression is used for calculating synthetic
seismograms. It is also used to invert for the seismic moment tensor M [6].

Significant discrepancies are seen between the observed and synthetic eigenfrequencies
calculated for a spherically symmetric earth model. This translates into time shifts between the
observed and calculated seismograms. In order to improve on the SNREI model, it is necessary to
take into account the rotation of the Earth and to remove the spherically symmetric assumption
by modeling the lateral heterogeneities between the source and the receiver. The measurements
of the perturbations in eigenfrequencies (or time shifts) form the basis of modern tomographic
methods, which map the 3D isotropic, anisotropic, anelastic structures of the Earth from the
surface down to its center. Both lateral heterogeneities and rotation remove the degeneracy of
modes and split the eigenfrequencies. The rotational effect is the most important at very long
period, as we shall now see.

3. Rotational splitting: the Great Sumatra-Andaman earthquake
The calculation of synthetic seismograms in an aspherical Earth usually relies on first-order
perturbation theory. We only present the effect of rotation on the normal modes, but the effect
of heterogeneities has also been investigated (e.g. [5]). The effect of the rotation of the Earth on
the normal mode eigenfrequencies and eigenfunctions is relatively simple and some analytical
results have been described elsewhere [12]. The effect of rotation is quite similar to the Zeeman
effect (splitting of degenerate energy levels of a hydrogen atom by a magnetic field). In a rotating
frame with constant angular velocity Ω, and neglecting terms of order Ω2, the wave equation
becomes

ρ0(∂2
t + 2Ω × ∂t + H0)u = f . (8)

The way in which the Coriolis force affects a multiplet is approximately independent of the
other multiplets, provided that this multiplet is isolated in the spectrum. This condition is not
necessarily fulfilled for all modes but it is a good starting assumption. This form of theory
is known as degenerate splitting theory. For an isolated multiplet, the result of first-order
degenerate splitting theory is

ωnlm = ω0
nl +

m

l(l + 1)
Ω βnl, (9)
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where ω0
nl is the frequency in the non-rotating model and βnl is a factor which is different

according to the type of mode (toroidal or spheroidal). For the gravest modes (frequencies
smaller than 1 mHz), the effect of rotation is larger than the effect of lateral heterogeneities.

The occurence of the great Sumatra-Andaman earthquake of magnitude 9.3 represents an
unprecedented opportunity to investigate the splitting of the modes that are not otherwise
excited by smaller earthquakes. A systematic study of the modes from the Sumatra earthquake
was carried out by Roult et al. [17]. Here we present observations for two particular multiplets.
Figure 2 shows the multiplet 0S2 and Figure 3 the multiplet 3S2. The first multiplet, 0S2, is
primarily sensitive to the mantle down to 2900 km depth, whereas the second multiplet is very
sensitive to the inner core. The prediction of the frequencies of the individual singlets split by
rotation using first-order perturbation theory is given by the vertical ticks in each frame. This
theory explains very well the singlets of 0S2, but not the singlets of 3S2. In the case of 3S2,
the observed splitting is larger than the splitting predicted by rotation (and ellipticity). Several
explanations can be proposed to explain this anomalous splitting. The most likely explanation is
the existence of a strong anisotropy in the inner core [5], although the origin of such anisotropy
is still controversial [18].

Another application of rotational splitting has been the measurement of the differential
rotation of the inner core. Several body wave studies, e.g. [19], had claimed that the inner
core had a different rotation rate than the mantle by about 3◦ per year. However by comparing
normal mode measurements over the last twenty years, Laske and Masters [13] found that this
rotation difference is less than 0.13◦ ± 0.11◦ yr−1, which is consistent with other seismic data
[20] and with the idea that the inner core is gravitationally locked to the mantle. This issue is
not completely solved yet.

4. Conclusions
Normal mode theory and observations of the eigenfrequencies and amplitudes of the modes have
played a key role in seismology in the last decades. Normal modes enable to calculate accurate
synthetic seismograms and to derive the centroid moment tensor of earthquakes. Over the last
five years, purely numerical methods have developed very rapidly thanks to the increasing power
of supercomputers and, in the near future, will make normal mode calculations less attractive.
The occurrence of the giant Sumatra-Andaman earthquake of 2004, however, revived interest
in the normal modes. So did the observation of the so-called seismic ”hum” [15; 21], i.e. the
observation that normal modes are continuously excited even in the absense of earthquakes.
The favoured explanation for the seismic hum is the interaction between the ocean and the solid
Earth [16]. While seismic noise in the microseismic band (1–20 s periods) is now used for doing
tomography of the crust and upper mantle [1], it is expected that the seismic hum will be used
for the tomography of the deep Earth.

Acknowledgment
This papers includes many suggestions from the referee, Laurent Gizon.

References
[1] Larose E, Sthely L and Campillo M 2008 This volume
[2] Alterman Z, Jarosch H and Pekeris C L 1959 Proc. Roy. Soc. London A 252 80–95
[3] Benioff H, Press F, and Smith S 1961 J. Geophys. Res. 66 605–619
[4] Gilbert F and Dziewonski A M 1975 Phil. Trans. Roy. Soc. London A 278 187–269
[5] Woodhouse J H 1996 in Boschi E, Ekstrm G and Morelli A (Eds), INGV 31–80
[6] Dziewonski A M, Chou T-A and Woodhouse J H 1981 J. Geophys. Res. 86 2825–2852
[7] Woodhouse J H and Dahlen F H 1978 Geophys. J. Roy. Astron. Soc. 53 335–354

Proceedings of the Second HELAS International Conference IOP Publishing
Journal of Physics: Conference Series 118 (2008) 012004 doi:10.1088/1742-6596/118/1/012004

5



100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600
A

m
pl

itu
de

0.28 0.29 0.30 0.31 0.32 0.33

frequency (mHz)

dCAN.Z, duration:360 h, cor:1    

2

130

260

390

520

650

780

910

1040

1170

1300

1430

1560

1690

1820

1950

A
m

pl
itu

de

0.28 0.29 0.30 0.31 0.32 0.33

frequency (mHz)

dHYB.Z, duration:360 h, cor:1    

2

Figure 2. Split modes 0S2 at two GEOSCOPE stations, CAN (Canberra, Australia) and HYB
(Hyderabad, India). The vertical ticks correspond to the prediction of the splitting due to
rotation according to first-order perturbation theory. After Ref. [17].
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Figure 3. Same as Figure 2 but for the split spheroidal modes 3S2 at the GEOSCOPE stations
CAN (top) and HYB (bottom). The observations and the predictions (vertical ticks, first-order
perturbation theory) do not agree. After Ref. [17].
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[17] Roult G, Roch J and Clévédé E 2008 Phys. Earth Planet. Int. (submitted)
[18] Singh S, Taylor M A and Montagner J P 2000, Science 287 2471–2474
[19] Song X and Richards P G 1996, Nature 382 221–224
[20] Souriau A 1998 Geophys. J. Int. 134 F1–F5
[21] Tanimoto T, Um J, Nishida K and Kobayashi N 1998 Geophys. Res. Lett. 25 1553–1556

Proceedings of the Second HELAS International Conference IOP Publishing
Journal of Physics: Conference Series 118 (2008) 012004 doi:10.1088/1742-6596/118/1/012004

8




