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Abstract

The physical characterization and depth origin of mantle plumes are not well constrained. In order to address these issues,
we look for observable effects of plumes on long period surface wave seismograms. The effect of a weak but sharp
heterogeneity on long period surface waves is computed by a first order normal mode theory using a generalization of the
spherical harmonic summation theorem to reduce the number of operations. It turns out that it is necessary to couple very far

Ž .along a given dispersion branch l"40 up to "80 to remove spurious phases in seismograms. The coupling between
Ž . Ž .different overtone branches different overtone numbers of the same kind spheroidal or toroidal and of different kinds are

computed as well. By taking into account a large number of overtones, we are able to compute the effect of the
heterogeneity on all seismogram phases from surface waves to body waves, including P–SH and SV–SH coupling. This
technique is applied to different plausible models of mantle plume: a small vertical conduit down to 660 km depth, down to

Ž .the core–mantle-boundary CMB and with or without head. We show that for a finite size plume the radiation pattern is
essentially forward, which is not the case when the heterogeneity is considered as punctual. The scattered amplitude displays
large variations for the different cases according to the temperature contrast, but an effect up to 10% of the incident
amplitude can be expected, and should be observable on good quality seismic data. q 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Oceanic islands often form long lines of volca-
noes of progressively increasing ages, suggesting
that they have been created by stationary heat sources

Ž .under moving tectonic plates. Morgan 1971 named
this kind of volcanoes hotspots and first suggested
that these heat sources could be related to mantle

) Corresponding author. Tel.: q33-1-44272469; fax: q33-1-
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plumes rising from deep in the mantle. Thanks to
their assumed stationarity, plumes have been exten-
sively used as a reference frame to determine abso-

Ž .lute plate motions Minster and Jordan, 1978 .
Ž .In order to verify the hypothesis of Morgan 1971

and to get more information on the physical proper-
ties of plumes, geochemical, fluid dynamical and
seismological studies have been performed. Geo-
chemists have found some evidences that basalts of
some of these intra-plate volcanoes have a deep

Ž Ž .mantle origin see, for example, Hart et al. 1992 or

0031-9201r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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Ž ..Hofmann 1997 . Fluid dynamic studies have shown
that plumes should originate from instabilities in

Y Žthermal boundary layers, such as the D layer Stacey
.and Loper, 1983 or the mantle transition zone. Fluid

Ždynamic experiments Whitehead and Luther, 1975;
.Griffiths and Campell, 1990 and fluid dynamics

Žmodeling Olson et al., 1987; Farnetani and Richards,
.1995 show that a plume consists of a large head

followed by a thin tail. From the point of view of
seismology, some global and regional studies have
been performed. At a global scale, the hotspot distri-
bution has been compared with the lateral hetero-
geneities of tomographic models. Cazenave et al.
Ž . Ž .1989 and Montagner and Romanowicz 1993 have
found some good correlations between 28 and 68 of
the spherical harmonic expansion of the hotspot dis-
tribution and the lateral heterogeneities of tomo-
graphic models. There might be two families of
plumes, the first one originating in the DY and the

Ž .second one in the transition zone Montagner, 1994 .
Global tomography models also show low velocity

Žanomalies under some hotspots see for example
Zhang and Tanimoto, 1993; Trampert and Wood-
house, 1995; Grand et al., 1997; Van Der Hilst et al.,

.1997 , but they are not stable from one model to the
other. Indeed, plumes are probably very small, their
lateral extent is by far smaller than the actual global
tomography resolution. Therefore, this technique
cannot provide strong constraints on the structure of
plumes. Regional tomographic models also show low

Žvelocity anomalies under some hotspots see, for
Ž . Ž ..example, Roult et al. 1994 or Silveira et al. 1998 .

Regional seismological studies of plumes, and espe-
cially body wave studies, have also been performed:

Ž .Nataf and Vandecar 1993 found small P wave time
delays which were attributed to the Bowie plume at

Ž .700 km depth. Wolfe et al. 1997 found a cylindri-
cal low velocity zone beneath Iceland down to 400
km depth with regional tomography. Vinnik et al.
Ž .1997 found evidences for a stagnant plume at the
bottom of the transition zone, using P to S converted
waves below stations of the central Pacific Ocean.

However, in spite of all this work, many ques-
tions are still pending: Are plumes really stationary?
What is the exact shape of the tail, its radius, its
bend, its depth origin and temperature contrast? Have
they a head or not? What is their exact localization?
etc . . .

The difficulty of the task is due to the probably
small lateral extent of a plume, which implies a very
small time delay of body waves and only a slight
variation of the phase of surface waves. The small
lateral extent of the plume compared to the wave-
length gives rise to a scattering effect which could be
exploited to retrieve the plume structure. This ap-
proach of scattering tomography has been followed
for body waves to study plume structures in the

Ž .lower mantle Ying, 1996; Ying and Nataf, 1998
but without leading to a clear positive conclusion.

To a first approximation, a plume can be seen as a
vertical cylinder of low seismic velocity. In a flat
layered Earth, the effect of a cylindrical inclusion
with constant velocity contrast has been studied by

Ž . Ž .Bostock 1991 or Stange and Friederich 1992 ,
both with a technique which allows to compute the
complete wave field whatever the amplitude of the
velocity contrast. Since we want to study the effect
of some different shapes of a plume and temperature
profiles, including the effect of Earth’s sphericity,
these two approaches are not suitable for our study.
In this paper, we use the Born approximation in the
framework of normal mode theory to study scatter-
ing effect of surface waves due to heterogeneities of
small lateral extent. After some theoretical considera-
tions on mode coupling, the scattering effects of the
different plume geometries are quantified. The opti-
mum geometrical configuration between earth-
quakes, plume and stations to observe the signal
scattered from the plume in data is also discussed.

2. Theory

Since plumes are supposed to be a weak hetero-
geneity of density and elastic parameters, a first
order perturbation theory can be used depending on
the ratio of the radius of the plume versus the
shortest wavelength of the incident signal. The per-
turbation of long period surface waves due to any
weak heterogeneity, which maximum size will be
discussed later, can be computed by using the Born
approximation in the framework of the normal mode

Ž Ž .theory see, for example, Tanimoto 1984a or
Ž ..Clevede and Logonnne 1996 . We apply this theory´ ´ ´ ´

to a sharp heterogeneity such as a plume.
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ŽThe equation of motion in an SNRA Spherical
.Non-Rotating Anelastic Earth model can be written,

r E 2 u t qAu t s f t , 1Ž . Ž . Ž . Ž .0 t

Ž .where u t is the displacement field, r the Earth’s0

density, A the anelasto-dynamic operator and f the
body force representing the earthquake source. In the
Fourier–Laplace space and using the Quantum Me-

Žchanics formalism Cohen-Tannoudji et al., 1977;
Ž .see, for example, Malischewsky 1987 or Montag-

Ž . .ner 1996 for its application to seismology , this
equation can be rewritten:

< : < :H u s f , 2Ž .
2with HsyPs qA, where Psr I, I the identity0

operator, s the complex frequency and the
Fourier–Laplace transform is defined as follows:

q`
yi s t< : < :u s s u t e d t . 3Ž . Ž . Ž .H

0

Let us also define:

² < < : Uu B v s u . B v dV , 4Ž . Ž .H
E

for any operator B, where E is the Earth’s volume,
asterisk denotes complex conjugation and dot the dot
product.

� < :4We assume that the set u of eigenvectors thatk

solves:

< : 2 < :A u sr s u , 5Ž .k 0 k k

forms a complete basis of functions for the displace-
ment space of the Earth. These eigenvectors only
depend on four integers, s, n, l and m, and are

< : < : is k t < : < :denoted u s k e with k s s, n, l, m . Thek

index s indicates a toroidal or a spheroidal mode, n
is the overtone number, l the angular degree and m
the azimuthal order. These eigenvectors are assumed
to be equal to those computed in the elastic case, but
they are associated with the complex frequency s sk

Ž .v 1q ir2Q , where v is the eigenfrequency ink k k

the elastic case, Q the quality factor of the mode k,k

which is a good approximation of the anelastic case
Ž .Clevede, 1991 . We have then:´ ´ ´

< : mk s D Y u ,f 6Ž . Ž .n l l

where D is the displacement operator:n l

D s U r rq V r = q W r yr== ,Ž . Ž . Ž . Ž .n l n l n l 1 n l 1

7Ž .

where U , V and W are the radial eigenfunctions,n l n l n l

U s V s0 for a toroidal mode and W s0 for an l n l n l

spheroidal one, Y m are the spherical harmonics andl

= the surface gradient operator on the unit sphere.1
² < < X: XModes are normalized according to k r k sd ,0 k k

Ž .Xd is the Kronecker symbol , which can be writtenk k

for kskX, by separating toroidal and spheroidal
modes,

a
2 2 2r U r q l lq1 V r r d rŽ . Ž . Ž .Ž .H 0 n l n l

0

a
2 2s r l lq1 W r r d rs1, 8Ž . Ž . Ž .H 0 n l

0

where a is Earth’s radius.
A slight perturbation of the density and the elastic

moduli of the reference model is now considered.
The operator H then becomes HqdH where dHs
d Ays 2

dP, and the SNRAI seismogram u be-
comes uqdu, where du is the perturbation to u due

Ž .to the heterogeneity. Therefore Eq. 2 is rewritten:

< : < : < :HqdH u q du s f . 9Ž .Ž . Ž .
To first order, the expression of du is:

y1 y1< : < :du syH dHH f . 10Ž .
Since the basis of the normal mode eigenfunctions is

< :assumed to be complete, du can be expanded on
this basis as follows:

< : < :du s da s k , 11Ž . Ž .Ý k
k

Ž . < :where da t are the excitation coefficients of du .k
Ž . ² <Projecting Eq. 11 on k r , we obtain:0

² < < :da s k r du ,k 0

y1 y1² < < :da sy k r H dHH f , 12Ž .k 0

< :² <and, by using the closure relation IsÝ r k k ,k 0

where I is the identity operator:

Y Y X2 y1² < < :² < < :da sy k r H k k dH kÝk 0
X Y Zk k k

=
X Z Z2 y1² < < :² < :k r H k k f . 13Ž .0



( )Y. CapdeÕille et al.rPhysics of the Earth and Planetary Interiors 119 2000 57–7460

Since physical dispersion and the Earth’s rotation are
neglected, the expression of the matrix elements of

2 y1 Ž .r H is see Appendix A :0

X2 y1 2 y1 2 2² < < : Xr H s k r H k sd r s ys ,X Ž .Ž .0 0 k k kk k

14Ž .
which leads to:

X X² < < :² < :k dH k k f
da sy . 15Ž .Ýk 2 2 2 2

XX s ys s ysŽ . Ž .k kk

If a causal point source function, located in r ,s
Ž . Ž . Ž . Ž Ž .f r,t s f d ryr H t is assumed here H t is0 s

.the Heaviside function the expression of the total
displacement, turning back to the time domain, rul-
ing out the static terms and separating the summation
over m from the other quantum numbers, is
Ž .Tanimoto, 1984a ,

cos s tŽ .K m mv.us y R S 16.aŽ .Ý Ý K K2½ sK mK

cos s t t sin s tŽ . Ž .X XK Km m m mq R S d A qÝ K K K K4 3
Xs 2sK Kmm

= Rm
d AmX m ys 2

dP mX m SmX

16.bŽ .Ž .Ý K K K K K K K
Xmm

cos s tŽ .K
q Ý 2 2 2ž XX s ys sŽ .K K KK /K

= Rm SmX

X d Am mX

X ys 2
dP m mX

X 16.cŽ .Ž .Ý K K K K K K K /Xmm

cos s X tŽ .K
q Ý 2 2 2ž X XX s ys sŽ .K K KK /K

= Rm SmX

X d Am mX

X ys 2
X dP m mX

X .Ž .Ý K K K K K K K 5/Xmm

16.dŽ .
Ž .where Ks s,n,l , r and r are, respectively, ther s

Ž .receiver and source locations, vsv d ryr , v is0 r 0
Žthe orientation of the receiver the instrument re-

.sponse can be included in v if necessary and:

² < :R r s v k ,Ž .k r

² < :S r s k f ,Ž .k s

² < < X:Xd A s k d A k ,k k

² < < X:Xd P s k dP k . 17Ž .k k

Ž .Eq. 16.a corresponds to the classical expression
Ž .of the unperturbed seismogram, Eq. 16.b corre-

sponds to the interaction between singlets of the
Ž X X Xsame multiplet sss , nsn , ls l , summation only

X. Ž . Ž .over m and m . Eqs. 16.c and 16.d correspond to
Ž Xthe coupling between the different multiplets s/s

X X. Xor n/n or l/ l . The summations over n, n , l
and lX should take values from 0 to q`, the summa-
tions over m and mX from yl to ql and ylX to qlX,
respectively. The indices s and sX correspond either
to toroidal modes and to spheroidal modes.

Ž .Eq. 16.b , normalized by the unperturbed term
sy2Ý Rm Sm, includes a secular term in t´ , with:K m K K

Rm
dH mX mSmXÝ K K K

Xmm
´s .

m m2s R SÝK K K
m

This secular term appears when both eigenfunctions
Ž X X X X.are degenerate s s s , n s n , l s l , m / m .

Ž .Therefore, expression 16a–d is only valid for
‘‘short’’ times such as t´<1. In our application of
a plume heterogeneity, ´ never exceeds 10y5 sy1,
we can then consider that ‘‘short time’’ is met for
t-104 s. Since we are only interested in scattered

Ž .signal of the direct wave train R1 , this condition is
always met.

We now need to compute the vectors and the
Ž . Xmatrices present in Eq. 17 , particularly d A andk k

dP X . When considering large scale heterogeneity,k k

these splitting matrices are usually computed by
expanding the perturbation of the elastic parameters

Žand the density into spherical harmonics see for
example Woodhouse and Dahlen, 1978; Woodhouse

.and Girnius, 1982; Tanimoto, 1984b . When a small
structure is considered, it would be necessary to
expand the heterogeneity up to a very high degree of
spherical harmonics, making the numerical problem
very heavy. We prefer the approach in terms of point
scatterers, represented by delta functions, more gen-

Ž .eral than the one used by Snieder 1986a , Snieder
Ž . Ž .and Nolet 1987 or Romanowicz 1987 , both valid

in the asymptotic surface wave formalism case.
The splitting matrix elements expression is:

UX² < < :X Xd A s k d A k s u r .d A u r dr,Ž . Ž .Ž .Hk k k k
E

18Ž .
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where E is the Earth’s volume and k denotes the
Ž .pair K ,m . If the volume integration over the Earth

Ž .is done numerically, Eq. 18 becomes:
nd

U
X Xd A , u r .d A u r dVŽ . Ž .Ž .Ýk k k d k d d

ds1

s d A X r , 19Ž . Ž .Ý k k d
d

� 4where r are the n numerical integration pointsd d

and dV their corresponding volume element.d
Ž .Xd A r is the splitting matrix due to the followingk k d

point heterogeneity located at r :d

dV dm r d ryr , dV dl r d ryr .Ž . Ž . Ž . Ž .d d d d d d

20Ž .

Ž .XdP r , due tok k d

dV dr r d ryr , 21Ž . Ž . Ž .d d d

Ž . Ž .is similarly defined, where dr r rr , dm r rmd 0 d 0
Ž .and dl r rl are very small compared to 1. There-d 0

fore, the splitting matrix due to a complex structure
is only a finite sum of the splitting matrices due to a
point scatterer with the appropriate weight.

Ž .XThe vectors R and S , and the matrices d A rk k k k d
Ž .Xand dP r , are decomposed into the generalizedk k d

Žspherical harmonics basis Phinney and Burridge,
.1973 , using the notation of Woodhouse and Girnius

Ž .1982 :

Ns1
N mR r ,u ,f s R r Y u ,f , 22Ž . Ž . Ž . Ž .Ýk r r r K N r l r r

Nsy1

Ns2
UN mS r ,u ,f s S r Y u ,f , 23Ž . Ž . Ž . Ž .Ýk s s s K N s l s s

Nsy2

d A X r ,u ,fŽ .k k d d d

Ns2
XUN m N m

X Xs d A r Y u ,f Y u ,f ,Ž . Ž . Ž .Ý K K N d l d d l d d
Nsy2

24Ž .

dP X r ,u ,fŽ .k k d d d

Ns2
XUN m N m

X Xs dP r Y u ,f Y u ,f ,Ž . Ž . Ž .Ý K K N d l d d l d d
Nsy2

25Ž .

Fig. 1. Different angles used in this paper. All of them are
measured anti-clockwise. b is the angular distance between xx y

Ž .and y x and y stand for s, r and d , p yg is the azimuth atsd

the source between the source and the heterogeneity, a qg issd d r

the scattering angle and y a is the back-azimuth at the receiverd r

between the heterogeneity and the receiver.

Ž .where r ,u ,f sr are the coordinates of thed d d d

numerical integration points, which can be regarded
as point scatterers.

The expressions of R and S are given byK N K N
Ž . X XWoodhouse and Girnius 1982 , d A and dPK K N K K N

are given in Appendix B. Since the calculation of
Ý X Rm S X

mX

dH X
m mX

becomes more and more timem m K K K K

consuming with increasing l, it is expedient to use a
generalization of the classical summation theorem,
valid for the generalized spherical harmonics
Ž .Edmonds, 1960; Li and Tanimoto, 1993 :

msl
X UN m N mY u ,f Y u ,fŽ . Ž .Ý l s s l r r

msyl

se i N X
g sr P NN X

cos b e i Na sr , 26Ž . Ž .Ž .l sr

where P NN X

are the generalized Legendre functions.l

If the index s is related to the source location and r
to the receiver one, then the angle ya is thesr

back-azimuth at the receiver, pyg the azimuth atsr

the source and b is the angular epicentral distancesr
Ž .see Fig. 1 . This leads to:

Rm SmX

X dH m mX

XÝ K K K K
Xmm

s R e i Na d r S X X e i N X
g sdŽÝ K N K N

X YNN N
Y Ž . Y Xi N g qa N Nd r sdX Y X=dH e . P cos bŽ .Ž .K K N l sd

=P NN Y

cos b , 27Ž . Ž .Ž . .l d r
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where dH X Y sd A X Y ys 2
dP X Y , b is theK K N K K N K K K N x y

Žangular distance between x and y x and y stand
.for s, r and d , pyg is the azimuth at the sourcesd

between the source and the heterogeneity, a qgsd dr

is the scattering angle and ya is the back-azimuthdr

at the receiver between the heterogeneity and the
Ž .receiver see Fig. 1 . This simplification is numeri-

cally very important, since it avoids a number of
2 Žoperations increasing with l for example for ls

Ž .2250 it will change 2 lq1 s251 001 operations
X Y .into NPN PN s75 operations .

However, due to limitations in computation time,
we cannot compute all interaction terms present in

Ž . Ž . Ž . Ž .Eqs. 16.a , 16.b , 16.c and 16.d , and therefore
we have to apply different levels of approximations
that are considered in Section 3.

3. Approximations in mode coupling

We first consider a very simple structure of a
plume, named ‘‘line plume’’: a radial cylindrical
heterogeneity of 100 km radius rising from the CMB,
at 2900 km depth up to the surface. The cylinder is
represented by a line of point heterogeneities. This
approximation is valid for very long periods, when
the lateral extent of the plume is assumed to be very
small compared to the wavelength. The error result-
ing from this approximation will be considered in
Section 4.

We consider several types of approximation in
Ž . Ž . Ž . Ž .evaluating Eqs. 16.a , 16.b , 16.c and 16.d ,

listed below in order of increasing accuracy:
Ø The coupling within multiplets is performed ac-

Ž .cording to Eq. 16.b , which corresponds to the
‘‘isolated multiplet’’ approximation, i.e., the low-
est level of approximation.

Ø Then interactions between multiplets along a given
Ž X X .branch nsn fixed and l/ l varying can be

Ž .taken into account by including Eqs. 16.c and
Ž .16.d in the computation.

Ø Finally, complete interactions among modes of
the same kind s and between spheroidal and

Ž X.toroidal modes s/s is computed with Eqs.
Ž . Ž . Ž .16.c and 16.d by varying n and l .

These different levels of approximation are succes-
sively considered in this section and we show their
effect on synthetic seismograms.

3.1. Isolated multiplet approximation

Let us start with the ‘‘isolated multiplet’’ approxi-
Ž . Žmation: only Eq. 16.b is computed for each s, n,

.l . The vertical seismogram in Fig. 2b is computed
Žfor PREM reference Earth model Dziewonski and

.Anderson, 1981 and only the first three trains R1,
R2 and R3 are displayed. It is computed for a
vertical normal fault source and a receiver both
located on the equator with an epicentral distance of
608, and only the fundamental mode has been taken
into account. Fig. 2c shows the scattered seismogram

Ž .Fig. 2. a Source, receiver and plume location. The path of the
minor arc scattered train of R1, R1 , and the path of major arc1

2 Ž .scattered train of R1, R , are also displayed. b Fundamental1
Ž . Ž .mode seismogram for the reference Earth model PREM . c

Ž .Scattered seismogram due to ‘‘line plume’’ see Section 3 com-
puted in the isolated multiplet approximation. gh1 and gh2 are

Ž .ghost trains. d Scattered seismogram by taking into account the
coupling along the dispersion branch ns0. In that case ‘‘ghost’’

Ž .trains vanish. The minimum period used here is 25 s l s415 ,max

and tapering in the frequency domain has been used.
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computed for the isolated multiplet approximation
Ž Ž ..Eq. 16.b generated by a ‘‘line plume’’ of y10%
of dl, located on the source receiver minor arc at

Ž .208 from the source see Fig. 2a . Only l have been
Ž .perturbed for sake of simplicity see Appendix C ,

but the same conclusion would raise with m or r. In
the case of a sharp and small heterogeneity, this
approximation creates some artificial trains, named
‘‘ghost’’ trains, and a wrong amplitude. An example
of such an effect is shown in Fig. 2b, where six

Ž .trains can be seen. The first one gh1 is clearly a
‘‘ghost’’ since it arrives before the R1 train. The
forward effect of R1 arrives at the same time as R1,
this is R1 in Fig. 2c, the backward effect of R1, R2 ,1 1

has to travel 3408 so it roughly arrives at ts9800 s,
Žassuming an approximated group velocity of 4 km

y1 . 2s . The backward effect of R2, R , has to travel2

3808 and it roughly arrives at ts10 900 s. The last
train, R1 is the forward effect of R3. gh2 and the3

first acausal train gh1 are not physical, that is the
reason why we name them ‘‘ghosts’’. They always
occur in the isolated multiplet approximation for any
kind of heterogeneity. Ghosts are shown up in terms
of propagating surface waves by using asymptotic
expressions of Legendre functions and Poisson sum-
mation formula in Appendix C. A physical interpre-
tation is that in the isolated multiplet approximation,
only the even part of the structure is taken into
account, and since a point heterogeneity is clearly
not an even structure, it creates spurious trains. A
plume located on the opposite side of the Earth
would create scattered trains whose traveltime would
fit ghosts traveltime except for the acausal one.

3.2. Coupling between multiplets along the same
branch

To avoid these ghosts, it is absolutely necessary
to couple different multiplets along the same disper-

Ž . Ž .sion branch, using Eqs. 16.c and 16.d as shown in
ŽFig. 2d a similar result is obtained in the case of a

.slab structure by Lognonne and Clevede, 1997 . It is´ ´ ´ ´
not really surprising since coupling exists up to
D lss , where D l is an integer such that allmax

X < X <multiplets l and l with ly l FD l are coupled and
s is the highest degree of the spherical harmonicmax

expansion of the heterogeneity. In the case of a point
heterogeneity s s`, then we should theoreticallymax

couple up to infinity. From a practical point of view,
we need to find the smallest D l as possible to obtain
an acceptable ghost amplitude. But, for a given D l,
if the accuracy of a perturbed seismogram is defined
as the ratio of the ghost maximum amplitude versus
the amplitude of the largest real scattered train, this
accuracy widely varies according to the source-het-
erogeneity and heterogeneity-receiver distances. If
they are far from each other, i.e., at least 208, the
decreasing of ghost amplitude towards zero is fast up
to D ls12, but slow and oscillating later on. In this
case, a good compromise between accuracy and

ŽFig. 3. Top: Source, receiver and heterogeneity a ‘‘line plume’’
.depicted in Section 3 configuration for left and right panels. In

the left panels, the heterogeneity is located on the source receiver
minor arc at 208 from the source. In the right panels, the hetero-
geneity is located on the source receiver major arc at 58 from the

Ž .source. a and f Vertical component of the incident signal com-
puted with fundamental mode for the reference Earth model for

Ž .both configurations. b and g Vertical component of the scattered
Ž .signal computed in the isolated multiplet approximation D ls0 .

Ž .c and h Vertical component of the scattered signal computed
Ž .coupling along the fundamental branch with D ls12. d and i

Vertical component of the scattered computed coupling along the
Ž .fundamental branch with D ls95. e and j Maximum amplitude

of the ghost as a function of D l for both configurations. The
Ž .minimum period used here is 40 s l s254 , and tapering inmax

the frequency domain has been used.
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numerical effort is found for D ls12. On the other
Žhand, if the receiver or the source is very close 18 or

.28 to the plume, it is necessary to couple multiplets
at least up to D ls90.

This is illustrated in Fig. 3 for a line plume of
Žy10% in l we would have to obtain similar results
.for r and m and for two different source, receiver

and plume locations. In the left panels, source and
station are far from each other while in the right
panels, the plume is located at five degrees away

Ž . Ž . Ž .from the source see Fig. 3 . Panels a and f show
the vertical component of the incident signal for the

Ž . Ž . Ž .fundamental mode. Panels b,g , c,h and d,i dis-
play the perturbation due to the plume, by coupling
along the fundamental branch for D ls0, D ls12
and D ls95, respectively. The two panels at the

Ž . Ž .bottom, e and j , present the amplitude of the
ghost train as a function of D l. Fig. 3e shows a fast
decrease of the ghost amplitude, and then oscillations

Ž .for large D l. On the other hand, plot j shows a
slower decrease of the ghost amplitude towards zero
with increasing D l.

Coupling up to D ls100 is not a numerical prob-
lem for a point heterogeneity, for the fundamental
mode and without coupling between spheroidal and
toroidal modes. However, it becomes a time consum-

Žing task in a more general case i.e., when coupling a
large number of higher modes and when taking into
account the lateral extent of the plume by numerical
integration, involving a large number of scattering

.points .

3.3. Coupling between multiplets from different
branches

We proceed by considering the coupling of multi-
Ž .plets from different branches cross-branch coupling .

Since there is no theoretical difference between cou-
pling of different multiplets from the same branch or

Ž .from different branches, we use Eqs. 16.c and
Ž .16.d , as in Section 3.2. From a practical point of
view, it is necessary to be very careful because some
eigenfrequencies are so close to each other that they
have to be considered as degenerate in order to avoid
numerical problems. It can easily be shown that

< <X Xwhen dv s v yv is becoming close to zero,K K K K
Ž . Ž .Eqs. 16.c and 16.d are converging towards the

Ž . Xisolated multiplet expression Eq. 16.b as tdv .K K

This is a short time approximation, such as the
Ž . Ž . Ž . Ž .secular term of Eqs. 16.a , 16.b , 16.c and 16.d .

Two multiplets are named ‘‘quasi degenerated’’ if
the error due to this approximation is the same as the

Ž y5
Xone due to the secular term in practice dv -10K K

y1 .s , in this case the coupling is computed using Eq.
Ž .16.b . For multiplets from different branches with
dv X )10y5 sy1, the coupling is computed nor-K K

Ž . Ž .mally according to Eqs. 16.c and 16.d .
With this last precaution, a large number of over-

tones and also conversions between toroidal and
spheroidal modes can be taken into account. The
resulting perturbed seismogram takes into account all
phases including body waves and surface waves.
Similarly to the fundamental branch case, we must
take care of ‘‘ghosts’’ for higher modes by coupling
along branches and also between branches with a
large enough D l. However, even with large D l,
acausal ghosts do not totally vanish, and residual
ghosts will mix with scattered body waves. Since
acausal ghosts always arrive before the real per-
turbed phase, this can be avoided, if necessary, with
judiciously placed Heaviside functions for each
branch coupling, to reset this spurious signal.

An example of each level of approximation is
given in Fig. 4, separating Rayleigh waves scattered
into Rayleigh waves from Love waves scattered into
Rayleigh waves. The plume is a ‘‘line plume’’ with

Ž Ž ..temperature contrast DTs400 K see relations 29 .
The source-plume-receiver geometries are shown in
the top of Fig. 4. In order to show incident Love
wave scattered into Rayleigh wave, the scattered
signals are not recorded in the alignment of the
source and the plume, but at receiver 2. As a matter
of fact, there is no incident Love wave scattered into

ŽRayleigh wave in the forward direction Bostock,
.1991 . This will be detailed in Section 4.2. In order

to compare with the scattered signal, the incident
signal is recorded at the same epicentral distance, at
receiver 1. Besides, in this configuration, acausal

Ž .ghosts arrive at ts0 s see Appendix C , and no
mixing with real phases is possible. For scaling

Ž .reasons, body waves left panels are separated from
Ž .surface waves right panels . All seismograms and

scattered seismograms of Fig. 4 have been computed
by using the first 60 overtones and the fundamental
toroidal and spheroidal overtones in the period range
between 40 and 200 s.
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Ž .Fig. 4. a Vertical component of the incident signal, for the reference Earth model seismogram, recorded at the receiver 1, computed with
Ž . Ž .a with the first 60 Rayleigh overtones with a period range of 40–200 s. b Vertical component of the scattered signal due to a ‘‘line

Ž . Ž . Ž .plume’’ see Section 3 , recorded at receiver 2, in the isolated multiplet approximation, computed with b . c Vertical component of the
scattered signal recorded at receiver 2, coupling resonant multiplets from different Rayleigh overtones. The incident wave is the vertical

Ž . Ž . Ž . Ž . Ž .component a only no transverse component . d Vertical component scattered signal recorded at receiver 2, computed with b , c and
Ž . Ž . Ž . Ž . Ž .d with D ls60 with only Rayleigh multiplets. The incident wave is the vertical component a only no transverse component . e

Ž .Transverse component of the incident signal, for the reference Earth model seismogram, recorded at the receiver 1, computed with a with
Ž .the first 60 Love overtones with a period range of 40–200 s. f Vertical component of the scattered wave recorded at receiver 2, coupling

Ž . Žresonant multiplets from different Love and Rayleigh overtones. The incident wave is the transverse component e only no vertical
. Ž . Ž . Ž .component . g Fully coupled Love to Rayleigh multiplets scattering recorded at receiver 2, computed with c and d , with D ls60. The

Ž . Ž .incident wave is the transverse component e only no vertical component . ShP is the S wave scattered into P wave by the plume and PhP
Ž . Ž . Ž . Ž . Ž .the P wave scattered into P wave. The scattered signals b , c and d are normalized with respect to the incident signals plot a and f

Ž . Ž .and g with respect to e . The left and the right part of the first four panels have different vertical scales. Note that waveform and
Ž .amplitude are different between approximate and nearly fully coupled scattered seismograms.

Fig. 4a and e display, respectively, the vertical
and the transverse component of the incident wave,
recorded at receiver 1.

Fig. 4b, c and d show the vertical component of
the scattered signal computed with different levels of
approximation detailed below. In Fig. 4b to d, only
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the vertical component of the incoming wave have
been used to compute the scattered signal, therefore,
only Rayleigh waves scattered into Rayleigh waves
and P waves scattered into P waves exist.

Ø Fig. 4b is computed in the isolated multiplet
approximation.

Ø Fig. 4c is computed by coupling resonant mul-
tiplets from different Rayleigh overtones. A multiplet
k of a given branch n is said to be resonant with a1 1

< <multiplet k of a branch n if k makes v yv2 2 2 k1 k 2

minimum. k is the ‘‘nearest’’ multiplet of n to k2 2 1

in the frequency domain. Note that if n sn , then1 2

k sk .1 2

Ø Fig. 4d is computed by coupling all multiplets
along and between Rayleigh branches up to D ls
"60.

Fig. 4f and g also show the vertical component of
the scattered signal computed with different levels of
approximation detailed below. The difference with
Fig. 4b, c and d is that only the transverse compo-
nent of the incoming wave have been used to com-
pute the scattered signal. Therefore, only Love waves
scattered into Rayleigh waves and SH waves scat-
tered into P waves exist.
Ø Fig. 4f is computed by coupling resonant multi-

plets from Love overtones with Rayleigh over-
tones.

Ø Fig. 4g is computed by coupling all Love multi-
plets with Rayleigh multiplets up to D ls"60.

Ž .In the isolated multiplets approximation Fig. 4b ,
a wrong amplitude and a wrong waveform is ob-
tained compared to the nearly fully coupled cases
Ž .Fig. 4d . When the coupling between resonant mul-
tiplets from different branches is taken into account

Ž .Fig. 4c and f the waveform is correct except for the
first arrivals, but the amplitude is wrong. Therefore it
is important to take into account coupling between
multiplets with a large enough D l to obtain the right
amplitude and waveform.

Note that the scattered signal on all body wave
phases has been computed in Fig. 4d and g, in

Žparticular P wave scattered into P wave phase PhP
.of Fig. 4d, ‘‘h’’ for heterogeneity and S wave

Ž .scattered into P wave phase ShP of Fig. 4g . How-
ever, this complete computation involves a large
number of interactions, and is quite time consuming

Ž .on a workstation about a day of CPU time .

4. Effect of different types of hotspots

The structure at depth of plumes is not well
known, and some different assumptions can be made
regarding their shape. In order to quantify the effect
of different realistic plume structures, we test three
simple geometries, shown in Fig. 5.

Ž .Ø Plume 1 corresponds to a cylinder of constant
width from the DY layer up to the surface.

Ž .Ø Plume 2 corresponds to a cylinder of constant
width from the 670 km discontinuity up to the
surface.

Ž .Ø Plume 3 corresponds to two cylinders of con-
stant width, the first one from the DY layer up to,
for example, a depth of 100 km, and the second
one, wider, from 100 km depth up to the surface,
in order to simulate the head of the plume.

Ž . Ž .Fig. 5. a The three types of hotspot geometries tested in Section 4. b Spheroidal mode eigenfunctions, corresponding to vertical
Ž . Ž .displacement, plotted for two periods, 25 s dashed line and 100 s solid line , for ns0, 1 and 3 at the same depth scale.
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The temperature distribution within the plume has
Ž .been choosen as follows Farnetani, 1997 :

2ga r
DT r , z sDT exp z exp y H r yrŽ . Ž .0 02ž /c rp 0

28Ž .

with the thermal expansion coefficient as2.10y5

Ky1, the specific heat at constant pressure c s1200p

J kgy1 Ky1, the gravity field gs10 msy2 . The
orientation of r and z axes are shown in Fig. 5a, and
r is the radius of the plume. The density variation0

can be obtained with the following relation:

dr
syaDT

r

and the corresponding seismic velocity contrast can
be expressed by:

dÕ drp y1sa ,r p
Õ rp

dÕ dÕs p
sa , 29Ž .s p

Õ Õs p

Žwith a s1.25 and a s0.5 Kumazawa and An-s p r p
.derson, 1969 . The integration over the plume struc-

Ž .ture is performed according to Eq. 19 with a lateral
sampling of at least five points per the shortest
wavelength of the incident signal.

Since this work is done in the framework of the
Born approximation, all multiple reflections and mul-
tiple scattering effects are neglected. The limitations
of this approximation have been studied by Friederich

Ž .et al. 1993 in the case of a cylinder with a constant
velocity anomaly, in a flat Earth. They have shown
that the effect of multiple forward scattering start to
be significant, for a velocity contrast of 5%, when

Ž .the ratio of the radius versus wavelength r rl is0

between 1 and 2. In this paper, the obtained velocity
Žcontrasts have the same order of magnitude between

. Ž .1% and 10% as in Friederich et al. 1993 . For a
period of 25 s, the wavelength of the fundamental
mode is approximately 100 km, therefore the multi-
ple scattering effect is negligible up to a radius of
100 km. In the case of a plume with a head of 200
km radius, the limit is reached. Even in this case,

Ž .Friederich et al. 1993 have shown that the differ-
Žence between the Born approximation single scatter-

.ing and the multiple scattering modeling is only
significant near the plume and is negligible at a
distance of a few wavelengths. Therefore, the single
scattering approximation is correct in the cases tested
here. However, if this method is applied to larger

Ž .heterogeneities such as slabs for example we should
be careful of this limitation.

4.1. Spectra of scattered trains

The purpose of this section is to evaluate the
influence of the different plume structures, shown in
Fig. 5, on the amplitude spectra of the first scattered
train. To this end, the spectra of the scattered signal
are computed without cross-branch coupling, with an
incident signal computed with only modes of a given

Ž .branch. Fig. 6 top shows the spectrum of the
incident wave, recorded at the receiver, computed

Ž .with only the fundamental mode a , or higher modes
Ž . Ž .ns1 b or 3 c . Below are plotted the spectra of

the corresponding scattered signals for each value of

Fig. 6. Spectra as a function of the frequency for the same source
and receiver location as in Section 2. The plume center is located
at the middle of the source-receiver path and is represented by a
distribution of points with a lateral sampling of, at least, five
points per wavelength of the incident wave. Top: Spectra of the
R1 Rayleigh train for the different overtone numbers, ns0, ns1
and ns3. Bottom: Spectra, normalized by the corresponding
incident signal spectrum, of the scattered signals of the R1
Rayleigh wave train computed coupling the incident overtone with

Ž . Ž .itself: plume type 1 solid line , plume type 2 dotted line and
Ž .plume type 3 dashed line .
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Ž .n Fig. 6d, e and f , computed coupling modes only
Žalong the same overtone. The three curves solid

.line, dashed line and long dashed line correspond to
the three plume geometries showed in Fig. 5.

The difference between the spectra associated with
Ž . Žplume of type 1 solid line in Fig. 6 and 2 dotted

.line can only be observed at very low frequencies
and is very weak for ns0 but it is increasing with
overtone number n. On the other hand, the differ-
ence between plume 3 and the two others is large
and is more important at high frequency. This can be
easily understood by considering the variation with
depth of the eigenfunctions plotted in Fig. 5b, for
ns0, 1 and 3, with the same depth scale as the
plumes. It shows that the difference between plume
Ž . Ž .1 and 2 is nearly impossible to detect in spectra
of the fundamental mode only, even at long periods,
because its sensitivity is concentrated near the sur-
face, and is not able to ‘‘see’’ the lower mantle.
Higher modes are better suited to discriminate be-
tween different plume models at depth because of
their enhanced sensitivity there. The same interpreta-
tion explains the difference between spectra associ-

Ž .ated with plume 3 dashed line and those associated
with the other plume models: the sensitivity of the
modes is more concentrated near the surface when
the frequency is high, and hence the modes are more
sensitive to the plume head. Since the effect of the
head is more important than that of the tail, it
explains the strong difference at ‘‘short’’ periods and
the little difference at very long periods, between

Ž . Ž . Ž .plume 1 and plumes 2 and 3 . In this case, the
strong effect of the head on the fundamental mode
hides the effect of the tail.

Fig. 6 also shows that, whatever the type of
plume, high frequencies are more affected by the

Žheterogeneity than low frequencies compare, for
example, the incident and the scattered spectra for

.ns0 .
The practical consequence of these observations is

Žthat a study using short period signals around 30 s
.or less is more interesting than one at very long
Ž .periods 100 s or more because the relative per-

turbed amplitude is the largest at short periods. In
order to resolve plumes in the transition zone or in
the lower mantle, we have to use periods longer than
100 s and also overtones. Therefore, by using the
fundamental mode and the first higher modes, only

the structure in the upper mantle can be retrieved. To
resolve the very deep structure of the plume, higher
modes of overtone numbering higher than 3 are
required.

4.2. Radiation patterns

It is now interesting to determine if there is an
optimum azimuth for detecting plumes. The ‘‘radia-
tion pattern’’ of the heterogeneity is defined here as
the ratio of the amplitude of the scattered signal with
respect to the amplitude of the incident signal, at a
given frequency, as a function of the scattering angle

Ž .csa qg Fig. 1 . The source-plume-receiversd dr
Ž .geometry is described in Fig. 7 , the scattered signal

Ž .is recorded at the station R c and compared to the
incident signal recorded by the station N, located at

Ž .the same epicentral distance as R c . First we com-
pute the radiation pattern when the heterogeneity is a

Ž .‘‘line plume’’ see Section 4 . We then investigate
how the radiation pattern is modified by taking into
account the lateral extent of the hotspot by a lateral
integration. The numerical lateral integration is
equivalent to consider that the plume is composed of
a finite set of scattering points, and a summation

Ž .over this set is performed see Section 2 . Here, only
radiation patterns computed with the fundamental
mode are discussed.

When the plume is assumed to be a vertical line
Ž . Žof points Fig. 8 , spheroidal-to-spheroidal equiv-

.alently Rayleigh-to-Rayleigh radiation pattern has
two lobes for the fundamental mode, and the most
important one is in the forward direction. Toroidal-

Ž .to-toroidal equivalently Love-to-Love has four
lobes of equal amplitudes in forward, backward and
lateral directions. Toroidal-to-spheroidal and

Ž .spheroidal-to-toroidal conversions radiation pat-
terns have two lateral lobes. Here we see again that
scattering is stronger at high frequencies than at low
frequencies. If the lateral extent of the heterogeneity

Fig. 7. Configuration used to construct ‘‘Radiation patterns’’.
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Fig. 8. Radiation patterns of the scattered wave amplitude with
respect to the incident wave amplitude, in configuration of Fig. 7,
for a vertical line of point heterogeneities for a radius of 100 km
Ž .plume type 1 and for the fundamental mode with D ls30. T
refers to toroidal modes, S to spheroidal modes and for example,
T™S refers to a conversion from toroidal to spheroidal modes.
These ‘‘radiation patterns’’ are plotted for three periods, 30, 50
and 100 s. Black arrows indicate the incident wave direction.

is taken into account, the radiation patterns are greatly
affected when the wavelength is smaller than three

Ž .times the radius of the plume Fig. 9 . Most of the
backward and lateral radiations vanish and the for-
ward lobes become sharper. Even though the radia-
tion patterns are largely dependent upon the lateral
extent of the plume, for spheroidal-to-spheroidal
scattering, the maximum effect on amplitude is still
the same in the forward direction. For a radius of
100 km and an average temperature contrast of 400
K the maximum effect is about 10% of the incident
amplitude at 30 s, 4% at 50 s and 2% at 100 s.

The influence of the extent of small hetero-
geneities on radiation patterns has been studied by

Ž . Ž .Snieder 1986b and Bostock 1991 . Snieder
Ž .1986b , using an asymptotical formalism for a flat
Earth, shows that this effect can be very large in the
case of a mountain topography. For a constant veloc-
ity contrast cylinder and for a flat Earth, Bostock
Ž .1991 obtains the same effect on radiation patterns.
Unfortunately, no scale was given in his figures and
thus no further comparison is allowed. Note also that
the shape of the radiation patterns of any small scale
heterogeneity are always similar for the same ratio

radius over wavelength. Little differences in the
shape of radiation patterns which should be identical
are often due to the fact that they are very sensitive
to the relative composition of the heterogeneity in
dmrm, drrr and dlrl and then to the coefficients

Ž .of Eq. 29 .
Radiation patterns computed with overtones have

also been studied and can display very complex
shapes when considering a line plume, but when
considering the lateral extent of the plume, only the
forward scattering still remains.

Fig. 9. Radiation patterns when the lateral extent of the plume is
taken into account by a distribution of points, computed for the
fundamental mode. Solid line: radiation patterns for a plume of
type 1 with r s100 km on the top and r s25 km at the bottom,0 0

T s30 s. For comparison radiation patterns of the same ‘‘plume’’,
but represented by a vertical line of points, are plotted as dashed
lines.
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From the observational point of view, the effect
of lateral extent is a problem. It would have been
interesting to have energy scattered in another direc-
tion than the forward one. As a matter of fact, the
time delay of a scattered wave compared to the
direct signal is minimum in the forward direction

Žand increases with the scattered azimuth c in Fig.
.7 . When the direct and the scattered signals arrive at

the same time, there is obviously a problem to
extract it. We face the same problem when exploring
the lower mantle: in the high frequency domain, the
scattered energy is important but only in the forward
direction, and it is mixed with the incident wave. At
low frequencies, there is lateral and backward scat-
tering but the amplitude is very weak. Therefore, the
near alignment of the station, receiver and plume is
the best configuration in which perturbed signal can
be observed, if it can be separated from the direct
signal and if there are no other structure that pro-
duces an equivalent scattering signal on the path.

5. Conclusions

The effect of different plume geometries have
been computed in a 1-D spherical Earth model, using
the Born approximation in the framework of normal
mode theory. The use of the spherical harmonics
summation theorem applied to generalized spherical
harmonics allows the computation of perturbed seis-
mograms, including a large number of interaction
terms between modes. It is shown that it is very
important to take into account the coupling between
multiplets very far along branches to remove spuri-
ous phases and to obtain a correct amplitude. The
method also allows the computation of the effect of a
plume on all body wave phases, but it involves a
very large number of modes, leading to an important
numerical effort.

We show that the effect of a plume at ‘‘long
Ž .periods’’ more than 100 s is different from the one

Ž .at ‘‘short periods’’ less than 100 s . The sensitivity
at depth of surface waves decreases as the frequency
increases. The low sensitivity of the fundamental
mode at depth implies that only the shallow structure
will be resolved by using it. Even with very long

Ž .period data more than 250 s , it will be impossible
to discriminate a plume that comes from the DY layer

from one that originates from the transition zone
Ž .400–670 km . Of course it is possible to obtain
deeper resolution using higher modes sensitive to
larger depth than the fundamental modes. Neverthe-
less, most of the time, higher modes are, by far, less
excited by earthquakes than the fundamental mode,
and therefore it is more difficult to extract the corre-
sponding scattered signal from data. Consequently
the shallow structure is easier to retrieve from data.
It is also shown that radiation patterns at ‘‘long’’
period and ‘‘short’’ period are different. If the ratio
radius of the plume versus the shortest wavelength of
the incident signal is small compared to 1, then the
scattered energy can be observed in almost all direc-
tions, even backwards, and coupling between
Rayleigh and Love modes are important. From a
practical point of view, this case is quite interesting
because, when the energy is scattered in directions
other than the forward one, the scattered signal does
not arrive at the same time as the direct signal, and is
then easier to extract from data. If the plume radius
is comparable to the wavelength, the scattered en-
ergy can only be observed in the forward direction,
and there is no more coupling between Rayleigh and
Love modes. For a radius of 100 km, this effect
appears around a period of 100 s.

We also show that the ratio of the scattered
amplitude to the incident amplitude is greater at
‘‘short’’ period than at ‘‘long’’ period: the scattered
amplitude is about 10% of the incident amplitude at
30 s, 4% at 50 s and 2% at 100 s, for a plume radius
of 100 km and an average temperature contrast of
400 K.

This shows that a compromise has to be found: on
one hand, ‘‘long’’ periods are sensitive to deeper
structure and energy is scattered in almost all direc-
tions but with a very weak amplitude. On the other
hand, ‘‘short’’ periods have stronger scattered signal
amplitude, but less sensitivity at depth and energy is
scattered only in the forward direction. It turns out
that the alignment of the plume, the station and the
receiver is the configuration that provides the best
chances to observe a scattered signal on seismo-
grams. In this case, synthetic seismograms of the
direct waves, that take into account all of the effects
of different known structures along the path between
the source and the receiver, are required to be able to
extract the scattered signal from other signals. Since
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in this configuration an observable effect is only
significant on the amplitude, a station close to the
plume is necessary to well constrain the incident
amplitude. If the plume effect is seen by this way, it
will be necessary to use higher modes to study the
deeper structure of the hotspot, and then earthquakes
at different depths will be needed. In a complemen-
tary way, long period waves can also be studied to
retrieve deeper structures. Of course, the scattered
amplitude of long period surface wave is very weak,
but it exists in almost all directions, which enables
one to use a large number of data.

Finally, note that the plume effect on the ampli-
tude varies as the square of its radius; if r s50 km0

instead of 100 km as in the previous example, the
amplitude is divided by 4 which leads to an effect of
1% instead of 4% at 50 s. This means that our ability
to detect the scattered signal on data is clearly
related to the plume radius.

Such an application is attempted on the Hawaii
Ž .hotspot Stutzmann et al., 1997 where two GEO-

SCOPE stations, KIP and PPT, are particularly well
located to study it. As a matter of fact, PPT, Hawaii
and the Aleutians earthquakes are nearly aligned, and
KIP is just before the supposed location of the plume
when considering the Aleutians earthquakes. The
numerical method presented in this paper will be
used in order to test this application with synthetic
seismograms.
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Appendix A. Expression of the matrix elements of
r2 H I1

0

The purpose of this appendix is to show that

X2 y1 2 y1 2 2² < < : Xr H s k r H k sd r s ys .X Ž .Ž .0 0 k k kk k

30Ž .

We start from the fact that

Hy1Hs I , 31Ž .
which, using the closure relation leads to

y1 < Y:² Y <r H k k Hs I , 32Ž .Ý 0
Yk

² < 2 y1 < Y:² Y < < X: ² < < X:k r H k k H k s k r k . 33Ž .Ý 0 0
Yk

Ž .Finally we use Eq. 5 to obtain

² < 2 y1 < X: 2 2
X Xk r H k s ys sd , 34Ž .Ž .0 k k k

d Xk kX2 y1² < < :k r H k s , 35Ž .0 2 2s ysŽ .k

which is the wanted result.

Appendix B. Expressions of d A X and d P XK K N K K N

matrix elements

E E X uk pX U 3² < < :k d A k s u dc x d x ,Ž .ÝH k i i j p q½ 5E x E xE j qijpq

36Ž .

where dc is the perturbation to the elastic tensor and
< :u is the displacement associated to the mode k .k

For a point heterogeneity, using an integration by
part and the symmetry of the elastic tensor, we have,

d A X sy eU
dc d xyx X e d3 x ,Ž .� 4ÝHk k k i j i j p q d k p q

Eijpq

37Ž .

d A X sy dc eU x X e x , 38Ž . Ž . Ž .Ýk k i j p qk p q d k p q d
ijpq

ŽŽ . Ž . Ž . Ž ..where e s1r2 E u r Ex q E u r Ex is thek i j k i j k j i

strain tensor. In the isotropic case c sld d qi j p q i j p q
Ž .m d d qd d , then:i p jq iq j p

d A X sydl eU x X e xŽ . Ž .Ý Ýk k k i i d k p p dž / ž /
pi

y2dm eU x X e x . 39Ž . Ž . Ž .Ý k p q d k p q dž /
pq
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As for dr:

dP X sdr uU x X u x . 40Ž . Ž . Ž .Ýk k k i d k i d
i

These matrix elements can be computed on the
generalized spherical harmonics basis of Phinney

Ž . Ž Ž . Ž ..and Burridge 1973 see Eqs. 24 and 25 . Keep-
ing their notations and following for example Tani-

Ž .moto 1986 we find:

k l k lX

2 2
X X Xd A sy8dm V . iW V " iW ,Ž . Ž .K K " 2 K K K K2rd

d A X sy2dmk l k lX

X . iZ X X " iZ X ,Ž . Ž .K K "1 1 1 K K K K

dU dU X
X K Kl l

X Xd A sydl k k qF qFK K 0 0 0 K Kž / ž /d r d r

dU dU X
X K Kl l

Xydm k k F F q2 ,0 0 K Kž /d r d r
41Ž .

dP X s2drk l k lX

V . iW V X " iW X ,Ž . Ž .K K "1 1 1 K K K K

dP X sdrk l k lX

U U X , 42Ž .K K 0 0 0 K K

where U , V and W are the radial eigenfunctions,n l n l n l

U s V s0 for a toroidal mode and W s0 for an l n l n l
l ŽŽŽ .Ž .. .1r2spheroidal one, V s lqN lyNq1 r2 ,N

ŽŽ . Ž ..1 r 2 l l lg s 2 l q 1 r 4p , k s g , k sl 0 1
l l l l l l'Ž .1r 2 g V , k sV V g r2 and finally0 2 2 0

2U y l lq1 VŽ .Ž .K K
F s , 43Ž .K r

dW WK K
Z s y , 44Ž .K d r r

dV U yVŽ .K K K
X s q . 45Ž .K d r r

All eigenfunctions and their derivatives are taken at
the radius of the scattered point, r .d

Appendix C. ‘‘Ghost’’ trains

In this appendix we show that ‘‘ghost’’ trains are
a consequence of the ‘‘isolated multiplet’’ approxi-
mation. To do so, asymptotic expressions of the
spherical harmonics are used. The Poisson formula

enables one to convert the mode summation into a
propagating waves form in which ‘‘Ghosts’’ appear
more clearly. For sake of simplicity let us consider a
point heterogeneity in dl such that dH X Y sK K N

dH X d Y . In this case:K K 0 N ,0

Rm SmX

X dH m mX

X s R S X X e iŽN X
g sdqNa d r .Ý ÝK K K K K N K N

X Xmm NN

=dH X . P N X

X cos bŽ .Ž .K K 0 l sd

=P N cos b . 46Ž . Ž .Ž .l d r

Let us define J X sÝ X Rm S X
mX

dH X
m mX

.K K m m K K K K

For l41 Legendre functions may be expressed
Ž .asymptotically Robin, 1958 ,

2p 1
N
XP cos b sŽ .Ž .l ( lq1r2 'Ž . p sinb

=
p N

cos lq1r2 by q p ,Ž .ž /4 2
47Ž .

thus

p N X
X XNN

X XJ s 2 I cos l q1r2 b y q pŽ .ÝK K K K sdž /X 4 2NN

=
p N

cos lq1r2 b y q p , 48Ž . Ž .drž /4 2

where

R S X X e iŽN X
g sdqNa d r .dH X

X K N K N K K 0NN
XI s .K K X

p lq1r2 l q1r2 sin b sin b(Ž . Ž . Ž . Ž .sd dr

49Ž .

In the isolated multiplet approximation, KsK X, the
expression of the scattered signal du to u is

du.vs J cos s tŽ .Ý K K K
l

`
XNNs I cos s tŽ .Ý Ý K K K

Xls0 NN

= cos lq1r2 u qfŽ .Ž .1 1

qcos lq1r2 u qf , 50Ž . Ž .Ž .2 2
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with u sb qb , u sb yb ,1 sd dr 2 sd dr
Ž X . Ž X .f s NqN y1 rpr2 and f s NyN rpr2.1 2

If we now define

Ø
1I NN X

s I NN X

e if1 for lG0,s,n, l s,n, l

Ø
1I NN X

s I NN X

eyi f1 for l-0,s,n, l s,n,yly1

and similarly define 2I NN X

with f instead of f ,K 2 1
Ž .Eq. 50 can be rewritten

`
X1 NN iŽ lq1r2.u 1du.vs cos s t I eŽ .Ý Ý K K

Xlsy` NN
X2 NN iŽ lq1r2.u 2q I e . 51Ž .K

The Poisson sum formula can then be used to obtain:
` q` q

du.vs dn y1Ž .Ý Ý ÝH
X y`NN qs0 es"1

=
X1 NN iŽes tqn Žu y2p q ..K 1I eŽn

qe iŽesK tqn Žu 1q2 p Žqq1... .
q2I NN X

e iŽesK tqn Žu 2y2 p q ..Žn

iŽes tqn Žu q2p Žqq1...K 2qe , 52. Ž .
Žwith s ss . Besides s ,n cra SniederK s,n,ny1r2 K

.and Nolet, 1987 , where a is the Earth’s radius and c
the phase velocity. Then eight phases are obtained
for each q in which only the ones with a positive
time arrival are considered:

a
t," u y2 qp ,Ž .1c

a
t," u q2 qq1 p ,Ž .Ž .1c

a
t," u y2 qp ,Ž .2c

a
t," u q2 qq1 p .Ž .Ž .2c

For qs0 two phases, which should not come up,
appears. In the example of Fig. 2 they correspond to

Ž . Ž . Ž .Ž .t, arc u gh1 in Fig. 2 and t, arc u qp2 1
Ž .gh2 in Fig. 2 .
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