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S U M M A R Y
We present an azimuthally anisotropic 3-D shear-wave speed model of the Australian upper
mantle obtained from the dispersion of fundamental and higher modes of Rayleigh waves. We
compare two tomographic techniques to map path-average earth models into a 3-D model for
heterogeneity and azimuthal anisotropy. Method I uses a rectangular surface cell parametriza-
tion and depth basis functions that represent independently constrained estimates of radial
earth structure. It performs an iterative inversion with norm damping and gradient regular-
ization. Method II uses a direct inversion of individual depth layers constrained by Bayesian
assumptions about the model covariance. We recall that Bayesian inversions and discrete reg-
ularization approaches are theoretically equivalent, and with a synthetic example we show that
they can give similar results. The model we present here uses the discrete regularized inversion
of independent path constraints of Method I, on an equal-area grid. With the exception of
westernmost Australia, we can retrieve structure on length scales of about 250 km laterally
and 50 km in the radial direction, to within 0.8 per cent for the velocity, 20 per cent for the
anisotropic magnitude and 20◦ for its direction. On length scales of 1000 km and longer, down
to about 200 km, there is a good correlation between velocity heterogeneity and geologic age.
At shorter length scales and at depths below 200 km, however, this relationship breaks down.
The observed magnitude and direction of maximum anisotropy do not, in general, appear
to be correlated to surface geology. The pattern of anisotropy appears to be rather complex
in the upper 150 km, whereas a smoother pattern of fast axes is obtained at larger depth. If
some of the deeper directions of anisotropy are aligned with the approximately N–S direc-
tion of absolute plate motion, this correspondence is not everywhere obvious, despite the fast
(7 cm yr−1) northward motion of the Australian plate. More research is needed to interpret our
observations in terms of continental deformation. Predictions of SKS splitting times and direc-
tions, an integrated measure of anisotropy, are poorly matched by observations of shear-wave
birefringence.

Key words: Australia, azimuthal anisotropy, heterogeneity, inversion, surface-waves, tomog-
raphy.

1 I N T R O D U C T I O N

The Earth is heterogeneous and anisotropic on many length scales.
Polarization anisotropy (modelled by transverse isotropy with a ver-
tical symmetry axis) affects fundamental and higher-mode surface-
wave propagation. Body- and surface-wave velocities are dependent
on propagation azimuth. Shear-wave birefringence reflects trans-
verse isotropy with a horizontal symmetry axis. Since anisotropy
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requires both the presence of anisotropic crystals and their (strain-
induced) preferred orientation on seismic length scales, anisotropy
measurements contain information about the mineralogy and dy-
namics of the mantle (see, e.g. Silver 1996; Plomerová et al. 1998;
Savage 1999; Kendall 2000).

Knowledge of continental velocity heterogeneity and anisotropy
may answer a number of outstanding questions. These include the
very definition of the base of the continental lithosphere, the rela-
tion between the depth extent of the lithosphere and the age of the
overlying crust, and the deformation of the continental lithospheric
mantle and the underlying asthenosphere.
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It has been argued that continental seismic anisotropy is best
explained by a combination of ‘frozen’ (subcrustal) anisotropy, de-
veloped during major orogenic events, underlain by an actively de-
forming asthenosphere which displays anisotropy generated by the
subhorizontal alignment of olivine crystals by present-day mantle
flow (Silver 1996). However, considerable ambiguity exists regard-
ing the amount and location of anisotropy inferred from body waves.

Surface-wave waveform tomography allows the delineation of
lateral heterogeneities in the upper mantle with better radial reso-
lution than body-wave traveltime tomography. A variety of meth-
ods has been developed to extract the variation of wave speed with
depth from surface waves, (e.g. Nolet et al. 1986; Cara & Lévêque
1987), and a number of tomographic methods to invert for aspher-
ical structure exist (e.g. Montagner 1986; Nolet 1990). Inversions
of surface waves for heterogeneity have traditionally been restricted
to fundamental modes but more recent models have incorporated
higher-mode measurements, thereby enhancing the resolution down
to depths of about 400 km. Inversions for both heterogeneity and
azimuthal anisotropy have been made using fundamental modes
(e.g. Montagner & Jobert 1988; Nishimura & Forsyth 1989) and
multimode waves (Lévêque et al. 1998; Debayle & Kennett 2000a).

Local measurements of the seismic structure of the Australian
upper mantle have indicated the presence of a high-velocity litho-
spheric lid down to ∼200 km in Northern Australia (e.g. Dey et al.
1993; Kennett et al. 1994), and to ∼300 km in Central Australia
(Gaherty & Jordan 1995; Gaherty et al. 1999). Seismic anisotropy
has been proposed for the upper mantle under Central Australia
down to 200–300 km (Gaherty et al. 1999), and between 210 and
410 km depth under Northern Australia (Tong et al. 1994). Girardin
& Farra (1998) report evidence for two-layer anisotropy in southeast
Australia. The conflicting results of different shear-wave birefrin-
gence studies (Clitheroe & van der Hilst 1998; Özalaybey & Chen
1999) indicate that the anisotropy of the Australian continental man-
tle is complex and not yet well understood.

The SKIPPY experiment (van der Hilst et al. 1994) has produced a
unique broad-band data set of seismic waves propagating all across
the Australian lithosphere, resulting in the path coverage used in the

Figure 1. Path coverage. About 2250 vertical-component seismograms provided waveforms which were fitted to obtain the model presented in this paper. The
stations belong to the SKIPPY, KIMBA, AGSO, IRIS and GEOSCOPE arrays. We used earthquake locations from Engdahl et al. (1998).

present study (Fig. 1). Waveform inversions of vertical-component
fundamental and higher-mode Rayleigh-wave data have yielded de-
tailed information on the 3-D isotropic S-wave speed variations of
the continent and the adjacent oceanic areas (Zielhuis & van der
Hilst 1996; Simons et al. 1999; Debayle & Kennett 2000a).

The azimuthal anisotropy measured by Debayle (1999) and
Debayle & Kennett (2000a) changes from a regime with fast-
changing directions in the upper 150 km to smoother North-South
patterns below 150 km, and an analysis of Love and Rayleigh waves
by Debayle & Kennett (2000b) shows polarization anisotropy ex-
tending down to about 200–250 km.

In this paper, we present a new model for the Australian upper
mantle that takes into account both wave-speed heterogeneity and
azimuthal anisotropy. We quantify resolution and uncertainty by
means of synthetic tests, trade-off estimates, and an exact calcu-
lation of the horizontal resolution matrix. While there is a general
agreement between the long-wavelength structures imaged in our
present model and the one by Debayle & Kennett (2000a) (here-
after: DK2000), there are substantial differences in heterogeneity
and anisotropic structure at wavelengths smaller than about 500 km
even in regions for which both groups claim good resolution.

Like DK2000, in this paper we attempt to invert for 3-D struc-
ture starting from path-average models. The validity of the approx-
imation of independent propagation of the individual modes of the
seismogram has been explored theoretically (Kennett & Nolet 1990;
Kennett 1995; Meier & Malischewsky 2000) and been found to be
subject to certain frequency limitations, to which we adhere. As
the frequency bounds for uncoupled mode propagation presume a
scale length of lateral heterogeneity, DK2000 conclude one should
be wary of comparing differences in our and their model on lat-
eral length scales shorter than 300 km. DK2000 report noticeable
differences from great-circle propagation through their model at fre-
quencies >25 mHz. In the present paper, the higher-mode window
of the waveforms is fit up to 50 mHz where possible. Ideally, the
capability of our models to explain the observed waveforms needs
to be tested with 3-D wave propagation techniques (e.g. Komatitsch
& Tromp 1999).

C© 2002 RAS, GJI, 151, 738–754



740 F. J. Simons et al.

In addition to differences in the waveform inversion technique,
the tomographic inversion method used to obtain the model pre-
sented in this paper differs from the one used by DK2000. They
use a form of the regionalized inversion method due to Montagner
(1986), while we use the discretely parametrized, regularized inver-
sion method introduced by Zielhuis & Nolet (1994). We compare
these tomographic techniques in theory and in their application to
data.

2 I N V E R S I O N P A R T I T I O N I N G
A N D D A T A

Our method and the one of DK2000 both involve an inversion for
aspherical earth structure that is partitioned into an initial wave-
form inversion that seeks to determine the average structure under
the great-circle path between source and receiver and a subsequent
tomographic inversion for 3-D Earth structure (which will be dis-
cussed in Section 4).

Our waveform inversion is due to Nolet et al. (1986). It produces
a minimal set of independently constrained estimates of radial earth
structure (Zielhuis 1992) that are used as data in the 3-D tomographic
inversion. The independence of the linear constraints and the decor-
relation of their errors is achieved by matrix diagonalization. This
is the central distinguishing feature of Nolet’s (1990) method. Fur-
thermore, with this method the waveform analysis can be applied to
separate analysis windows in the group velocity versus frequency
space (see Simons et al. 1999, their Fig. 3), in order to separate
fundamental from higher modes, where possible. The possibility of
using two data windows prevents the highly energetic fundamental
modes from dominating the waveform inversion. For their waveform
inversion, DK2000 rely on the method by Cara & Lévêque (1987),
which linearizes the waveform inversion by using the envelope of
modal cross-correlation functions and fits the fundamental mode
and the overtones simultaneously (Debayle 1999).

Both approaches rely on a path-average approximation and ne-
glect mode coupling. As a result, some effects of complex source
mechanisms and mantle heterogeneity are not adequately mod-
elled. However, when applied within the frequency bounds derived
for both fundamental and higher modes (Kennett & Nolet 1990;
Kennett 1995) and for a large number of crossing paths, the path-
average method leads to an acceptable approximation of the 3-D
upper-mantle heterogeneity (Marquering & Snieder 1996).

For the present study we have expanded the data set of 1600
paths used by Simons et al. (1999) with additional data from the
SKIPPY project and from permanent observations operated by IRIS,
GEOSCOPE and AGSO, and we applied the waveform inversion to
a total of ∼2250 paths. In selecting the events we have avoided
regions with complex source and mantle structure by limiting the
data to events that originate mostly along or within the boundaries
of the Indo-Australian plate (see Fig. 1).

Where data quality allows we fit the fundamental mode between
5–25 mHz (40–200 s period) or a narrower frequency band within
this range, while the higher modes are fitted between 8–50 mHz
(20–125 s) or less. With these frequency bounds the fundamental
modes can provide sensitivity to structure down to at least 400 km,
and the higher modes yield additional detail. For more details about
the application to SKIPPY data, see Zielhuis & van der Hilst (1996).

At high frequencies, Rayleigh modes are sensitive to variations
in crustal thickness and velocity. We use continental crustal thick-
ness determinations from broad-band receiver functions at each of
the SKIPPY and permanent network stations (Shibutani et al. 1996;

Clitheroe et al. 2000a,b). This is arguably the most accurate crustal
model to date of the Australian continent.

3 A Z I M U T H A L A N I S O T R O P Y

Following Montagner & Nataf (1986), the perturbation of the phase
speed of Rayleigh waves (δcR) in a slightly anisotropic Earth can
be modelled by a transversely isotropic perturbation (δL) and two
combinations of elastic constants (Gc and Gs) modulated by, re-
spectively, the cosine and sine of twice the azimuth of the ray (�):

δcR = ∂cR

∂L
(δL + Gc cos 2� + Gs sin 2�). (1)

In simplified index notation (Ci j ) for the elastic tensor �i jkl

(Montagner 1996) the parameters of eq. (1) are:

L = (C44 + C55)/2, (2)

Gc = (C55 − C44)/2, (3)

Gs = C54. (4)

Like Lévêque et al. (1998) we define an effective shear-wave speed

β̂V =
(

L + Gc cos 2� + Gs sin 2�

ρ

) 1
2

. (5)

If no azimuthal anisotropy is present or if it is effectively averaged
out over all azimuths, ρβ2

V = L and Gc = Gs = 0 so that eq. (5)
reduces to βV , i.e. the wave speed of a vertically polarized shear-
wave in a transversely isotropic medium with a vertical symmetry
axis (Takeuchi & Saito 1972). Assuming Gc/L 	 1 and Gs/L 	 1
we can write:

β̂V = βV + Gc

2ρβV
cos 2� + Gs

2ρβV
sin 2�. (6)

In the tomographic inversion we will take as a starting point the
particular radial velocity averages that result from the waveform
inversion (see Section 2), and solve for heterogeneity (βV ) and the
anisotropic parameters (A1 = Gc/(2ρβV ) and A2 = Gs/(2ρβV )). We
calculate the anisotropic magnitude as (G2

c + G2
s )1/2 and the direc-

tion of maximum velocity as tan−1(A2/A1)/2.
The ubiquitous use of the parametrization represented by eqs (1)

and (6) is based on the dominance of the ∂cR/∂L partial for
fundamental-mode surface-wave propagation (Montagner & Nataf
1986). Since ∂cR/∂L is also dominant for higher modes, both for
isotropic and realistically anisotropic media (to verify this, we com-
puted sensitivity kernels for the model by Gaherty & Jordan 1995), a
parametrization in terms of βV , Gc and Gs is adequate when higher
modes are included.

To fit seismograms, we used the ∂cR/∂L partial derivative with
an isotropic reference model. The resulting 1-D path model of βV is
an adequate representation of the Earth when no further azimuthally
anisotropic information is available, because the sensitivity kernels
of Rayleigh wave phase velocities to perturbations in S-velocity in
isotropic and transversely isotropic earth models are very similar
(Anderson & Dziewonski 1982), although a small error is probably
made (Lévêque & Cara 1985).
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4 T H E T O M O G R A P H I C P R O B L E M

4.1 Construction of a linear matrix problem

With the exception of a few computational details, our method of
S-wave velocity tomography differs little from the procedure de-
scribed by Zielhuis & Nolet (1994). The model vector m containing
3-D shear-wave speed perturbations δβ(r) from a reference model
β(r ) is related to the data vector d of independent linear constraints
by a sensitivity matrix G. The data errors are uncorrelated by con-
struction, and the sensitivity is weighted by the inverse of the data
error. We seek the model vector m that solves the linear equation
d =G · m; we incorporate the effect of azimuthal anisotropy by
modifying the shear-wave speed anomaly to include a transversely
isotropic and an azimuthally anisotropic part:

δβ(r) = δβV (r) + A1(r) cos 2�(r) + A2(r) sin 2�(r), (7)

i.e. by augmenting the sensitivity matrix G to include the cosine and
the sine of twice the azimuth � of the ray in each surface cell. We
try to explain the data with both heterogeneity and anisotropy. This
leads to a threefold increase in the number of unknowns with respect

Figure 2. (a) Path density and (b) azimuthal coverage for the paths shown in Fig. 1, calculated on a 2◦ × 2◦ equal-area grid. As a measure of azimuthal
coverage, we took the number of pairs of rays in the cell coming into two different quadrants. (c) Design of a grid adapted to expected model resolution. Path
density and azimuthal coverage calculated on a 1◦ × 1◦ square grid were normalized and added to provide a measure of data quality. The cell size was adapted
to allow a finer parametrization in areas where the resolution is expected to be better. (d) Tectonic subdivision. Based on an underlying equal-area grid, similarly
shaded regions indicate approximate tectonic domains which are used as a single parameter in the pure-path inversion. Lines indicate the location of major
sedimentary basins. For the definition of tectonic units, see Simons et al. (1999).

to isotropic inversions. In Section 5.5 we evaluate the resolution of
heterogeneity and anisotropic parameters as well as the importance
of the trade-off of between them.

4.2 Model parametrization

The model presented in this paper is based on a 2◦ × 2◦ equal-area
surface parametrization of the kind shown in Figs 2(a) and (b). An
inversion on a 3◦ × 3◦ grid showed essentially the same features,
but an inversion for heterogeneity and anisotropy on a 1◦ × 1◦ grid
proved less stable. To further test the robustness of the structures
retrieved, we performed inversions on a resolution-dependent grid
(Fig. 2c). In order to determine the extent to which the Australian
continental structure at varying depths bears a relationship to the
geology observed at the surface, we also performed inversions on a
pure-path (tectonic) grid (Fig. 2d).

Due to the uneven sampling density the resolution is not uniform
across the model domain, but the grid spacing can be adapted to the
locally expected resolution in order to reduce the number of free
parameters. Our approach to adaptive grids is akin to that of Abers
& Roecker (1991). We used a fine (1◦ × 1◦) Cartesian grid upon
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which we define a coordinate transform that attempts to equalize
the sampling density by clustering cells together. Starting from a
maximum cell size of 8◦ × 8◦ we allow a further subdivision, into
cells sized 4◦ × 4◦, 2◦ × 2◦ and 1◦ × 1◦, as long as this brings the
resulting mean of the sampling density over these new cells closer
to the global mean. As a measure of resolution we use the sum of
path density (see Fig. 2a) and azimuthal variability (Fig. 2b) in the
surface cells. Although this is not necessarily an optimal a priori
estimate of the spatial resolution of the model the similarity of the
features of this measure with an exactly computed resolution matrix
(see Section 5.2) is sufficient to warrant their use in the construction
of an irregular grid. An example of an irregular grid that results
from the clustering of the sampling density is plotted in Fig. 2(c).

Pure-path methods are used to invert for the average velocity
and anisotropy structure of predefined tectonic regions (Fig. 2d)
(Nishimura & Forsyth 1985). Similarly to the construction of
a resolution-dependent irregular grid we achieve this tectonic
parametrization by a coordinate transform, such that all surface cells
belonging to a tectonic domain are treated as a single parameter in
the inversion.

4.3 Regularization or a priori information?

The discrete surface parametrization of our method leads to clas-
sic regularization approaches of systems of linear equations (Sec-
tion 4.3.1). On the other hand, the continuous regionalization ap-
proach adopted by DK2000 draws solutions from a class of functions
defined by their a priori covariance structure (Section 4.3.2).

4.3.1 Discrete regularization

We construct a penalty function based on a weighted Euclidean norm
of the solution error and a weighted norm in model parameter space
as follows:

� = (d − G · m) · A−1 · (d − G · m) + m · B−1 · m. (8)

A−1 and B−1 are weighting matrices. Minimization of eq. (8) in a
least-squares sense is equivalent to solving the following modified
set of matrix equations:[
A−1/2 · G
B−1/2

]
· m =

[
A−1/2 · d

0

]
. (9)

The generalized inverse,

m = (B−1 + GT · A−1 · G)−1 · GT · A−1 · d, (10)

can be approximated by the iterative LSQR algorithm (Paige &
Saunders 1982).

The optimal weighting matrix A−1 is given by the inverse of the
data covariance matrix C−1

d , so that the solution has minimum vari-
ance. A covariance matrix, Cd is positive definite (hence invertible)
and symmetric; in our implementation it is also diagonal because
the individual parameters resulting from the waveform fitting proce-
dure are independent by construction (Nolet 1990; Zielhuis & Nolet
1994).

If we choose B−1 = I, the identity matrix, we are imposing a
minimum norm constraint on the solution by biasing the solution
to zero in a least-squares sense. This is appropriate if m represents
perturbations to a reference model which is sufficiently close to the
real solution so that linearity is preserved. Most inversion algorithms
for the generalized inverse minimize the model norm implicitly (van
der Sluis & van der Vorst 1987). In particular, the LSQR algorithm

provides an intrinsic damping of the norm m ·m when the iterations
are truncated at some small finite value (Nolet 1985; van der Sluis
& van der Vorst 1987).

Alternatively, we may propose B−1 = D2
1, the square of the first

finite difference matrix given by

D1 =




· · · 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 0 · · ·




. (11)

The effect of this “roughening” operator is to constrain the so-
lution to be locally smooth (Nolet 1987). Eq. (11) is the Toeplitz
matrix of a high-pass filter in model space (Strang & Nguyen 1997).
Hence, we are imposing that the high-passed model vector be min-
imal, which, after inversion, results in a smooth model.

In our inversion, we combine both approaches and minimize the
penalty function

� = (d − G · m) ·C−1
d · (d − G · m) + α m · I · m + β m ·D2

1 · m,

(12)

where α and β are weights which can be adjusted arbitrarily. The
solution

m = (
αI + βD2

1 + GT · C−1
d · G)−1 · GT · C−1

d · d (13)

is calculated by LSQR.

4.3.2 Continuous regionalization

In the “Bayesian” approach (Tarantola & Valette 1982a,b;
Montagner 1986) the model parameters m are distributed according
to a Gaussian probability density function

ρ(m) ∝ exp

(
−1

2
m · C−1

m · m

)
. (14)

The solution is obtained by maximizing the joint distribution of data
and model parameters, and is given by

m = Cm · GT · (
Cd + G · Cm · GT

)−1 · d. (15)

The choice of the a priori model covariance matrix is important.
DK2000 use

Cm(r1, r2) = σ 2 exp

(
− |r1, r2|2

2L2

)
, (16)

where L denotes a correlation length, the determination of which
is, like the level of regularization, essentially at the discretion of
the seismologist. It is possible, perhaps even sensible, to use differ-
ent correlation lengths for velocity heterogeneity and anisotropy. In
addition, the a priori standard deviations σ can be chosen indepen-
dently.

Using the trivial matrix identity

GT · C−1
d · (

G ·Cm ·GT + Cd

) = (
GT ·C−1

d ·G + C−1
m

) ·Cm ·GT,

(17)

we can rewrite eq. (15) as

m = (
C−1

m + GT · C−1
d · G)−1 · GT · C−1

d · d. (18)
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4.3.3 Equivalence of regularization and Bayesian approaches

Regularization of a discretely parametrized model and stochastic
extensions using an a priori model covariance structure have been
presented as distinct alternatives (see, e.g. Scales & Snieder 1997)
but the approaches are equivalent in many ways (e.g. Ho-Liu et al.
1989).

Damping criteria to stabilize inverse solutions induce a particular
form of a model covariance matrix. Comparison of eqs (18) and (13)
reveals that choosing norm and gradient regularization amounts to
identifying

C−1
m = αI + βD2

1 (19)

as a subjective approximation to the inverse of the a priori model
covariance matrix. Yanovskaya & Ditmar (1990) show that for a
Gaussian covariance function of the form of eq. (16), the explicit
equivalence holds:

m · C−1
m · m = (σ L)−2

2π

∞∑
n=0

1

n!

(
L2

2

)n

∇nm · ∇nm. (20)

With this choice of covariance function one obtains smooth, in-
finitely differentiable functions. Eq. (20) corresponds to a model
norm weighted by an infinite number of finite difference matrices,
starting with the zeroth difference, i.e. the traditional model norm.
Neglecting the higher-order smoothing terms makes this approach
equivalent to eq. (19).

To illustrate this equivalence we conducted a synthetic experiment
to compare the discrete regularization approach with the continu-
ous regionalization for one particular depth. For a fabricated path
coverage (Fig. 3a), (noiseless) data were synthesized from a model
of shear-wave speed heterogeneity (Fig. 3b), azimuthal anisotropy
(Fig. 3c), or both. Fig. 4 shows the inversion results obtained with
the discrete method (left column) and the continuous method (right
column). Figs 4(a) and (b) show the result for an input model with
only heterogeneity (i.e. Fig. 3b). Figs 4(c) and (d) show the solution
for a model with only anisotropy (i.e. Fig. 3c), and Figs 4(e) and
(f) give the results for a model which has both heterogeneity and
anisotropy. This test demonstrates that a set of inversion parameters
(correlation lengths, a priori standard deviations and regularization
parameters) can be found with which both methods yield very sim-
ilar results. The exact values are unimportant given the synthetic
nature of this example. Differences in amplitude recovery are due
to the different implicit weighting of the data constraints versus the
a priori information in both methods. The differences in smooth-
ness are due to the chosen horizontal correlation length (chosen
to maximize variance reduction; in this example we chose a cor-
relation length of 175 km for both the velocity heterogeneity and
the anisotropy) and the implicit correlation length provided by the
damping.

4.4 Differences between Method I and Method II

While conceptually similar there are, however, theoretical and prac-
tical differences that set our method (Method I) apart from the
method used by DK2000 (Method II).

In the previous section we have shown the theoretical equivalence
of the Bayesian inversion approach with the regularization method,
and that inversion parameters can be found so that both methods
produce similar results (Figs 3 and 4). One should realize, however,
that we could find such parameters only because the input model
was known. In inversions for unknown earth structure this tuning
is not possible. The challenge is to find a priori horizontal correla-

Figure 3. Synthetic experiment. (a) Distribution of 450 events and stations
randomly distributed on a circle around Australia. (b) Input velocity hetero-
geneity, in per cent. (c) Input azimuthal anisotropy, direction of maximum
velocity.

tion lengths for both the velocity heterogeneity and the anisotropic
parameters, and a priori standard deviations of the anomalies
(σβ for δβV and σA for A1 and A2). The correlation length affects
the smoothness of the resulting model and the a priori uncertainties
regulate the amplitude. Moreover, the ratio of σβ and σA controls
the trade-off between these quantities. The choice of σ does not
affect the location but only the amplitude of the anomalies. Various
authors using this technique have made different choices. Lévêque
et al. (1998), for example, choose σβ = 100 m s−1 and σA = 5 m s−1.
Griot et al. (1998) have σβ = 200 m s−1 and σA = 200 m s−1, and
Silveira et al. (1998) take σβ = 200 m s−1 and σA = 130 m s−1.
DK2000 take σβ = 50 m s−1 and σA = 3 m s−1.
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Figure 4. Comparison of the discrete iterative approach (left column) with the continuous regionalization inversion (right column). (a, b) Isotropic inversion
result with the path distribution of Fig. 3(a) and input heterogeneity of Fig. 3(b). (c, d) Anisotropy-only inversion with input anisotropy of Fig. 3(c). (d, e) Joint
inversion for velocity heterogeneity and anisotropy with input anomalies as in Figs 3(b) and (c).

In contrast, in Method I we incorporate the sensitivity to hetero-
geneity and anisotropy with an equal weighting. The relative ampli-
tudes of anisotropy and heterogeneity are controlled by the weights
of the damping terms of their norm and not well constrained by
the data. In our model, the norm damping for the anisotropic pa-
rameters was twice as large as for the velocity heterogeneity. We
evaluate the amount of trade-off a posteriori in various experiments
(see Section 5.5).

Another difference is the treatment of the third dimension in the
3-D inversion. In Method I the third dimension is an integral part
of the minimization problem, entering the equations through the
depth-dependent linear constraints on the velocity and anisotropic
structure (see Zielhuis & Nolet 1994). In this method, the path-
averaged constraints entering the tomographic inversion are depth-
dependent functions representing the particular depth-average of
structure that can be resolved independently from all other con-
straints (Nolet 1990; Zielhuis 1992). With the continuous regu-
larization technique of Montagner (1986) such a treatment of the

depth-dependent resolvability of Earth structure can be achieved
by retaining the full 3-D covariance matrices C(r, r′) in the de-
velopment. However, DK2000 invert the shear-wave speed path-
averages layer by layer. The data used in their tomographic inver-
sion are given by the shear-wave speed profiles obtained from the
waveform inversion, sampled with an interval of 25 km, and indi-
vidual depths are treated separately. The results are then stacked
into a 3-D model. The variation of the resolution matrix with depth
is given by the errors on the shear-wave speed at the particular
depths. However, judging from the kernel functions that represent
how surface waves sample the Earth, it is not possible to deter-
mine shear-wave speeds at such finely spaced depth independently
from one another. As a consequence, with this method, it is im-
possible to obtain direct estimates of the variation of lateral resolu-
tion with depth and the extent of radial interdependence in the 3-D
model.

Finally, in Method I, we use the inversion algorithm LSQR (Paige
& Saunders 1982), which speeds up the computations by several
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orders of magnitude, but no full resolution matrix can be computed
directly. In contrast, Method II performs the inversion directly, which
is computationally much more expensive but enables the explicit
computation of the resolution matrix, a capability we will use in the
next section.

5 R E S O L U T I O N A N D
R O B U S T N E S S A N A L Y S I S

5.1 Data coverage

The best sampled regions are the easternmost two-thirds of the
Australian continent (Fig. 1), with a maximum path density on the
eastern rim of the continent (Fig. 2). Towards the west, the path den-
sity degrades. Fig. 2(b) depicts the number of pairs of rays that come
into the cell in a different azimuthal quadrant. This score is more
uniform across the continent, but it also diminishes in the western
half. The northeastern portion of the continent has a maximum of
about 200 such pairs of crossing rays in one cell. In Fig. 2(c) we
combined both resolution criteria into a single value ranging from
0 to 1.

Figure 5. Resolution tests. Exact horizontal resolution computation for the synthetic path density experiment (a–b) and the real data coverage (c–d). Plotted
is the diagonal value of R(r, r′) for the isotropic velocity solution δβV (a, c), and the cosine term A1 (b, d). The resolution for the sine term A2 is virtually
indistinguishable from that of the cosine term.

5.2 Exact calculation of the resolution matrix

The resolution kernel R is given by the reduction of the a posteriori
covariance Cp with respect to the a priori covariance structure:

R(r, r′) = δ(r − r′) − Cp(r, r′)
Cm(r, r′)

. (21)

Using the direct Bayesian inversion we calculate the exact resolu-
tion matrix both for the actual (Fig. 1) and the synthesized uniform
(Fig. 3a) data coverage and compare this to the qualitative resolu-
tion estimates from checkerboard tests. We input the path-average
velocity anomaly at a single depth into the Bayesian inversion code,
with a correlation length of 175 km for both velocity and anisotropy,
and a priori model uncertainties of 120 m s−1 for δβV , A1 and A2

(see eq. 7). The value of these choices only affect the amplitude of
the result; equating σβV and σA corresponds to an equal weighting
of velocity heterogeneity and anisotropy.

The results for the synthetic uniform path coverage of Fig. 3(a)
are plotted in Fig. 5(a) (resolution of δβV ), Fig. 5(b) (resolution of
A1), and for the actual coverage of Fig. 1 in Figs 5(c) and (d). The
resolution for A2 is virtually identical to that of A1 and is there-
fore omitted. The comparison of the synthetic resolution with the
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resolution from the actual data gives us a feel for the values we can
expect where the model is well resolved. As anticipated, the solution
in the eastern two-thirds of the continent is markedly better than in
the west.

5.3 Checkerboard tests

A popular way of assessing the resolution in tomographic models
is to calculate the recovery of a synthetic (e.g. checkerboard) input
pattern. By themselves checkerboard tests are difficult to interpret.
It is often hard to guess the exact pattern of the anomalies with-
out knowledge of the input function, which strongly degrades their
diagnostic value. Also, the damping parameters can be chosen to
reproduce the input pattern optimally, a luxury which is not avail-
able when choosing the damping needed to model the actual data
for unknown Earth structure. These and other, intrinsic, limitations
of checkerboard tests have been pointed out by several authors (e.g.
Lévêque et al. 1993). Hence, we will use the results of checker-
board tests in a qualitative way only, and compare them to the exact
resolution computed in Section 5.2.

Since the sensitivity matrix maps the input anomalies onto the
synthetic data according to the independently constrained depth-
dependent kernel functions, the solution at one particular depth is
related to the solution at adjacent depths in Method I. Therefore, we
can use checkerboard tests to get a sense of the radial resolution and
vertical smearing of the tomographic model (Fig. 6) as well as the
horizontal resolution and its depth variation (Fig. 7).

We have created two staggered checkerboard patterns, one for
heterogeneity and one for azimuthal anisotropy (Figs 6a and b).
Synthetic data were generated for a model with this input pattern
introduced at 80 km depth. The inversion result is shown at this
same depth (80 km: Figs 6c and d) as well as at the next level of
the solution (140 km: Figs 6e and f ). Except for the diminished
amplitudes the velocity input pattern is reasonably well recovered,

Figure 6. Checkerboard test for vertical smearing. An input pattern of velocity heterogeneity at 80 km (a) superimposed on a pattern of azimuthal anisotropy
(b; shaded for clarity) offset by half a cell was used to generate synthetic data. The inversion for both wave speed anomalies and anisotropy yields a recovery
at 80 km given in (c) and (d). Due to the radial averaging properties of the surface-wave kernels and the smearing in the inversion, some of the input structure
at 80 km is also mapped into the next layer at 140 km (e and f). Panels a, c, and e are plotted on the same color scale.

including the sharp gradients between the cells. This and other tests
suggest that large wave speed contrasts occurring over as little as
250 km can be resolved by our data. On the other hand this test does
not tell us the amplitude of the minimum wave speed variation that
can be detected at that same wavelength.

The N–S and E–W pattern of azimuthal anisotropy is fairly well
recovered in the central and eastern part of the continent but the
angular variability is at least 20◦ (Fig. 6d). Indeed, in large parts
of our study region it is not obvious from Fig. 6(d) alone that the
input pattern was a regular checkerboard pattern, which hampers
the interpretation of the results of such tests significantly.

Radial smearing affects our results, but a comparison of the am-
plitudes of the solutions at both depths reveals that the level of
contamination is small.

In Fig. 7 we illustrate the variation of horizontal resolution with
depth. We have plotted the output-to-input ratio (in per cent) of
an isotropic checkerboard test with patches of about 550 km each
(5◦ × 5◦, performed at 80 (Fig. 7a) and 200 km (Fig. 7b)). At 80 km,
we observe that up to 80 per cent of the input anomaly is recovered
in the best resolved regions; at 200 km this number has dropped
to about 60 per cent, but in most of the study region the ampli-
tude recovery is less than 50 per cent. Figs 7(c) and 7(d) plot the
difference in angle between the synthetic input pattern of Fig. 6(b)
in the presence of the velocity heterogeneity of Fig. 6(a) and the
recovery of the anisotropy from a joint inversion for heterogeneity
and anisotropy, for an input pattern and model retrieval at 80 (also
shown in Fig. 6d) and 200 km depth (also shown in Fig. 6e).

We conclude that, except perhaps in western Australia, our final
model will give a fair representation of the velocity and anisotropy
structure of the upper mantle under Australia.

5.4 Model robustness

In addition to the parametrization strategies described in Section 4.2
on the grids shown in Fig. 2, we evaluate the robustness of the
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Figure 7. Checkerboard test for depth-varying horizontal resolution. (a, b) Percentage of input anomaly recovered of an isotropic checkerboard pattern at
80 and 200 km depth. (c, d) Difference in angle between input and output anisotropy in a joint inversion for a pattern of heterogeneity and anisotropy as in
Figs 6(a)–(b) at 80 and 200 km depth. Bars scale with the magnitude of the difference such that excellent recovery is depicted by a dot.

models by an extensive series of tests. We performed inversions
with up to 40 per cent of the data randomly removed. We also cal-
culated the mean model obtained from 500 inversions with 5 per
cent of the data randomly removed, as well as the mean of 500 in-
versions performed on a data set to which noise was added (with
signal-to-noise ratios up to 15 dB). The average models obtained in
this way were visually indistinguishable from our final model. For
this class of mixed-determined inversion problems it is not possi-
ble to use inversion experiments like these to interpret the variance
of the model parameters quantitatively everywhere. Areas with low
resolution are always damped towards the reference model, and this
perfectly known state of total uncertainty has therefore almost zero
variance in such inversions. However, for the well resolved areas
in the east, the standard deviation obtained is everywhere less than
0.8 per cent, which is much smaller than the magnitude of the anoma-
lies we obtain in the final model. This bound holds for all depths of
our final model.

5.5 Trade-off of heterogeneity and anisotropy

Several previous studies (e.g. Vinnik et al. 1992; Gaherty &
Jordan 1995; Clitheroe & van der Hilst 1998; Girardin & Farra 1998;
Debayle & Kennett 2000a,b) have suggested that the upper mantle
beneath Australia is anisotropic. However, we need to show that the
inclusion of the azimuthal anisotropy into the inversion problem is
required by our data.

The increase in variance reduction of isotropic-only (82.6 per
cent in a separate inversion with all parameters unchanged) ver-
sus azimuthally anisotropic models (86.1 per cent for our model)
is an indication of the improvement of data fit when anisotropy is

included, but its statistical significance is hard to assess. Methods to
evaluate the improvement of data fit with an increasing number of
parameters, such as Fischer tests, are only applicable to overdeter-
mined problems (Menke 1989) and can thus not be used here. One
indication of improvement of data fit is by comparing the increase
in variance reduction from an isotropic model (δβV ) parametrized
in 7059 surface cells of a certain area with an anisotropic inver-
sion (δβV , A1, A2) of 2353 cells of an area three times as large.
The number of inversion parameters is the same in either case, but
the variance reduction increases from 83.5 to 86.1 per cent. Thus, the
inclusion of anisotropy results in an increase of variance reduction
even when the number of free parameters is left unchanged.

We have studied the incremental improvement in variance reduc-
tion in our final model due to the inclusion of progressively deeper
layers of heterogeneity, anisotropy, or both. For the velocity het-
erogeneity alone, the depth intervals between 30 and 400 km depth
contribute most to explain the variance in the data, reaching a plateau
of 76.9 per cent for the model between 0–400 km and a maximum
of 77.5 per cent for the entire depth range (0–670 km). Anisotropy
alone between 0–400 km only explains 20.1 per cent of the variance
in the data, terminating at 20.5 per cent for the entire model between
0–670 km. The improvement in variance reduction by the addition
of successive layers of anisotropy to a model with heterogeneity be-
tween 0–670 km is from 77.5 per cent to 85.9 per cent at 400 km,
terminating at 86.1 per cent for the entire model.

We explore the significance of the azimuthal anisotropy with
another synthetic experiment designed to test to which extent un-
even data coverage and heterogeneity can combine to produce an
anisotropic bias. We represent our full solution by (δβV , A1, A2). In
one test we inverted data synthesized from the heterogeneity part
only, (i.e. (δβV , 0, 0)) for both heterogeneity and anisotropy. From
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Figure 8. Trade-off of heterogeneity with anisotropy at 140 km. (a) Inversion for heterogeneity and anisotropy of synthetic data calculated from the isotropic
part of our model. With perfect resolution and control of the trade-off, the anisotropy retrieved should be zero everywhere. (b) Inversion of synthetic data
calculated from the anisotropic part of the model for heterogeneity and anisotropy. In this case perfect resolution should have resulted in zero heterogeneity.
(c) Magnitude of anisotropy (in GPa) of the actual model (see Fig. 9). (d) Magnitude of the erroneous anisotropy of Fig. 8(a). Contour lines plotted at 1 GPa
interval for both panels.

the result we can then infer how much anisotropy is produced by
uneven data coverage and heterogeneity. In a second test we invert
synthetic data from (0, A1, A2) for heterogeneity and anisotropy to
assess the projection of artificial anisotropy into heterogeneity.

Fig. 8 summarizes the test results for a depth of 140 km. Figs 8(a)
and 8(b) show the inversion of models which should have zero
residual anisotropy and zero residual velocity heterogeneity, re-
spectively. The magnitude of the anisotropy in the actulal model
plotted in Fig. 8(c), can be compared to the magnitude of the “erro-
neous” anisotropy (Fig. 8d). For all depths considered, the average
anisotropic bias is less than 20 per cent of the magnitude required
to satisfy the data in the actual model.

In regions of uneven data coverage some artificial anisotropy is
clearly produced. The direction of the artificially induced anisotropy
is especially sensitive to uneven sampling, but, in general, the mag-
nitude of the bias is small. In Western Australia, however, much of
the anisotropy present in the actual model may well consist of bias
due to the scarcity of crossing paths in that region. This makes it
impossible to distinguish the fast velocity anomaly, which is clearly
detectable in the waveforms, from a possible alignment of the fast
axis of anisotropy.

6 R E S U L T S

In Figs 9 and 10 we present models for heterogeneity and azimuthal
anisotropy of Australia, using Method I. The inversions were per-
formed on the regular (equal-area) grid shown in Figs 2(a) and (b).

The azimuthally isotropic component δβV shows many of the
characteristics that were present in our earlier models (Zielhuis &
van der Hilst 1996; Simons et al. 1999). Low wave speed anomalies

mark the eastern Phanerozoic rim of the continent. They are associ-
ated with thermal anomalies, recent volcanism and high attenuation
(Mitchell et al. 1998). Wave speeds in the central and western region
are high, but the correlation between the high velocities and the age
of the overlying crust is scale-dependent (Simons et al. 1999).

In most regions the anisotropy suggested by the data exceeds the
anisotropic bias (see also Fig. 8), and the lateral variability in direc-
tions is much larger than the nominal uncertainty of 20◦. There is no
obvious relationship between wave speeds and anisotropy, neither in
magnitude nor in direction, nor is there a clear correlation between
the anisotropy and the large-scale geological structure (Fig. 11).

The cross-sections shown in Fig. 10 suggest a depth to the base
of the continental lithosphere of up to 250–300 km (see also Simons
et al. 1999; Fischer & van der Hilst 1999), and Fig. 11 shows that the
wave speed difference between the large-scale tectonic provinces is
confined to the shallowest 300 km. The central-Australian region
is underlain by the thickest high-velocity lid, which may be an ef-
fect of preferential preservation (Simons et al. 1999). Even with
the uncertainty estimates given in Section 5.5, the magnitude of the
anisotropy does not fall off with depth as rapidly as the magnitude
of the velocity heterogeneities. The average anisotropic magnitudes
reach a maximum around 100 km (Fig. 11) and diminish at larger
depth, in accordance with observations elsewhere (Babus̆ka et al.
1998). For comparison, the magnitudes of the anisotropy from lab-
oratory estimates of upper-mantle materials range from 2 to 7 GPa
(Peselnick & Nicolas 1978; Estey & Douglas 1986).

Although not all individual directions of anisotropy agree with
the model by DK2000, we concur with these authors that the pattern
of anisotropy changes with increasing depth. The solutions at
80 and 140 km depth show a complex pattern of azimuthal
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Figure 11. Average heterogeneity and anisotropy in function of crustal age. A coarse regionalization of the Australian continent consists of a predominantly
Archaean domain (A), the central Proterozoic region (Pr) and domains of Phanerozoic age (Ph1 and Ph2). While wave speed anomalies become progressively
more positive with increasing crustal age (see also Simons et al. 1999), no defining relationship is found in the magnitude of the anisotropy.

anisotropy (short correlation wavelengths), whereas in the layers
at 200 and 300 km a simpler, smoother pattern (long correlation
wavelengths) is observed (Fig. 9). The character of the anisotropy
and the length scale over which it varies seem to change rapidly
across the 150 and 200 km depth interval.

The velocity heterogeneity revealed in Fig. 9 was reproduced sat-
isfactorily with the irregular parametrization (Fig. 2c), albeit with
somewhat reduced amplitudes. In the western regions, where the
path coverage is demonstrably worse, our fine equal-area grid over-
parametrizes the structure but this does not introduce noticeable ar-
tifacts. Within the uncertainty of 20◦, the different parametrizations
yield similar directions of fast axes of anisotropy. The pure-path av-
erage solutions (on the grid shown in Fig. 2d) at 80, 140 and 200 km
were very similar to the averages of the wave speeds imaged on
the equal-area grid. Differences appear at larger depth, suggesting
again hat below 200 km most correspondence between wave speed
structure and surface geology is lost. The central and northern re-
gion of Australia have stable directions of maximum anisotropy,
both under the equal-area and the tectonic parametrization, but the
magnitudes are much reduced in the latter. In the eastern portion of
the continent a tectonic parametrization reveals little anisotropy, at
any depth. This could indicate that the anisotropy is small, i.e. at or
below the level of the anisotropic bias, or that through much of the
depth range the anisotropy varies on length scales smaller than the
main tectonic units of the Australian continent.

7 D I S C U S S I O N

7.1 Thickness, age-relations and deformation
of the Australian lithosphere

Many global models of Rayleigh wave phase velocities (e.g.,
Trampert & Woodhouse 1996; Ekström et al. 1997) have mea-
sured faster than average wave speeds for the Archaean and
Proterozoic portions of the Australian continent (which correspond
roughly to the western two-thirds of the continent). This pattern is
corroborated by our regional model, but significant variations in
heterogeneity and anisotropy exist at smaller scales than is apparent

from global models. In particular, the depth extent of the litho-
sphere is determined in much more detail than possible with global
data sets. Some global models suggest that the high wave speeds
associated with ancient continents extend to depths exceeding
400 km (e.g. Su et al. 1994; Masters et al. 1996). Our detailed 3-D
model verities instead the local measurements of lithospheric thick-
ness of ∼200 km quoted for Northern Australia (Dey et al. 1993;
Kennett et al. 1994; Tong et al. 1994), and ∼300 km under
Central Australia (Gaherty & Jordan 1995; Gaherty et al. 1999).
A ∼200 km thick lithosphere in North Australia is compatible with
our observations (see, e.g. Fig. 10a), but clearly the 3-D structure of
the lithosphere–asthenosphere boundary is complex, and the thick-
ness of the lithosphere probably reaches at least 300 km in certain
parts of Central Australia (Fig. 10b). Eastern Australia, which is the
most recently tectonized region of the continent, is characterized by
a pronounced low velocity zone between 100–200 km depth under-
lain by fast anomalies at a depth of about 300 km (see Fig. 10b). The
origin of the latter is uncertain and it may not be related to the over-
lying lithosphere. We conclude that the thickness of the Australian
lithosphere is about 225 ± 50 km. This is in agreement with recent
observations for the Canadian Shield (Frederiksen et al. 2001) and
South-Africa (James et al. 2001). Similar lithospheric thicknesses
are obtained for other cratonic regions (for a review, see Artemieva
& Mooney 2001). Elsewhere, Simons & van der Hilst (2002) report
the full variation of lithospheric thickness based on contours of the
velocity anomalies in our present model in more detail.

The wave speed heterogeneity of the Australian continent seems
to correlate with crustal evolution and lithospheric age, at least to
depths of about 200 km (Fig. 11) (see also Simons et al. 1999). At
depths greater than 250 km there is no unambiguous relationship
between crustal age and wave speed. The anisotropy does not seem
to change on the length scale of the major geological domains at
any depth, although its magnitude remains higher at larger depth
beneath the regions affected by the most recent tectonic activity (the
easternmost parts of the continent). In contrast, Babus̆ka et al. (1998)
argued that there are systematic variations in radial anisotropy which
are related to the age of continental provinces in North America and
Eurasia.
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Global and regional studies (e.g. Montagner & Tanimoto 1991;
Lévêque et al. 1998) have been interpreted to show evidence of a
shallow regime of rapidly varying anisotropy underlain by a region
with smoother patterns of anisotropy. DK2000 observe this change
at 150 km depth. There is uncertainty on the magnitude and direc-
tions of the azimuthal anisotropy, but qualitatively, the wave speed
and anisotropy maps presented in Fig. 9 argue for a change in regime
between the first two depths (80 and 140) and the deeper parts of
the solution (200 and 300 km). The first regime is characterized by
a complex pattern of strong anisotropy, whereas the second presents
smoother variations of weaker anisotropy and a tendency towards
N–S fast axes increasing with depth.

Gaherty et al. (1999) and Debayle & Kennett (2000b) found that
polarization anisotropy in the Australian continent is concentrated
above 250 km. Our Rayleigh wave model does not contain informa-
tion about polarization anisotropy. However, most of the anisotropic
signal is present in the depth range above 200 km depth (Fig. 11),
and the improvement in variance reduction due to the inclusion of
azimuthal anisotropy is largely explained by the layers above 300 km
depth. While we believe we see evidence of azimuthal anisotropy
until a depth of about 300 km, its magnitude is not incompatible with
the statement by Gaherty et al. (1999) that polarization anisotropy
below 250 km depth must be small (<1 per cent). We interpret
our model to show evidence for fossil anisotropy above 200 km and
deeper anisotropy which can be reconciled with the overall direction
of absolute plate motion. The precise interpretation of this model in
terms of continental deformation will be the subject of forthcoming
research.

7.2 Comparison with results from shear-wave splitting

From the analysis of refracted S-waves bottoming under North
Australia, Tong et al. (1994) obtain shear-wave splitting times ex-
ceeding 4 s in certain places. Vinnik et al. (1989) and Barruol &
Hoffman (1999) report no perceptible splitting for SKS arrivals at
station CAN in southeastern Australia, but Girardin & Farra (1998)
interpret P-to-S converted phases to be indicative of a two-layer
anisotropic system under that station with nearly perpendicular fast
axes distributed over comparable depth intervals so the contributions
to splitting cancel out. Clitheroe & van der Hilst (1998) present ev-
idence for complex, frequency-dependent splitting from SKS and
SKKS phases, with split times generally less than 1 s in the Precam-
brian central part of Australia. Their fast axis directions do not align
with the direction of absolute plate motion, which is roughly SSW-
NNE, but rather suggest alignment with crustal fabric or a complex
lattice preferred orientation of olivine in the subcrustal lithosphere.
However, Özalaybey & Chen (1999) find no convincing evidence
for splitting at all. They argue that the analysis of a small amount
of data over a limited azimuthal range and complex multipathing
effects due to heterogeneities at depth may contribute to erroneous
splitting measurements, especially at the frequencies higher than
0.3 Hz considered by Clitheroe & van der Hilst (1998).

SKS splitting times represent an integrated effect over a large
depth range h due to the subvertical propagation of the phases. It
is possible to relate our observations of surface-wave anisotropy
to shear-wave splitting directly (Montagner et al. 2000). For simple
media with a horizontal symmetry axis, the maximum splitting time
is given by

δt =
√(∫ h

0

√
ρ

L

Gc(z)

L(z)
dz

)2

+
(∫ h

0

√
ρ

L

Gs(z)

L(z)
dz

)2

, (22)

Figure 12. (a) SKS splitting directions predicted from the solution given
in Fig. 9. Station CAN is represented by the white triangle. (b) Shear-wave
splitting observations (from Iidaka, in prep.).

and the splitting direction � is calculated by

tan 2� =
∫ h
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Applying eqs (22) and (23) to our model (depicted in Fig. 9) yields
considerable splitting times throughout the continent (Fig. 12a). The
results of the surface-wave inversion presented here suggest higher
levels of azimuthal anisotropy than inferred from SKS by either
Clitheroe & van der Hilst (1998) or Özalaybey & Chen (1999). For
comparison, we have plotted a recent data set of splitting times and
directions in Fig. 12(b) (from Iidaka, in prep.).

In addition to calculating SKS times due the entire depth range
of anisotropy, we have investigated the incremental effect on the
splitting times from successively deeper levels in our model.
The transverse isotropy (with horizontal symmetry axis) between
140 and 400 km depth contributes most to the calculated SKS split
times. This is in good agreement with Tong et al. (1994), who ar-
gue that, in Northern Australia, the most likely source region of
anisotropy is the asthenospheric zone between 210–410 km.

The fast axis directions in the eastern portions of the continent
follow the rough outline of the high wave speeds associated with the
Australian Precambrian (Fig. 9a). Clitheroe & van der Hilst (1998)
have suggested this might be related to the crystal alignment by as-
thenospheric flow around the irregularly shaped eastern edge of the
deep continent (see also Fouch et al. 2000). This is supported by the
fact that the split times originate mainly at a depth near 140 km, in
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a zone of anomalously low velocities and, presumably, low viscosi-
ties (Figs 10 and 11). In the center of the continent, the predicted
splitting times are somewhat smaller, which may in part be due to
a change from E–W in the shallower part to N–S in the deeper
continental lithosphere (see, e.g. Silver & Savage 1994; Saltzer
et al. 2000).

A mismatch between surface-wave and body-wave anisotropy
has been observed on other continents as well (Saltzer et al. 2000;
Freybourger et al. 2001). We should point out that the assumption of
a horizontal orientation of the fast axis is not unlikely to be violated,
especially in the shallow parts of the continental lithosphere. Fur-
ther analysis will require taking into account the depth variation of
fast axis directions, the possibility of dipping axes and frequency-
dependent effects.

Our observations point to a complex geometry of the continental
anisotropy at various length scales. We cannot rule out that strong
anisotropy in the top 80–140 km exists if the direction of fast axes
varies rapidly on a scale that is smaller than can be resolved by our
data. With the magnitude of anisotropy increasing and the lateral
correlation lengths decreasing towards the surface, it is conceivable
that strong, rapidly changing azimuthal anisotropy in the top 140 km
diminishes the effective birefringence of vertically propagating body
waves without similarly influencing the long-period surface-wave
data used in our study (Saltzer et al. 2000).

8 C O N C L U S I O N S

Manual data selection and processing of stations operated by AGSO,
IRIS and GEOSCOPE and data from the portable SKIPPY experiments
have produced a data coverage that is superior to surface-wave
studies on any other continent in terms of density and azimuthal
distribution.

We have compared two tomographic approaches for the inversion
of path-average earth models for 3-D models of S-heterogeneity
and azimuthal anisotropy. Method I (Zielhuis & van der Hilst 1996;
Simons et al. 1999) performs a 3-D inversion for heterogeneity
and anisotropy based on a discrete parametrization at the surface
with depth basis functions representing independently constrained
estimates of radial earth structure. Method II, used by Debayle
& Kennett (2000a), uses a continuous regionalization algorithm
which performs a separate inversion for each depth layer. Discretely
parametrized regularization methods and Bayesian continuous re-
gionalization methods can lead to similar results. The differences
between our results and the model by Debayle & Kennett (2000a)
can be due to (1) the independence of the constraints from the wave-
form inversion used in Method I and the decorrelation of their errors;
(2) the treatment of the third dimension (3-D inversion in Method I
but a stack of layers in Method II); (3) somewhat different distribu-
tion of earthquake sources; (4) different data selection criteria (e.g.,
the frequency bands used); (5) balancing of fundamental-mode and
higher-mode information through the use of one (Method II) or more
(Method I) data windows; and (6) the crustal models used to apply
shallow corrections.

The advantage of Method II is that a formal resolution matrix can
be computed, but this comes at a substantial computational expense.
We have shown that the information contained therein is qualita-
tively similar to ad hoc checkerboard response tests. Furthermore,
the formal resolution is 2-D since the full 3-D covariance matrices
of data and model are not used in Method II. As a result, variations
in lateral resolution with depth and radial smearing can not be in-
vestigated efficiently with Method II. In contrast, Method I allows

us to evaluate the uncertainty as well as the radial smearing in all
parts of the 3-D model.

We have obtained a new shear-wave speed model for the
Australian upper mantle which includes azimuthal anisotropy. The
inversion presented here was based on 30 per cent more data than
used by Simons et al. (1999), but we confirm their conclusions
regarding the aspherical variation of isotropic wave speed in the
Australian upper mantle. In particular, the conclusion that the high
correlation between the westward increase in wave speed and litho-
spheric age holds only for depths less than 200 km is confirmed.

We have determined the spatial variation of azimuthal anisotropy
(transverse anisotropy with a horizontal axis of symmetry) and in-
vestigated the trade-off between heterogeneity and anisotropy. We
conclude that with the exception of westernmost Australia, where
data coverage is worst, the level of anisotropy that is produced by a
combination of uneven data coverage and heterogeneity is at most
20 per cent of the magnitude of anisotropy required by the data.
In general the uncertainty in the angle of fast polarization is about
20◦; locally the directions are more tightly constrained, but there
are also regions where the uncertainty is much larger, in particular
in western Australia. In the top 150 km the inversions yield fairly
strong anisotropy, and the orientation of the fast axis changes in a
complex manner. In contrast to the wave speed heterogeneity, there
is no obvious relationship between anisotropy and the large scale
geological domains that we considered, suggesting that the length
scale for variation is much smaller than the crustal elements identi-
fied by Shaw et al. (1995). The horizontal length scale over which
anisotropy changes increases between 150 and 200 km depth.

In the northern central region we observe a predominance of N–S
directions throughout the depth range ≥140 km. Within the sub-
stantial uncertainty on their direction, these N–S oriented domains
are subparallel to the direction of absolute plate motion (DeMets
et al. 1990). If shearing due to plate motion is the dominant process
generating seismic anisotropy, then it is perhaps surprising that so
many of the strong N–S anisotropic directions are confined to central
Australia and start at depths as shallow as 140 km or even less, i.e.,
well within what we interpret as continental lithosphere. Further-
more, complex flow around stable continental interiors could yield
anisotropic fabrics in relationships that are not straightforward to
correlate with a single motion vector of the entire Indo-Australian
plate. If fossil anisotropy is the dominant process, then one needs
to explain the change in length scale and behavior between 150 and
200 km depth for the regions outside of the Central Australian do-
main. Most likely, an interpretation will involve a combination of
fossil and present-day anisotropy, but modelling this will require
further study.

We have used the approach suggested by Montagner et al.
(2000) to predict SKS splitting times and directions from our 3-D
anisotropic model. Much as the original inversion result for depths
above 200 km, the predicted SKS splitting map does not reveal a
predominance of directions parallel to plate motion. The first order
difference between our result and observations of SKS and SKKS
splitting is that the surface waves seem to prefer a higher level of
horizontal transverse anisotropy than the body waves. This is true,
in particular, for the Precambrian shields where shear-wave birefrin-
gence yielded split times of less than 1 s whereas the surface-wave
inversion predicts times that are at least twice that large. The am-
plitude of anisotropy relative to the velocity anomalies, to which
splitting delay times are sensitive, is not well resolved, but even
with correct delay times, there remains a significant mismatch be-
tween the predicted and the observed splitting directions. In addi-
tion, frequency-dependent effects or the presence of dipping axes of
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symmetry might be responsible. We argue that, at least conceptually,
the observed shear-wave splitting could be reconciled with the in-
ferences from surface-wave propagation with a model of anisotropy
in which the correlation wavenumbers and magnitude of anisotropy
increase towards the surface.
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