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(kaminski@ipgp.jussieu.fr; ribe@ipgp.jussieu.fr)

[1] We study systematically the relationship between olivine lattice preferred orientation and the
mantle flow field that produces it, using the plastic flow/recrystallization model of Kaminski and
Ribe [2001]. In this model, a polycrystal responds to an imposed deformation rate tensor by
simultaneous intracrystalline slip and dynamic recrystallization, by nucleation and grain boundary
migration. Numerical solutions for the mean orientation of the a axes of an initially isotropic
aggregate deformed uniformly with a characteristic strain rate _� show that the lattice preferred
orientation evolves in three stages: (1) for small times t � 0:2 _��1, recrystallization is not yet active
and the average a axis follows the long axis of the finite strain ellipsoid; (2) for intermediate times
0:2 _��1 � t � 1:0 _��1, the fabric is controlled by grain boundary migration and the average a axis
rotates toward the orientation corresponding to the maximum resolved shear stress on the softest
slip system; (3) for 1:0 _��1 � t � 3:0 _��1, the fabric is controlled by plastic deformation and
average a axis rotates toward the orientation of the long axis of the finite strain ellipsoid
corresponding to an infinite deformation (the ‘‘infinite strain axis’’.) In more realistic nonuniform
flows, lattice preferred orientation evolution depends on a dimensionless ‘‘grain orientation lag’’
parameter �(x), defined locally as the ratio of the intrinsic lattice preferred orientation adjustment
timescale to the timescale for changes of the infinite strain axis along path lines in the flow.
Explicit numerical calculation of the lattice preferred orientation evolution in simple fluid
dynamical models for ridges and for plume-ridge interaction shows that the average a axis aligns
with the flow direction only in those parts of the flow field where � � 1. Calculation of �
provides a simple way to evaluate the likely distribution of lattice preferred orientation in a
candidate flow field at low numerical cost.
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1. Introduction

[2] Since the early observations of Hess [1964], it

has been well established that much of the upper

mantle (above 400 km) is seismically anisotropic

[e.g., Montagner, 1994]. This anisotropy is usually

attributed to the lattice preferred orientation (LPO)

of anisotropic olivine crystals [Nicolas and Chris-

tensen, 1987; Montagner, 1998]. The fact that

lattice preferred orientation is in turn produced by

flow has led seismologists routinely to interpret the

direction of anisotropy as an indicator of the flow
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direction in the mantle [e.g., Russo and Sylver,

1994]. However, the conditions under which this

assumption is valid remain to be established [Sav-

age, 1999]. To this end, we propose here a new

quantitative description of the relationship between

seismic anisotropy and mantle flow, with emphasis

on the characteristic timescales involved.

[3] When a crystal is subject to an externally

imposed deformation, it responds primarily by

intracrystalline slip on given active slip systems

[e.g., Poirier, 1985]. In a polycrystal, intracrystal-

line slip is a function of the orientation of the grains

relative to the externally imposed stress and

depends on the compatibility of deformation

between neighboring grains [Etchecopar, 1977].

The rotation of the crystallographic axes induced

by intracrystalline slip is therefore a function of

crystal orientation, which leads to a lattice preferred

orientation in the aggregate. Modeling of plastic

deformation in olivine polycrystals has provided

important insight into the link between seismic

anisotropy and mantle flow [Wenk et al., 1991;

Ribe and Yu, 1991; Chastel et al., 1993; Tommasi et

al., 2000]. Although these models differ in their

treatment of such matters as stress and/or strain

compatibility, they all predict that the lattice pre-

ferred orientation of an initially isotropic aggregate

deformed uniformly follows the finite strain ellip-

soid (FSE), with the fast axis of olivine aligned

with the longest axis of the finite strain ellipsoid

[Wenk et al., 1991; Ribe, 1992]. These predictions

agree well with experimental observations at small

strain in both simple shear [Zhang and Karato,

1995] and uniaxial compression [Nicolas et al.,

1973].

[4] However, the experiments of Zhang and Kar-

ato [1995] show that at large strain, the mean a axis

orientation no longer follows the finite strain ellip-

soid but rotates more rapidly toward the shear

direction. This evolution is accompanied by inten-

sive dynamic recrystallization, by subgrain rotation

(SGR) and grain boundary migration (GBM)

[Zhang et al., 2000]. The experiments of Nicolas

et al. [1973] similarly indicate that the evolution of

the lattice preferred orientation at large strains is

controlled by dynamic recrystallization. Because

finite strains are large in the convecting mantle

[McKenzie, 1979], dynamic recrystallization is

likely to control the lattice preferred orientation

there. A model for dynamic recrystallization of

olivine is thus required for interpreting observa-

tions of anisotropy in terms of mantle flow.

[5] Two models are now available for the evolution

of olivine lattice preferred orientation by simulta-

neous plastic flow and recrystallization: the visco-

plastic model of Wenk and Tomé [1999], and the

kinematic-hybrid model of Kaminski and Ribe

[2001]. In the latter model, which we shall use in

this study, the shear rates on the active slip systems

of all grains in an aggregate are calculated by

minimizing the difference between the imposed

external deformation rate tensor and the deforma-

tion rate tensors within the grains themselves.

Plastic flow in turn increases the dislocation density

within each grain at a rate proportional to the

resolved shear stresses on the various slip systems

(Schmidt factors). Grains oriented favorably rela-

tive to the imposed stress field (‘‘soft’’ grains) will

thus achieve higher dislocation densities than

unfavorably oriented (‘‘hard’’) ones [Karato and

Lee, 1999]. Grains with a large density of disloca-

tions tend to polygonize, forming strain-free nuclei

by subgrain rotation and thereby lowering their bulk

strain energy [Poirier, 1985]. Grains with low strain

energy then invade grains with higher energy by

grain boundary migration [Karato, 1987].

[6] In Kaminski and Ribe [2001], subgrain rotation

and grain boundary migration are quantified by two

dimensionless parameters: the nucleation rate l* of

strain-free subgrains and the grain-boundary mobi-

lity M*, the values of which can be obtained by

comparison with experiments. Many simple shear

experiments are now available to constrain the

values of the parameters of dynamic recrystalliza-

tion [Zhang et al., 2000; Bystricky et al., 2000].

They indicate that l* = 5 and thatM* lie between 50

and 200 as a function of temperature [Kaminski and

Ribe, 2001]. Comparison with the experiment in

uniaxial compression of Nicolas et al. [1973] yields

to l* = 5 and M* = 50 [Kaminski and Ribe, 2001].

These latter values are thus in agreement with the

two sets of experiments (Figure 1) and will be used

as reference values in the following. For this set of

parameters, soft grains have a large probability of
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nucleation and thus on average a low strain energy.

They are thus favored by grain boundary migration

and dominate the lattice preferred orientation.

[7] In this article, we first present the predictions of

the model for simple uniform deformations, for

which analytical results can be used to interpret

physically the lattice preferred orientation evolu-

tion. We will then consider more complex ‘‘mantle-

flow-like’’ deformations to derive geophysically

relevant conclusions.

2. LPO Development for Uniform
Deformations

[8] In Kaminski and Ribe [2001], the plastic defor-

mation experienced by the crystals in an aggregate

depends only on the deformation imposed exter-

nally by the large-scale flow field. This deforma-

tion is described by a velocity gradient tensor

Lij ¼
@vi
@xj

¼ Eij � eijk�k ; ð1Þ

where vi is the Eulerian velocity vector, xj is the

vector of Eulerian coordinates, Eij is the strain rate

tensor, 2�k is the vorticity vector, and eijk is the

alternating tensor. For a given material aggregate

embedded in an arbitrary flow field, Lij will be a

function of time in general. Dynamic recrystalliza-

tion depends on the density of dislocations in the

aggregate, which in the model of Kaminski and

Ribe [2001] depends only on the orientation of the

grains relative to Eij. As a consequence, the lattice

preferred orientation due to both plastic deforma-

tion and dynamic recrystallization depends only on

b)

a)

Figure 1. Pole figures (Lambert equal-area projection, contours at 0.1 times a random distribution) of the a
crystallographic axes of olivine, in the reference frame defined by the principal axes of the strain rate tensor. The left
diagram corresponds to laboratory experiments and the right diagram gives the model prediction for the same
deformation and for l* = 5 and M* = 50. (a) Simple shear experiments [Zhang and Karato, 1995], 150% finite strain.
The solid line represents the shear plane and the dashed line the foliation. (b) Uniaxial compression [Nicolas et al.,
1973], 58% shortening. The shortening direction is at the center of the diagrams [from Kaminski and Ribe, 2001].
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the initial lattice preferred orientation of the

aggregate and on the deformation history Lij(t).

The evolution is particularly simple if the initial

lattice preferred orientation is isotropic and the

deformation is uniform (i.e., Lij is constant).

2.1. Plane Strain Deformations

[9] Consider first the case of uniform incompres-

sible plane strain deformation, for which the the

only nonzero rates of strain are E11 ¼ �E22 ¼ _�.
There may also be a rotational component of

magnitude |�| about the x3 axis, defining a

dimensionless ‘‘vorticity number’’ � ¼ �= _�. Pure
shear corresponds to � = 0 and simple shear to

� = ±1.

[10] The model of Kaminski and Ribe [2001]

reproduces the observation of Zhang and Karato

[1995] that the lattice preferred orientation of an

olivine aggregate deformed in simple shear initially

follows the finite strain ellipsoid and then rotates

more rapidly toward the shear plane. We now use

the same model to study the evolution of the lattice

preferred orientation for an arbitrary vorticity num-

ber. Figure 2 shows the evolution of the lattice

preferred orientation predicted by the model of

Kaminski and Ribe [2001] with l* = 5 and M* =

50 for three different vorticity numbers (� = 0.25,

0.75, 1.0), together with the orientation yFSE of the

long axis of the finite strain ellipsoid [McKenzie,

1979, equation (28)],

yFSE ¼ 1

2
tan�1

� tan h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
_�t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

2
4

3
5: ð2Þ

[11] The lattice preferred orientation evolves in

three distinct stages. (1) At an early transient

stage ð _�t � 0:2Þ the lattice preferred orientation

follows the finite strain ellipsoid as predicted by

purely intracrystalline deformation, indicating that

plastic deformation is dominant. (2) Later

ð1:2 � _�t � 0:2Þ, the lattice preferred orientation

evolves faster than the finite strain ellipsoid,

which reflects the influence of dynamic recrystal-

lization. Kaminski and Ribe [2001] and Wenk and

Tomé [1999] have shown that grain boundary

migration combined with subgrain rotation indu-

ces the growth of the grains in the ‘‘softest’’

orientation, for which the resolved shear stress

applied on the softest slip system is maximal.

The resolved shear stress on a slip plane in a

crystal is proportional to the scalar I 	 linjEij

where nj and li are the unit vectors normal to the

plane and in the slip direction, respectively [Ribe

and Yu, 1991]. I depends only on the orientation

of the grain relative to the principal axes of the

strain rate tensor and hence does not depend on

the vorticity. In Figure 2, the softest orientation

(largest I ) is �45�, which coincides with the

direction of shearing for simple shear. The second

phase of the lattice preferred orientation evolution

reflects the increasing volume fraction of the

grains in the softest orientation. If only grain

boundary migration were active, the lattice pre-

ferred orientation would eventually become con-

centrated at this orientation. However, because

plastic deformation continues to be active, the

actual evolution exhibits an additional stage. (3)

In the third stage ð _�t � 1:2Þ the grains rotate

away from the softest orientation and reach a

steady-state orientation as the rotation becomes

slower and slower at large strain. Because the

0 1 2 3 4 5
-50

-40

-30

-20

-10

0

= 1

= 0.75

= 0.25

Figure 2. Evolution of the mean orientation � of
olivine a axes relative to the extension direction (in the
reference frame defined by the eigen vectors of the strain
rate tensor) in an initially isotropic aggregate as a
function of strain _�t for three different uniform planar
deformations (� = 0.25, 0.75, and 1.) The solid curves
show the orientation of the a axes and the dashed curves
show the orientation of the long axis of the finite strain
ellipsoid. The average a axis tends toward the infinite
strain axis orientation (arrows) in three distinct stages
(see text.)
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rotation rate of a crystal in the softest orientation

is ð1� �j jÞ _� [from Kaminski and Ribe, 2001,

equation (8)], the grains in the softest orientation

will always rotate away from it except in the

special case of simple shear. The volume fraction

of grains in the softest orientation increases by

grain boundary migration but decreases by plastic

rotation. The global rotation of the lattice pre-

ferred orientation reflects the growing dominance

of plastic deformation over grain boundary migra-

tion as the lattice preferred orientation sharpens

and the differences of strain energy (and hence

the rate of grain boundary migration) decrease in

the aggregate. Once plastic deformation has

become dominant it determines the rotation of

the lattice preferred orientation toward an appa-

rent steady state. Figure 2 suggests that the final

steady-state a axis orientation coincides with the

asymptotic orientation of the long axis of the

finite strain ellipsoid in the limit of infinite strain

(t ! 1), which we shall call the ‘‘infinite strain

axis’’ (ISA). For plane strain deformations, the

orientation yISA of the infinite strain axis relative

to the axis of maximum instantaneous extension

is found from equation (2) as

yISA ¼ lim
�!1

yFSE ¼ 1

2
sin�1 �: ð3Þ

[12] Note from equation (3) that the infinite strain

axis is not defined for j�j > 1. In that case, neither

the finite strain ellipsoid nor the lattice preferred

orientation reaches a steady state: both continue to

spin around even at infinite strain.

[13] Plastic deformation introduces only one time-

scale, 1= _� [Ribe, 1992], whereas three timescales

can be defined here for the evolution of the

average a axes orientation �. (1) The smallest

timescale, tFSE, corresponds to the first stage in

which � follows the long axis of the finite strain

ellipsoid. The tFSE is the time necessary for plastic

deformation to build up heterogeneities of strain

energy in the aggregate large enough to drive

grain boundary migration. We define tFSE as the

time at which the difference between � and yFSE

reaches 1� degree. Numerical calculations show

that tFSE mainly depends on � whereas its

dependence on l* and M* is negligible. For l*

= 5 and M* between 50 and 200, its total range of

variation for arbitrary � is

tFSE ¼ 0:2
 0:1

_�
: ð4Þ

(2) The intermediate timescale, tGBM, corresponds
to the second stage in which � rotates toward the

softest orientation. The tGBM is the time necessary

for grain boundary migration to level down strain

heterogeneities enough for grain boundary migra-

tion to be less efficient than plastic deformation.

We define tGBM as the time at which � is minimum

(see Figure 2). At this point, the effects of grain

boundary migration and of plastic deformation just

balance each other. The tGBM is a complex

function of both l*, M*, and �. For l* = 5 and

M* between 50 and 200, its total range of variation

for arbitrary � is

tGBM ¼ 1:0
 0:5

_�
: ð5Þ

(3) The largest timescale, tISA, corresponds to the

third stage, in which � approaches the infinite

strain axis. The tISA is the time necessary for the

grains to rotate plastically from the softest orienta-

tions (previously nourished by grain boundary

migration) toward the infinite strain axis. We define

tISA as the time at which the difference between the

infinite strain axis orientation and � is less than 2�.
Figure 3 gives the variation of tISA as a function of

the vorticity number for 4 � l* � 8 and for 50 �
M* � 200. Numerical solutions show that tISA is

largely independent of l* and M*. The total range

of variations of tISA is

tISA ¼ 3:0
 2:5

_�
: ð6Þ

[14] The fastest evolution (tISA = 0.5) is obtained

for � = ±1 and M* = 200 and the slowest evolution

(tISA = 5.5) for � = ±0.5 and M* = 50.

[15] As the strains are large in the convective

mantle, the first stage (t � tFSE) is of limited

importance. In the second stage (t � tGBM) the

lattice preferred orientation is influenced by both

grain boundary migration and plastic deformation

and can thus vary greatly as a function of strain. In
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this stage, the average a axis of an aggregate will

only coincidentally align with the flow direction.

Only in the third stage, when the mean a axes

orientation reaches a steady state defined by the

infinite strain axis, may the crystals be aligned with

the flow direction, and then only if the infinite

strain axis is itself aligned with the flow direction.

The relevant timescale for the interpretation of

seismic anisotropy is thus tISA. We now character-

ize tISA for arbitrary deformation.

2.2. Three-Dimensional Deformations

[16] The three-stage evolution of lattice preferred

orientation documented above for uniform plane

strain deformations occurs also for uniform three-

dimensional (3-D) deformations. In particular,

numerical solutions for various choices of Lij con-

firm our hypothesis that the mean a axis orientation

approaches the infinite strain axis (when it exists)

in the limit of infinite strain. In a 3-D flow, the

infinite strain axis at a given point is just the

orientation of the long axis of the finite strain

ellipsoid produced by deforming a material sphere

at the rate Lij for an infinite time. Unfortunately, no

analytical representation of the dependence of the

infinite strain axis on the components of Lij is

available for a general uniform 3-D flow. We

therefore have devised a simple numerical proce-

dure to test for the existence of the infinite strain

axis and to calculate it when it exists (appendix A.)

[17] As for the case of plane strain, the time

required for the mean a axis orientation to reach

the infinite strain axis is tISA � _��1, where _� is the
absolute value of the largest eigenvalue of the strain

rate tensor. However, tISA also depends on several

other parameters, including the vorticity number

and the orientation of the vorticity vector relative to

the principal strain rate axes. Rather than attempt to

determine the complete dependence of tISA on

these parameters, we simply determined numeri-

cally the range of its variation for a variety of

uniform 3-D flows and for 50 � M* � 250. We

find that tISA is mainly a function of the magnitude

of the vorticity vector. As a consequence, it always

falls in the range given by (equation (6)).

[18] The infinite strain axis is controlled by the

velocity gradient tensor and therefore need not be

directly related to the velocity vector itself. To see

this, consider planar flows with � = 1.0 (simple

shear), 0 (pure shear), and 0.5 (intermediate.)

Figure 4 shows the streamlines for these flows,

together with the orientations of the softest grains

and the infinite strain axis. The softest grain ori-

entation is the same for all three flows because it

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

IS
A

Figure 3. Average value of tISA, the time required for the a axes to reach the infinite strain axis, as a function of �.
The error bars give the range of values for tISA at a given vorticity number for l* between 4 and 8 and M* between
50 and 200.
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depends only on the strain rate tensor and not on

the vorticity. In general, there is no simple relation-

ship between either the softest grain orientation or

the infinite strain axis and the flow direction. Only

in the case of simple shear (� = 1) do all three

orientations coincide everywhere in the flow field.

For other values of �, the mean a axis of an

aggregate following a streamline will rotate from

the softest grain orientation toward the infinite

strain axis orientation, which itself is only aligned

with the flow direction at isolated points. Conse-

quently, the lattice preferred orientation will not in

general be aligned with the flow direction even for

uniform deformations, except for the special case

of simple shear.

3. LPO Adjustment Along Path Lines

[19] So far we have considered only uniform

deformations whose sole intrinsic timescale is a

typical inverse strain rate _��1. Most realistic flows,

however, are both spatially nonuniform and time-

dependent. In such flows, an aggregate traveling

along a pathline (= streamline if the flow is

steady) will ‘‘feel’’ a velocity gradient tensor Lij(t)

that changes with time. The rate of this change

introduces a new timescale which plays an impor-

tant role in controlling lattice preferred orientation

evolution.

[20] In a nonuniform flow, the lattice preferred

orientation can be aligned with the flow direction

only if two conditions are fulfilled: (1) the infinite

strain axis itself is aligned with the flow direction

and (2) the rate of change of the infinite strain axis

orientation along the path line is slow enough for

the lattice preferred orientation to ‘‘adjust’’ to it. We

first focus on the second condition, which in some

cases is both necessary and sufficient (appendix B.)

To quantify this condition, we introduce a dimen-

sionless ‘‘grain orientation lag’’ (GOL) parameter

� 	 tISA
tflow

; ð7Þ

where tISA and tflow are the timescales for crystal

rotation toward the infinite strain axis and for

changes of the infinite strain axis orientation itself

along path lines, respectively. If � � 1, the along

path line variation of the infinite strain axis

orientation is much slower than crystal rotation,

and the lattice preferred orientation will quickly

become aligned with the local infinite strain axis.

The opposite situation obtains if � � 1: crystal

rotation is then unable to keep up with the rapid

changes of the infinite strain axis, leading to an

lattice preferred orientation that depends in a

complex way on the deformation history.

[21] We know already that tISA � _��1. A suitable

measure of tflow is the inverse rate of change of the

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1

0

0.2

0.4

0.6

0.8

1

ISA

ISA

IS
A

SO
SO

SO

Figure 4. Contours of the stream function (equivalent to streamlines, arbitrary units) for three plane strain flows
with uniform velocity gradient tensor Lij and three values of the vorticity number �. The horizontal and vertical axes
are the directions of maximum extension and shortening rates, respectively. The orientations of the infinite strain axis
(ISA) and the softest grain orientation (SO) are shown. For a given finite strain, the mean a axis orientation will lie
between the softest grain orientation and the infinite strain axis. Only for � = 1.0 (simple shear) are the infinite strain
axis and the softest grain orientation, and thus the a axes, aligned everywhere with the local flow direction.
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angle � 	 cos�1 (û � ê) between the local flow

direction û ¼~u=juj and the local ISA ê:

tflow ¼ D�

Dt

����
����
�1

; ð8Þ

where D=Dt 	 @=@t þ~u � r is the material deri-

vative. Equation (7) now becomes

� ¼ 1

_�

D�

Dt

����
����: ð9Þ

[22] The grain orientation lag � ¼ �ð~x; tÞ is a

purely local parameter whose value will in general

depend on position (and on time if the flow is

unsteady). If � = 0, the angle between the flow

direction and infinite strain axis is constant along a

path line in the neighborhood of the point in

question. If this angle is furthermore equal to zero,

then the infinite strain axis will coincide with the

local flow direction. The condition � = 0 is thus a

necessary condition for the a axis of olivine to be

aligned with the flow direction. To verify that this

condition is also sufficient requires a complete

calculation of the lattice preferred orientation evo-

lution along path lines, which we now carry out for

two model geophysical flows.

4. Geophysical Examples

4.1. Corner Flow

[23] We illustrate the variability of � for a corner

flow, which is a simple model for the mantle flow

under a ridge axis. Let U be the half spreading rate,

and let (r, q) be polar coordinates with origin at the

ridge axis such that q = 0 is vertical. The equations

of slow viscous flow admit a similarity solution in

which the velocity ~u is a function of q only

[Batchelor, 1967, p. 224]:

~u � r̂ ¼ 2U

p
ðq sin q� cos qÞ; ~u � q̂ ¼ 2U

p
q cos q: ð10Þ

[24] To apply this model to the Earth, we suppose

that q = p/2 corresponds to the Earth’s surface

while z = r cos q = 1 is the depth of the phase

change a olivine to b spinel. We suppose that the

aggregates are isotropic at that depth and follow the

evolution of the lattice preferred orientation along

four path lines. The lattice preferred orientation

evolves by plastic deformation and dynamic recrys-

tallization with ~M ¼ 50 and l* = 5.

[25] Figure 5 shows schematically the mean orien-

tation of the fast ([100]) axis of olivine, together

with contours of �, which for the corner flow is

� ¼
q q2 þ cos2 q
	 


tan q q2 þ cos2 q� q sin 2q
	 
 : ð11Þ

When � > 0.5, the lattice preferred orientation is a

function of the deformation history, displays

secondary peaks, and shows large variations both

along and between streamlines. When � < 0.5,

secondary peaks vanish and the lattice preferred

orientation rotates towards the flow direction.

Finally, when � < 0.1, the mean a axis orientation

is essentially aligned with the flow direction. The

parameter � thus gives a good preliminary picture

of the likely anisotropic structure of the flow and

identifies those regions where a complete calcula-

tion of the lattice preferred orientation is necessary.

4.2. Plume/Ridge Interaction

[26] We now turn to an example of a fully 3-D

flow: the interaction between a plume and a spread-

ing ridge. The flow due to the ridge is the corner

flow considered in the previous subsection. The

plume is represented by a buoyant cylinder of

radius R, length L, and density deficit Dr, which
drives flow in a half-space of fluid with viscosity m
beneath a no-slip surface z = 0. The total velocity is

just the sum of the ridge and plume components

and has the form

~uðx; y; zÞ ¼ U~frðqÞ þ
gDrR2

m
~fp

r1

R
;
z

R
;
L

R

� �
; ð12Þ

where g is the acceleration of gravity at the sur-

face, r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xoÞ2 þ y2

q
is the lateral distance from

the plume axis, xo is the distance from the plume

axis to the ridge, and ~fr and ~fp are the dimension-

less velocity fields associated with the ridge and

the plume, respectively. The plume flow ~fp is

calculated as by Ribe and Christensen [1999] by

representing the buoyant cylinder as a distribution

of Stokeslets with additional singular solutions

added to satisfy the no-slip boundary condition
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[Podzrikidis, 1997, p. 255]. The total (ridge plus

plume) velocity thus satisfies the spreading ridge

boundary condition ~uðx; y; 0Þ ¼ 2U ½HðxÞ � 1=2�x̂,
where H(x) is the Heaviside step function.

[27] Figure 6 shows the streamlines of the flow in

the vertical plane of symmetry y = 0 (normal to

ridge and containing the plume axis), for xo = 7.5R

and L = 6R. Interaction of the ridge and plume

flows produces the region of counterflow at the top

between the ridge and the buoyant cylinder.

Although the density anomalies are not advected

by the flow in this simple model, it is still useful to

characterize the plume’s strength in terms of a

nominal ‘‘buoyancy flux’’ B through the lower

surface of the cylinder:

B ¼ �2p
gDr2R2

m

Z R

0

r1~fp
r1

R
;
L

R
; 6

� �
� ẑdr1 ¼ 1:22

gDr2R4

m
:

ð13Þ

For example, using m = 1020 Pa s, R = 70 km, and

Dr = 40 kg m�3 gives B = 3100 kg s�1, a value

similar to that inferred for Hawaii [Ribe and

Christensen, 1999].

[28] Figure 7 shows the horizontal structure of the

plume-ridge flow at a ‘‘mid-asthenospheric’’ depth

z = 0.5R. Blue arrows indicate the horizontal veloc-

ity, and the red bars show the horizontal projection

of the mean a axes orientation in the aggregate. The

lattice preferred orientation was calculated numeri-

cally with l* = 5 and M* = 50, assuming initial

isotropy at z = 6R for all streamlines. The roughly

parabolic pattern of the velocity vectors around the

plume is due to the deflection of the axisymmetric

plume flow by the rightward plate-driven flow. The

lattice preferred orientation is nearly aligned with

the flow direction far from the ridge and the plume

but is not so aligned closer to them. This result can

be interpreted with the aid of Figure 8, which shows

the orientation lag parameter �(x, y) at the same

depth (z = 0.5R), calculated using the procedure

described in appendix A. Three zones appear clearly

in Figures 7 and 8: (1) Near the ridge axis,� is large

because the flow changes abruptly from mainly

0 1 2 3 4 5

 1

 0.8

 0.6

 0.4

 0.2

0

x

z

Figure 5. Evolution of lattice preferred orientation along four path lines in a corner flow, starting from an isotropic
lattice preferred orientation at z = 1. Dotted lines are contours of the grain orientation lag parameter � defined by
(equation (9)). The small heavy bars give the peak orientation of the a axis, while the light bars give the orientation of
the weak secondary peak when present. Dashed bars with circle indicate no preferred orientation. The lattice preferred
orientation is aligned with the flow direction when �� 1, but there is no relationship between the two when � > 0.5.
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vertical to mainly horizontal. The lattice preferred

orientation cannot follow this rapid change and is

normal to the flow direction. (2) Far from the plume

and the ridge, the flow direction changes smoothly,

� is small, and the lattice preferred orientation is

aligned with the flow direction. (3) Closer to the

plume, the flow is disrupted, leading to large values

of � and lattice preferred orientation poorly aligned

with the flow direction. � is large in the region of

counterflow in front of the plume and in most of the

parabolic region defined by the velocity vectors

(Figure 7) The large variations of � around the

plume indicate a deformation state close to uniaxial

compression (E11 � E22), for which numerical

calculation of the infinite strain axis is not stable.

In the core of the plume (black), � is not defined

because the vorticity is large. As for the simpler

corner-flow example, we conclude that � < 0.5 is a

necessary condition for the lattice preferred orienta-

tion to be aligned with the flow direction. A com-

plete calculation is required to determine the lattice

preferred orientation in regions where � is larger.

[29] We close this section with a simple direct

calculation of the radial seismic anisotropy implied

by our plume-ridge model. Radial anisotropy is of

particular interest because it is independent of

azimuth and can be retrieved with good resolution

from Rayleigh and Love wave data if the aniso-

tropy is small [Montagner and Nataf, 1986]. The

percent radial anisotropy is defined as

xðX ; Y ; ZÞ ¼ 100
N

L
� 1

� �
� 200

VSH � VSV

VSV

; ð14Þ

where VSH and VSV are the velocities of SH and SV

waves, respectively, N = 1/8(C1111 + C2222) � 1/4

C1122 + 1/2C1212, L = 1/2(C2323 + C1313), and Cijkl

are the coefficients of the elastic tensor of the

aggregate. We calculate the elastic tensor numeri-

cally using the standard Voigt averaging formula

Cijkl ¼
XN
n¼1

f nanipa
n
jqa

n
kra

n
lscpqrs; ð15Þ

where N is the number of grains in the aggregate,

aij
n is the matrix of direction cosines for grain n, f n

0 5 10 15
-6

-5

-4

-3

-2

-1

0

x/R

z/
R

U

Figure 6. Streamlines (arbitrary contour intervals) in the vertical symmetry plane y = 0 for the flow produced by a
buoyant cylinder of radius R (grey) near a spreading ridge with half spreading rate U (x = 0), determined as described
in the text.
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is the volume fraction of grain n and cijkl is the

single-crystal elastic tensor for olivine [Isaak,

1992].

[30] Figure 9 shows the radial anisotropy x calcu-

lated at the same depth and for the same parameters

as in the previous figures.

[31] Because we consider aggregates of pure

olivine, the numerically calculated values of x
are considerably larger in absolute value than

those typically observed on Earth (� 10% [Mon-

tagner, 1994]). However, this does not affect the

most striking feature of Figure 9, which is the

change of sign of the anisotropy. Near the ridge

axis, the a axes are subvertical, so VSH > VSV and

the radial anisotropy is negative. Near the plume

and away from the ridge axis, the a axes are

subhorizontal, implying VSV > VSH and positive

radial anisotropy. The region of large positive

anisotropy delineates the parabolic shape of the

flow field associated with the plume, suggesting

that one may expect a clear anisotropic signature

of a plume like Hawaii.

5. Discussion

5.1. LPO Development in Mantle Flow

[32] The premise of this study is that the inter-

pretation of seismic anisotropy requires an under-

standing of the timescales that control its

evolution in a convecting mantle. Numerical

solutions of lattice preferred orientation evolution

in simple uniform deformations reveal three
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Figure 7. Horizontal velocity (arrows) and horizontal projection of the mean fast axis orientation (bars) at a depth
Z = 0.5R for the plume-ridge flow of Figure 5. The lattice preferred orientation is not aligned with the flow direction
near either the ridge or the plume but is approximately so aligned elsewhere.
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fundamental ‘‘intrinsic’’ timescales tFSE < tGBM
< tISA. The most important of these is

tISA � _��1, the time required for the mean a

axis orientation to reach the infinite strain axis of

the imposed deformation with characteristic strain

rate _�. Two distinct results should be distin-

guished here: the fact that the lattice preferred

orientation evolves toward the infinite strain axis

and the scaling law tISA � _��1. Because rotation

of the lattice preferred orientation toward the

infinite strain axis occurs primarily by the well-

understood process of intracrystalline slip, neither

result depends on the model of recrystallization

one uses. This is true as long as tISA signifi-

cantly exceeds the grain boundary migration

timescale tGBM, which Kaminski and Ribe

[2001]-based on available laboratory experi-

ments-suggest to be the case.

[33] In addition to the intrinsic timescales for

lattice preferred orientation evolution, nonuni-

formity of the flow field introduces a further

‘‘extrinsic’’ timescale tflow that characterizes the

rate of change of the infinite strain axis itself
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Figure 8. Orientation lag parameter � (x, y) at depth z = 0.5R for the plume-ridge flow of Figure 6. Values 0 � � �
1 are shown by color, with locally larger values labelled. Values � � 2 near the ridge axis are due to rapid change of
the flow orientation from vertical to horizontal, and values � � 1 in front of the plume reflect the counterflow there
(Figures 6 and 7). � is not defined in the center of the plume (black) where the vorticity is high. Large variations of �
around the plume indicate a deformation state close to uniaxial compression.
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along path lines. One is thus naturally led to

consider the ratio � = tISA/tflow of the intrinsic

and extrinsic timescales, which we have called the

‘‘grain orientation lag’’ parameter. At points in the

flow field where � � 1, the lattice preferred

orientation has time to adjust to the local infinite

strain axis. At points where � � 1, by contrast,

the lattice preferred orientation lags behind the

relatively rapid changes of the infinite strain axis

along path lines. Comparison of �(x) calculated

from simple flow models with full numerical

calculations of the lattice preferred orientation field

shows that the mean a axis orientation is aligned

with the flow direction only where � < 0.5.

Calculation of the lag parameter � is thus a cost-

effective way to obtain insight into the likely

anisotropic structure of a candidate flow field.

[34] We picked up the infinite strain axis as one of

the direction characterizing the velocity gradient

tensor. One may imagine a different set of model

parameters, critical shear stresses, values of M* and

of l*, for which the grains will align with another

direction. However, this direction will still have to

be a characteristic of Lij, and it will thus have to

follow the rotation of infinite strain axis. The value

of � obtained using infinite strain axis will be the

same for any other direction characteristic of Lij.

For example, new simple-shear experiments indi-

cate that olivine polycrystals deformed under water
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Figure 9. Radial anisotropy x (in percent) at depth z = 0.5R for the plume-ridge model.
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saturated conditions may exhibit ‘‘anomalous’’ lat-

tice preferred orientation such that the average b or

even c axis is aligned with the shear direction

instead of the average a-axis [Jung and Karato,

2001]. Using the model of Kaminski and Ribe

[2001] with different activity of the slip systems

to account for the effect of water we found fabrics

in agreement with [Jung and Karato, 2001] and

obtained that the lattice preferred orientation gen-

erated for various Lij still rotates as the infinite

strain axis [Kaminski, 2002]. Hence here again we

can state that the value of � and thus its signifi-

cance are independent of the details of the model

used.

5.2. Implications for the Interpretation
of Seismic Anisotropy

[35] Our results have many implications for the

interpretation of observations of seismic anisotropy.

A first question concerns the significance of the

direction of fast polarization revealed by surface

waves or shear wave splitting measurements. Seis-

mologists generally assume that this direction

reflects either a coherent lithospheric deformation

or the direction of the asthenospheric flow or a

more or less complex combination of both [Öza-

laybey and Savage, 1995; Silver, 1996; Savage,

1999; Debayle and Kennett, 2000]. Our model

suggests that matters may not be so simple. The

anisotropic signature of the lithosphere is probably

a frozen one and cannot be discussed in the present

theoretical frame which deals mainly with time-

scales. In the asthenosphere, however, we have

shown that the orientation of the lattice preferred

orientation pattern relative to the flow direction

depends on the lag parameter � in the flow. The

lattice preferred orientation tracks the flow direc-

tion only when � � 1. If � > 0.5, there is no

relationship between the local flow direction and

the orientation of the a axis of olivine. Moreover,

the parameters of shear wave splitting (fast polar-

ization direction and delay time) are usually inter-

preted in term of layers of constant elastic

properties, which is a good hypothesis only if �
is not too large. Because the value of � as a

function of position in the mantle is not known a

priori, caution should be exercised in inferring flow

directions from shear wave splitting measurements.

Last, seismic data are usually interpreted in term of

fast polarization direction and delay time in the

hypothesis of an hexagonal symmetry of the aggre-

gate (such that the b axes form a girdle on the plane

normal to the direction of the mean a axis). Such a

symmetry is not naturally generated by either

plastic deformation [Tommasi et al., 2000] or

dynamic recrystallization [Kaminski and Ribe,

2001]. On the contrary, the aggregates display in

general a quasi-orthorhombic symmetry. Many

analytical short-cuts established for an hexagonal

symmetry should thus not be used.

[36] However, the two simple examples of geo-

physical flows we have presented in the previous

section illustrate how the model of Kaminski and

Ribe [2001] can be used to infer the link between

mantle flow and seismic anisotropy. For a given 3-

D mantle flow, the model can be used to calculate

the lattice preferred orientation evolution of olivine

aggregates along the streamlines and provides the

full 3-D anisotropic structure of the domain. In

particular, both the horizontal variations and the

vertical variations of the anisotropy are predicted

and can be compared with the information provided

by both surface waves and shear wave splitting.

The major interest of the model is thus to provide

directly the anisotropic signature of a given flow,

without the need for an a priori seismologic model

such as a given number of layers with distinct

average anisotropic properties. Moreover, a priori

seismologic models can only be tested using meas-

urements of anisotropy, whereas a fluid dynamics

model can be tested against other sets of observa-

tions, such as gravity and topography anomalies

and classical tomographic observations.

[37] Tommasi [1998] and later Rümpker et al.

[1999] have illustrated how one should use models

of plastic deformation to interpret large-scale upper

mantle anisotropy. Both these papers and the

present study suggest that the best approach to

the study of seismic anisotropy may be the direct

calculation of synthetic seismograms from 3-D

mantle flow models. Starting with a candidate flow

model, the first step would be to calculate �ð~xÞ at
all model grid points to obtain a preliminary

indication of the likely variability of seismic aniso-
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tropy and its relation to the flow direction. A more

refined study would then calculate the lattice pre-

ferred orientation at all grid points, determine the

anisotropic elastic tensor Cijklð~xÞ using a suitable

averaging scheme, and finally calculate synthetic

seismograms by ‘‘shooting’’ elastic waves through

the resulting anisotropic model domain as by Hall

et al. [2000].

[38] Because our lattice preferred orientation evo-

lution model is semianalytical, it can be used at

very low cost to predict the seismic anisotropy

associated with any mantle flow. It can be used at

various scales, for example, to study the interaction

of a plume and the lithosphere, to infer 3-D flows

in subduction zones, or even to reinterpret global

maps of azimuthal anisotropy as a function of depth

in the upper mantle in terms of convective flow.

Appendix A: Calculation of ISA
Orientation

[39] The orientation of the infinite strain axis, when

it exists, is the steady-state orientation of the long

axis of the finite strain ellipsoid in the limit of

infinite strain. Following the formalism of McKen-

zie and Jackson [1983], we first calculate the

deformation gradient tensor F by integrating the

nine coupled time-evolution equations

dF

dt
¼ LF ðA1Þ

subject to the initial condition F = I, where L is the

strain rate tensor and I is the identity tensor. The

solution of this equation is [Gantmacher, 1989 p.

115]

F ¼ expðLtÞ ¼ Iþ Lt þ L2

2!
t2 þ L3

3!
t3 þ . . . ðA2Þ

We then calculate the ‘‘left stretch’’ tensor

U ¼ FTF; ðA3Þ

where FT is the transpose of F. The eigenvectors of

U are the directions of the major axes of the finite

strain ellipsoid, and the infinite strain axis is the

limit as t ! 1 of the eigenvector corresponding to

the largest eigenvalue. As a direct numerical

calculation for t ! 1 is not possible, we instead

perform the calculation at a dimensionless time

tmax 	 _�tmax sufficiently large that the rate of

change of the eigenvector does not exceed

k _�ðk � 1Þ. For plane strain deformation, the

largest value of tmax is for simple shear and is

tmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2k � 1

p
¼ 71 for k = 10�4. Moreover,

we found empirically that tmax � 71 for any

uniform 3-D deformation tested and for which the

infinite strain axis exists. We thus chose tmax = 75

for all calculations. Rotation rates in excess of

10�4 _� at tmax = 75 indicates that the infinite strain

axis does not exist for the velocity gradient tensor

in question.

Appendix B: ISA Evolution Along
Streamlines for Uniform
Two-Dimensional Flows

[40] If the reference frame is the one defined by the

eigenvectors of the strain rate tensor and if we

choose as the origin the point where the velocity

vanishes, the components of the velocity vector for

a uniform two-dimensional (2-D) flow are

Ux ¼ _�oðx� �zÞ; Uz ¼ _�oð�x� zÞ; ðB1Þ

where (x, z) are the Cartesian coordinates. The local

flow direction is

yFLOW ¼ tan�1 �x� z

x� �z

� �
¼ tan�1 �cos q� sin q

cos q� �sin q

� �
; ðB2Þ

where q = tan�1(z/x). The angle � between the flow

direction and the infinite strain axis is

� ¼ yISA � yFLOW ¼ 1

2
sin�1 �� tan�1 �cos q� sin q

cos q� � sin q

� �
:

ðB3Þ

[41] The material derivative of � is

D�

Dt
¼ ~U : ~r� ¼ sin 2q� �

�2 � 2� sin 2qþ 1
ðB4Þ

[42] If � = 0 the material derivative of � is zero,

which implies

q ¼ 1

2
sin�1 �: ðB5Þ
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[43] Replacing q by its expression in equation (B2),

we obtain the local flow direction,

yFLOW ¼ tan�1 sinðsin�1 �Þ
1þ cosðsin�1 �Þ

� �
¼ 1

2
sin�1 � ¼ yISA:

ðB6Þ

[44] For a uniform 2-D flow, the condition � = 0 is

thus both necessary (it is so always) and sufficient

for the infinite strain axis to follow the flow

direction.
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