
Second-order model of entrainment in planar turbulent jets at low Reynolds number
S. Paillat and E. Kaminski 

 
Citation: Physics of Fluids (1994-present) 26, 045110 (2014); doi: 10.1063/1.4871521 
View online: http://dx.doi.org/10.1063/1.4871521 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pof2/26/4?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Similarity analysis of the momentum field of a subsonic, plane air jet with varying jet-exit and local Reynolds
numbers 
Phys. Fluids 25, 015115 (2013); 10.1063/1.4776782 
 
Effects of passive control rings positioned in the shear layer and potential core of a turbulent round jet 
Phys. Fluids 24, 115103 (2012); 10.1063/1.4767535 
 
Investigations on the local entrainment velocity in a turbulent jet 
Phys. Fluids 24, 105110 (2012); 10.1063/1.4761837 
 
The thermal signature of a low Reynolds number submerged turbulent jet impacting a free surface 
Phys. Fluids 20, 115102 (2008); 10.1063/1.2981534 
 
An experimental investigation of the near-field flow development in coaxial jets 
Phys. Fluids 15, 1233 (2003); 10.1063/1.1566755 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

81.194.22.198 On: Mon, 28 Apr 2014 23:06:15

http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2127325285/x01/AIP-PT/PoF_CoverPg_101613/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=S.+Paillat&option1=author
http://scitation.aip.org/search?value1=E.+Kaminski&option1=author
http://scitation.aip.org/content/aip/journal/pof2?ver=pdfcov
http://dx.doi.org/10.1063/1.4871521
http://scitation.aip.org/content/aip/journal/pof2/26/4?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/25/1/10.1063/1.4776782?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/25/1/10.1063/1.4776782?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/24/11/10.1063/1.4767535?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/24/10/10.1063/1.4761837?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/20/11/10.1063/1.2981534?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/15/5/10.1063/1.1566755?ver=pdfcov


PHYSICS OF FLUIDS 26, 045110 (2014)
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Turbulent jets and plumes are commonly encountered in natural and industrial envi-
ronments, and have been the objects of seminal works on turbulent free shear flows.
The dynamics of turbulent jets is most often described as a function of the so-called
entrainment coefficient, α, which quantifies the entrainment of ambient fluid into the
jets. This key parameter has been determined in numerous and extensive experimen-
tal, numerical, and theoretical studies of axisymmetric jets. However, data remain
scarce on turbulent planar jets. Available studies have shown that at low distance
from the source, α increases with the source Reynolds number, and that α increases
with distance from the source for large source Reynolds number. But no link has been
made between these two kinds of observation so far. To study the relative influence
of source Reynolds number, Re0, and distance from source on entrainment in planar
turbulent jets, we perform new experiments at low Re0 (between 59 and 424) with
three different aspect ratio (185, 370, and 925) and at small and large distances from
the source. Our experimental results show no systematic variations of α as a function
of Re0 or as a function of the distance from the source. To interpret these observations,
we develop a formalism based on the flow velocity profiles, which yields an expres-
sion of α as a function of the evolution of the Reynolds shear stress and of the turbulent
fluctuations of the radial and vertical velocities. We obtain that the main contribution
to entrainment is related to the turbulent shear stress, and that second-order fluctua-
tions of the velocity account for the observed variations of α. The evolution to a fully
self-similar regime in which these fluctuations are fully negligible is too slow at small
Re0 for this regime to be observed in our experiments, even at the largest distances
from the source. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871521]

I. INTRODUCTION

The dynamics of turbulent jets and plumes depends on their source conditions and on the
efficiency of turbulent entrainment of the surrounding fluid into the mean flow. Quantifying turbulent
entrainment is key in assessing the rate of dilution and the rising height of natural and industrial jets
and plumes. In volcanology, for example, entrainment plays an important role in the evolution of the
eruptive column, and controls both the production of pyroclastic flows on the ground and the rate
and the height of injection of volcanic gas and ash in the atmosphere.1, 2

A large body of experimental and theoretical works on axisymmetric turbulent jets and plumes is
available in the literature. In their seminal paper, Morton et al.3 introduced the concept of entrainment
coefficient, defined as the ratio of the lateral velocity of fluids engulfed in the flow to the vertical
mean flow velocity. The values of the so-called “Gaussian” entrainment coefficient, αG, are obtained
by measuring the vertical velocity and fitting it by Gaussian functions. Such measurements in
axisymmetric jets and plumes4 have shown that entrainment is enhanced by positive buoyancy in
plumes.5, 6 Recently, Carazzo and co-workers7, 8 proposed a theoretical expression of αG that depends
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both on buoyancy (either positive or negative) and on the distance from the source. Their formalism
accounts well for experimental measurements and observations on jets, plumes, and fountains,9, 10

and has been applied successfully to immiscible fluids11 and reactive flows.12

Planar turbulent jets and plumes occurred also often in nature, for example, in the case of
basaltic fissure eruptions, on Earth13, 14 and on other planets,15 or in the case of the discharge of
rivers into quiescent water.16 However, they have not been the subject of as numerous and compre-
hensive studies as axisymmetric jets and plumes. For example, in their review, Fischer et al.17 gave
αG = 0.035 ± 0.001 for pure planar jets and αG = 0.070 ± 0.001 for pure planar plumes, but no
models have been proposed so far to explain these values. Furthermore, to our knowledge, no exper-
iments have been performed on planar negatively buoyant plumes yet. Our general goal is to provide
a theoretical framework able to account for the effect of buoyancy and of potential self-similarity
drift in planar jets and plumes, and to apply it to the modelling of geological turbulent flows. As a
first step, we focus here on the behaviour of pure jets (i.e., driven only by their initial momentum,
and without buoyancy forces).

The majority of experimental constraints on the entrainment coefficient in turbulent planar jets
have been obtained at small and intermediate distances from the source (5 < z/d < 150, where
z is the vertical distance from the source and d the source width). Determinations of αG relied
first on the measurement of opening angle of the jets from velocity profiles obtained by hot-wire
anemometry.18–21 Kotsovinos22 and Ramaprian and Chandrasekhara23 later obtained complementary
data using Laser Doppler Anemometry. All these studies, performed at source Reynolds number,
Re0, larger than 1000 yielded a similar average value of αG ≈ 0.03. However, from a detailed review
of the literature, Kotsovinos24 rather concluded that αG was a function of distance from the source
up to z/d ≈ 200, where it reached a constant value αG = 0.042.

More recently, Namer and Ötüngen,25 Suresh et al.,26 and Deo27 measured the opening angle
of jets for various Re0. They found that the value of αG varied from 0.072 for Re0 ≈ 250, to 0.024
for Re0 > 6000. Deo27 experimentally studied the influence of the aspect ratio (width/length) of the
source on αG. At Re0= 16 000, he showed that the entrainment coefficient varies between 0.016,
for an aspect ratio of 20, to 0.032 for an aspect ratio of 72, which is consistent with the value of
αG given in the literature for higher aspect ratios and states that the entrainment coefficient does not
depend on this parameter for such high aspect ratio.

In order to understand better the relative influence of this jet Reynolds number and distance
from the source on the rate of entrainment in turbulent planar jets, we performed new experiments
at small and large distances from the source, ranging from z/d = 40 to z/d = 1000, and at small
source Reynolds numbers, ranging from Re0 = 60 to Re0 = 420. To interpret our experimental
results as well as those from the literature in a common framework, we developed an expression for
the entrainment coefficient derived from the theory of Priestley and Ball28 and Kaminski et al.7 for
axisymmetric jets and plumes. Our results emphasize the key role played by the turbulent Reynolds
stress on entrainment, and imply that second order refinements are required to explain the values of
αG measured at low Re0 (<500). We propose that these second-order contributions can be calculated
from the axial terms of the Reynolds stress which are often negligible in 2D turbulent jets.

II. ENTRAINMENT COEFFICIENTS IN PLANAR TURBULENT JETS

A. Review of literature data

Planar “pure” jets are turbulent free shear flows produced by a linear source of momentum
infinite in one direction. They have no density anomaly relative to the ambient fluid, hence they are
driven by their momentum flux only and no buoyancy forces are at play. The flow is bi-dimensional
and can be described in a (x, z) plan, where z is the vertical direction, and x lies in the horizontal
plane and is normal to the direction of the linear source, y.

Entrainment in turbulent planar jets and plumes is measured from the evolution of the vertical
velocity profile in the flow as a function of z the vertical distance from the source. Previous studies
have shown that the velocity w(x, z) at distances from the source z > 5d (with d the source width),
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is well described by a Gaussian function,

w(x, z) = wm(z) exp

(
−

[
x

bw(z)

]2
)

, (1)

where bw is the (1/e)-width of the profile, and wm is the velocity on the jet axis (x = 0). Following
the approach of Morton et al.,3 the mass and momentum conservation equations in pure planar jets
are written as

d

dz
(bwwm) = 2 αG wm, (2)

d

dz

(
bww2

m

) = 0, (3)

with αG the “Gaussian” entrainment coefficient. The solutions of these equations are

bw = bw0 + 4 αG z, (4)

wm = wm0/
√

1 + 4 αG z/bw0 , (5)

with bw0 and wm0 values at the source (z = 0). From these expressions, the entrainment coefficient
is determined locally as

αG = 1

4

dbw

dz
. (6)

We report in Table I values of the entrainment coefficient computed from the plot of bw against
z∗. The data show that, for source Reynolds number, Re0, higher that 3000, the entrainment coefficient
displays a rather well-defined average value of 0.030 ± 0.006. The data are more variable at lower
source Reynolds numbers, and αG tends to increase when Re0 decreases, up to αG = 0.072 ± 0.006
for Re0 = 250. This conclusion may seem at odds with the intuitive idea that entrainment should
increase with increasing turbulence intensity, and could also be related to an evolution of self-
similarity in the flow as a function of both Re0 and distance from the source. To test this hypothesis,
we performed experiments at low Re0 (<500) and at small and large distances from the source.

B. Experimental measurements of the entrainment coefficient

In our experiments, turbulent linear jets are generated by the injection of fresh water through
a line source in a 45 × 30 × 30 cm3 glass tank filled with fresh water (Figure 1) through eight
small pipes to ensure a homogeneous supplying of the slot. To study the flow at large distances from
the source, we use a slot width d of 0.2 mm (with an aspect ratio of 925) allowing measurements
within a range of dimensionless distances relative to the source, z∗ = z/d, between 200 and 800. To
characterize the flow at smaller dimensionless distances from the source, we use slot widths of 1
mm (with an aspect ratio of 185) and 0.5 mm (aspect ratio of 370) and performed measurements
in the range 40 < z∗ < 150 (d = 1 mm) and 80 < z∗ < 250 (d = 0.5 mm). The aspect ratio is
always high enough not to influence the measurement of αG.27 In the three cases, we use flow rates
Q between 0.5 and 5 l min−1, which correspond to source Reynolds numbers between 50 and 450.
For PIV measurements, the fluid is seeded with glass hollow sphere particles (LaVision 110P8) with
a mean diameter of 11.7 μm and a median of 8 μm. Videos of the jets are recorded with a camera at
a frame rate of 40 Hz with 2000 frames (it has been checked from longer recording and ensures the
convergence of the measures), and DavisTM software is used to compute the instantaneous velocity in
the flow by standard PIV methods. We use an interrogation window of 16 × 16 pixel with an elliptic
weighting 4:1 and an overlap of 50% for the calculations of the correlations. We then calculate both
the Reynolds-averaged velocities and their turbulent fluctuations using MATLABTM programs.

Figure 2 shows pictures of turbulent jets at similar Re0 but for two different slot widths, hence
at two different distances from the source. The pictures show two different types of evolution of
turbulence: (a), corresponding to small z∗, shows some meandering, whereas turbulence appears
more regular in (b). Hence entrainment is likely to be different in the two cases.
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TABLE I. Literature values of the “Gaussian” entrainment coefficient in planar turbulent jets, αG calculated from the
evolution of bw with the distance from the source. The uncertainties are given by the standard deviation corresponding to the
95% confidence interval. Two different measurement methods were used: Hot-Wire anemometry (HWA), and Laser Doppler
Anemometry (LDA). The dimensionless distance from the source is z∗ = z

d , with d the width of the linear source. Re0 is the
Reynolds number at the source (z∗ = 0).

Method Fluid Re0 z∗ αG Ref.

HWA Air 17 800 5–40 0.029 ± 0.006 18
HWA Air 30 000 13.9–68.5 0.033 ± 0.003 19
HWA Air 34 000 47–155 0.033 ± 0.003 20
LDA Water 1700–1900 20.8–93.8 0.033 ± 0.008 22
HWA Air 30 000 65–118 0.033 ± 0.004 21
LDA Water 1500 10–60 0.034 ± 0.006 23
LDA Water 2635–5197 45–80 0.036 ± 0.005 29
HWA/LDA Air 1000 16–95 0.054 ± 0.002 25
HWA/LDA Air 2000 16–95 0.037 ± 0.002
HWA/LDA Air 6000 16–95 0.030 ± 0.002
HWA Air 1500 0–100 0.041 ± 0.002 30
HWA Air 3000 0–100 0.038 ± 0.002
HWA Air 7000 0–100 0.032 ± 0.002
HWA Air 10 000 0–100 0.029 ± 0.002
HWA Air 16 500 0–100 0.026 ± 0.002
HWA Air 250 20–100 0.072 ± 0.006 26
HWA Air 550 20–100 0.064 ± 0.006
HWA Air 1100 20–100 0.060 ± 0.006
HWA Air 2000 20–100 0.044 ± 0.006
HWA Air 4000 20–100 0.032 ± 0.006
HWA Air 6250 20–100 0.025 ± 0.006

With the maximum frame rate used in the experiments, we cannot measure the velocity in the
near-source region with a satisfying accuracy. We determine the range of z∗ where the measurements
of velocity is correct by plotting the momentum flux M = bww2

m which should be constant in a pure
jet against z∗. We then measure bw and wm , the 1/e-width and the centerline velocity of the Gaussian
fits (Figure 3) in the range of constant M which are plotted in Figure 4. The entrainment coefficient
αG is deduced from these plots and shown in Table II as a function of the source conditions and
distance from source.

Our results are quite variable and do not show any systematic variation of αG as a function of
Re0. Furthermore, the maximal value we found for αG is 0.046, whereas Suresh et al.26 obtained αG

= 0.072 for similar Re0. Our values are more consistent with the ones obtained for Re0 > 1500 in
the literature (αG between 0.029 and 0.045) and tend to be close to the highest values reported in
these studies. To develop a quantitative interpretation of these results, we now follow the approach
of Kaminski et al.7 to derive an explicit expression of αG as a function of the velocity and turbulent
stress profiles.

III. THEORETICAL MODEL OF ENTRAINMENT IN PLANAR JETS

A. An explicit expression for the Gaussian entrainment coefficient αG

Following Priestley and Ball,28 we introduce u = u + u′ the velocity along the x-direction and
w = w + w′ the velocity along the z-direction, with u and w their Reynolds time-averages, and u′

and w′ their turbulent fluctuations. At large Reynolds numbers, the time-averaged local mass and
momentum conservation equations are written as

∂u

∂x
+ ∂w

∂z
= 0, (7)
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FIG. 1. (a) Overview of the experimental set-up. The jet is produced by a line source injecting fresh water, seeded with small
glass particles, into fresh water at rest. A plane laser light sheet illuminates the flow which is recorded with a camera. Images
are then correlated using DAVISTM software to obtain the velocity field. (b) Schematic representation of the flow.

u
∂w

∂x
+ w

∂w

∂z
= 1

ρ

∂τ

∂x
, (8)

where τ = −ρu′w′ is the turbulent shear stress which accounts for entrainment,28 and ρ is the fluid
density. We combine the mass and momentum equations to rewrite the momentum equation as

∂u w

∂x
+ ∂w2

∂z
= 1

ρ

∂τ

∂x
, (9)
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0

zz

2 cm2 cm

FIG. 2. Pictures of experimental turbulent jets at different distances from the source showing the velocity field determined
by PIV (small red arrows: 3 cm = 1 m s−1). (a) Re0 = 140, d = 1 mm, z∗ = 20 − 200; (b) Re0 = 156, d = 0.2 mm,
z∗ = 100–1000. Although the Re0 source numbers are similar in the two cases, the development of turbulence, hence of
entrainment, appears quite variable, which suggests an effect of the distance from the source.
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FIG. 3. Average velocity profiles over z∗ for three experiments: HZ-3 (black squares), IZ-3 (gray diamonds), and LZ-2
(white circles).
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FIG. 4. Evolution of the half-width bw (a) and the centerline velocity (b) of velocity profiles with z/d for all the experiments
of Table II: HZ-3 (black squares), IZ-3 (gray diamonds), and LZ-2 (white circles).

and we integrate the mass and momentum conservation equations (7) and (9) subject to u(x = 0, z)
= τ (x = 0, z) = limx → ∞, zτ (x, z) = limx→∞,z w(x, z) = 0, which yields

d

dz
Q(z) = −2 lim

x→+∞ u, (10)

d

dz
M(z) = 0, (11)
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TABLE II. Experimental results and source conditions.

Expt. d (mm) z∗ Q0 (l min−1) Re0 αG

HZ-1 0.2 400−600 0.69 62 0.037 ± 0.002
HZ-2 0.2 400−900 0.65 59 0.042 ± 0.008
HZ-3 0.2 400−750 1.47 133 0.043 ± 0.005
HZ-4 0.2 400−600 1.73 156 0.039 ± 0.004
HZ-5 0.2 450−750 2.41 217 0.034 ± 0.001

IZ-1 0.5 100−220 0.5 45 0.045 ± 0.004
IZ-2 0.5 170−240 0.97 87 0.037 ± 0.002
IZ-3 0.5 180−240 1.65 149 0.032 ± 0.003
IZ-4 0.5 140−220 4.22 381 0.031 ± 0.003

LZ-1 1 40−140 1.12 101 0.046 ± 0.004
LZ-2 1 60−140 1.52 137 0.036 ± 0.004
LZ-3 1 60−140 1.55 140 0.038 ± 0.004
LZ-4 1 90−140 2.16 195 0.033 ± 0.004
LZ-5 1 100−140 3.52 318 0.038 ± 0.006
LZ-6 1 90−140 4.68 422 0.044 ± 0.004
LZ-7 1 120−170 4.71 424 0.043 ± 0.005

where Q(z) and M(z) are the mass and momentum fluxes per unit length, respectively, defined as

Q(z) =
∫ +∞

−∞
w(x, z) dx, (12)

M(z) =
∫ +∞

−∞
(w)2(x, z) dx . (13)

In Eq. (10), the limit of u when x → +∞, which quantifies entrainment in the jet, is not known
a priori. Morton et al.3 avoid the use of this limit through the introduction of a “Top-Hat” entrainment
coefficient αTH defined through

d

dz
Q(z) = 2αT H

M

Q
. (14)

The Top-Hat entrainment coefficient has a similar meaning as the Gaussian entrainment coefficient
defined above, and is equal to

√
2παG .

To obtain an explicit expression for the entrainment coefficient, we introduce the conservation
of the vertical kinetic energy,28

∂

∂z

(
1

2
(w)3

)
+ ∂

∂x

(
1

2
u (w)2

)
= w

ρ

∂τ

∂x
. (15)

The integration of this equation subject to the same boundary conditions as for the integrations
(10) and (11), yields

d

dz

[∫ +∞

−∞

1

2
(w)3dx

]
=

∫ +∞

−∞

∂w

∂x
u′w′dx . (16)

We then introduce the shape functions of the vertical velocity and of the turbulent stress,

w(x∗, z) = wm(z) f (x∗, z), (17)

τ (x∗, z) = 1

2
ρ wm(z)2 j(x∗, z), (18)
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where x∗ = x/bw(z), with bw(z) a characteristic length scale of the width of the jet. The integration
of the conservation equations using these profiles introduces four dimensionless integrals:

I1 =
∫ +∞

−∞
f (x∗, z) dx∗, (19)

I2 =
∫ +∞

−∞
f (x∗, z)2 dx∗, (20)

I3 =
∫ +∞

−∞
f (x∗, z)3 dx∗, (21)

I4 =
∫ +∞

−∞

∂ f (x∗, z)

∂x∗ j(x∗, z) dx∗, (22)

that are used to write the conservation of the kinetic energy (16) as

d

dz

(
bww3

m

) = −bww3
m

I3

dI3

dz
− I4

I3
w3

m . (23)

Combining this equation with Eq. (11), we obtain

d

dz
(bwwm) = 2

[C
2

+ bw

2

d lnA
dz

]
wm, (24)

which is equivalent to Eq. (2) with

αG ≡ C
2

+ bw

2

d lnA
dz

, (25)

A = I3 I1

I 2
2

=
∫ +∞
−∞ f (x∗, z)3 dx∗ ∫ +∞

−∞ f (x∗, z) dx∗(∫ +∞
−∞ f (x∗, z)2 dx∗

)2 , (26)

C = I4

I3
=

∫ +∞
−∞

∂ f (x∗,z)
∂x∗ j(x∗, z) dx∗∫ +∞

−∞ f (x∗, z)3 dx∗ . (27)

The dimensionless parameters A and C defined above play a similar role as the parameters A
and C introduced by Kaminski et al.,7 but their definition is somewhat different. A depends only
on the shape of the velocity profile, and equals to

√
4/3 for a Gaussian profile. C can be interpreted

as the fraction of kinetic energy driving entrainment. For a Gaussian velocity profile, C = √
3/π I4,

where I4 is the integral defined in (22) as a function of the Reynolds turbulent shear stress only.

B. Measurements of the Reynolds turbulent shear stress

We compute the Reynolds turbulent shear stress from the fluctuations of the horizontal and
vertical velocities, and we fit it by the same type of functions as the one used in Wang and Law,6

j
( x

z

)
= c0

{
exp

[
−c1

( x

z
− c2

)2
]

− exp

[
−c1

( x

z
+ c2

)2
]}

, (28)

where c0, c1, and c2 are fitting parameters.
The values of C, computed from literature data where the Reynolds stress was

measured,18, 20, 21, 23, 29 are given in Table III. The comparison between direct measurements and
values of αG predicted from the turbulent shear stress (i.e., C/2) shows a good agreement between
the two. However, only data obtained at large Re0 are considered here.

In our experiments, we did not observe any systematic evolution, within error bars, of the shape
of Reynolds turbulent shear stress with z∗ or with Re0. The mean profiles of the turbulent shear
stress shown in Figure 5 yields C/2 ≈ 0.030 ± 0.005 which is fully consistent with literature data
at high Re0 (>1500). On the other hand, the value of αG in our experiments (Figure 6) is in most
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TABLE III. Values of the fitting parameters of the profile of the Reynolds turbulent shear stress calculated from literature
data and corresponding theoretical and measured αG (Eq. (25)).

d (mm) z∗ Re0 c0 c1 c2 C/2 αG References

12.7 5−40 17 800 0.10 60 0.02 0.034 ± 0.003 0.029 ± 0.006 18
12.7 47−155 34 000 0.08 80 0.02 0.032 ± 0.003 0.033 ± 0.003 20
13 65−118 30 000 0.08 80 0.02 0.032 ± 0.004 0.033 ± 0.004 21
5 10−60 1500 0.07 70 0.02 0.029 ± 0.003 0.034 ± 0.006 23
6 45−80 2635–5197 0.1 60 0.02 0.036 ± 0.005 0.036 ± 0.005 29

cases larger than the expected theoretical value of 0.03 (i.e., corresponding to C/2). In the present
formalism, this discrepancy implies that additional contributions to entrainment must be taken into
account. We thus propose to introduce the second-order contribution of the axial components of the
Reynolds stress to entrainment, which can be seen as a “production term” usually neglected.31

C. Second-order model of turbulent entrainment

We now write the momentum and kinetic energy equations, with the addition of the axial terms

of the Reynolds stress, τax = −ρ
(
w′2 − u′2

)
,

∂u w

∂x
+ ∂(w)2

∂z
= 1

ρ

[
∂

∂x
(τ ) + ∂

∂z
(τax )

]
, (29)

∂

∂z

(
1

2
(w)3

)
+ ∂

∂x

(
1

2
u (w)2

)
= w

ρ

[
∂

∂x
(τ ) + ∂

∂z
(τax )

]
. (30)

η=x/z
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−0.01

0

0.01
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0.03

FIG. 5. Average profiles of the turbulent Reynolds shear stress obtained for three experiments: HZ-3 (black squares), IZ-3
(gray diamonds), and LZ-2 (white circles).
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FIG. 6. Comparison between model predictions (αGmodel = C
2 ) and measured αG at small (white circles), intermediate (gray

diamonds), and large distances from the source (black squares). The thick black line corresponds to model predictions without
the second order contribution to entrainment, and the dashed line corresponds to the complete model (Eq. (35)) with the
average contribution of the axial component of the Reynolds stress, B

2 = 0.013.

The integration of these two equations subject to the same boundary conditions as in Sec. III A
yields

d

dz

(
bww2

m

) = bww2
m

(I2 + J1)

d(I2 + J1)

dz
, (31)

d

dz

(
bww3

m

) = −bww3
m

I3

dI3

dz
− I4

I3
w3

m − J2

I3
w3

m, (32)

where we have introduced two new integral profiles associated with the axial terms of the Reynolds
stress,

J1 = −1

ρ

1

w2
m

∫ +∞

−∞
τax dx∗, (33)

J2 = −bw

ρd

1

w3
m

∫ +∞

−∞
w

∂

∂z∗ (τax ) dx∗. (34)

After some algebra, and combining Eqs. (29) and (30), we obtain a new expression for the mass
conservation equation, hence for αG,

d

dz
(bwwm) = 2 αG wm = 2

[C
2

+ bw

2

d lnA∗

dz
+ B

2

]
wm, (35)

with

A∗ = I3 I1

(I2 + J1)2
, (36)

B = J2

I3
. (37)
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FIG. 7. Measured profiles of τ ax for the experiment HZ-3 (Re0 = 139) at different distances from the source.

We use the experimental profiles to evaluate the order of magnitude of the second-order con-
tributions of the axial terms of the Reynolds stress tensor to entrainment. The first contribution, J1,
scales as (w′2 − u′2)/w2

m and is of order 10−1, thus can be neglected compared to I2 which is of
order unity, hence A∗ ≈ √

4/3.
We evaluate the order of magnitude of the second contribution J2 using the following scaling:

J2 ∼ 4αG
b2

w

M∞

∂ τaxm

∂z∗ , (38)

where τaxm is the value of τ ax at x = 0, obtained from the evolution of the axial terms of the Reynolds
stress with z∗, illustrated in Figure 7. The average resulting contribution of the axial terms of the
Reynolds stress, B/2 ≡ J2/2I3 is ≈0.013. As illustrated in Figure 6 this contribution is large enough
to account for the difference between measured αG and previous estimates based on “classical”
Reynolds shear stress (i.e., C/2). Furthermore, we find that the contribution to entrainment of the
axial terms ranges between 0 and 0.012 for HZ and IZ experiments and can be up to 0.026 for LZ
experiments. This result can be taken as an indication that the flow tends to be fully self-similar (i.e.,
B/2 tends to 0) when the distance from the source increases. However, the evolution to self-similarity
appears too slow at low Re0 (<500) for this contribution to be neglected in our experiments, even at
the largest distance from the source. This result is in line with those obtained by Deo et al.32 at Re0

> 1500 where they stated that Re0 is a key parameter for the development of the turbulence and that
the self-similarity is achieved further when Re0 decreases.

IV. CONCLUSIONS

Our experimental study of turbulent entrainment in planar jets at small source Reynolds number
shows that the entrainment coefficient αG cannot be described by a single value. A significant
variability is observed at small and at large distances from the source, and no systematic evolution is
observed as a function of Re0. We show that this variability can be quantitatively interpreted as the
contribution to turbulent entrainment of the axial terms of the Reynolds stress. This contribution is
expected to be zero in fully self-similar jets at high, as the ones corresponding to Re0 > 1500, where
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the entrainment coefficient can be considered constant with a value αG = C/2 = 0.030 ± 0.005. At
low Re0 the development of self-similarity is too small for such a regime to be observed, even at
large distances from the source. The question put forward by George33 about the influence of source
conditions on the self-similarity of axisymmetric jets seems them to be quite relevant in planar
turbulent jets.
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