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Abstract

The interpretation of seismic anisotropy in the mantle requires a knowledge of the relationship between the lattice
preferred orientation (LPO) of crystals and the convective flow field. In order better to understand this link, we present
a model for the evolution of LPO in olivine aggregates that deform by both intracrystalline slip and dynamic
recrystallization. Dynamic recrystallization depends on the dislocation density of the grains, which is a function of the
applied local stress. Grains with a large density of dislocations lower their bulk strain energy by nucleating strain-free
sub-grains at a rate proportional to a dimensionless nucleation parameter V*. Grains with high energy are then invaded
by grains with low energy by grain-boundary migration, at a rate proportional to a dimensionless grain-boundary
mobility M*. The value of V* is constrained by observed LPO patterns in experimentally deformed olivine aggregates,
and M* is constrained by the temporal evolution of the strength of the LPO. For M* = 125 þ 75 and V*s 3, the model
predictions agree well with the experimental results. Numerical calculations of LPO using our model are significantly
faster than those based on viscoplastic self-consistent or equilibrium-based theories, making the model especially
suitable for applications for complex convective flows. ß 2001 Elsevier Science B.V. All rights reserved.

Keywords: dynamic metamorphism; recrystallization; seismic city; anisotropy

1. Introduction

Much of the upper mantle (above 400 km) is
known to be anisotropic [1]. Its anisotropy is both
radial and azimuthal [2], and is manifested by
shear wave splitting [3], by the discrepancy be-
tween Rayleigh and Love wave dispersion, and

by the azimuthal dependence of body wave veloc-
ity [4,5]. One way to produce such an anisotropy
is lattice preferred orientation (LPO) of aniso-
tropic crystals in an aggregate [6]. Olivine
((Mg0:9Fe0:1O)2SiO4) is the major mineralogical
component of the upper mantle and is character-
ized by a velocity di¡erence between its fast and
slow axis of 25% for VP and 22% for VS [7]. The
observed mantle anisotropy can thus arise from
the preferred orientation of olivine crystals in
the convective £ow [8]. A model for the evolution
of LPO in olivine is then necessary to interpret
seismic anisotropy in the mantle.

The relationship between plastic deformation of
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olivine and LPO has been studied using a variety
of models, including viscoplastic self-consistent
(VPSC) [9], kinematic constraint [10] and stress
equilibrium models [11]. A critical review of these
models is given by [12]. In these models, crystals
deform solely by slip on a small number (usually
three) independent slip systems, and the e¡ects of
recrystallization are neglected. Under such condi-
tions, the models predict that the LPO of an ini-
tially isotropic aggregate is such that the a-axis of
olivine is aligned with the longest semi-axis of the
¢nite strain ellipsoid (FSE) [9,12,13]. Such predic-
tions are in agreement with experimental results
for small (shear strain 6 50%) deformations of
olivine in simple shear [14].

However, experiments on olivine aggregates de-
formed in simple shear [14] show that at large
strain and high temperatures, the LPO no longer
follows the FSE; instead, the dominant slip plane
(010) and slip direction [100] coincide with the
shear plane and the shear direction, respectively.
Such an evolution is associated with intensive dy-
namic recrystallization, by sub-grain rotation and
grain-boundary migration (GBM). Convection in
the Earth induces large ¢nite strains and hence
dynamic recrystallization is likely to control the
LPO and the related anisotropy. If one wants to
interpret the anisotropy observations in terms of
mantle £ow, one thus needs a theoretical model
for the relationship between deformation, dynam-
ic recrystallization and the resulting LPO.

Since the early work of Etchecopar [15] many
models have been developed to account for dy-
namic recrystallization. The ¢rst generation of
successful models (e.g. [16]) were based on the
assumption that certain orientations (hard or
soft ones) were favored during recrystallization.
However, there was no `natural' physical justi¢ca-
tion for the selection of the favored orientations.
Recently, a big step towards a more realistic mod-
el has been made by Wenk and coworkers for
quartz and calcite [17] and for olivine [18]. In their
model, the selection of the favored orientations is
made via probabilistic nucleation and growth pro-
cesses. They ¢rst calculate the deformation of the
crystals in the aggregate using the VPSC theory.
From the deformation of each crystal, they esti-
mate a strain hardening, and thence the stored

strain energy of the grains. Grains with a high
strain energy are invaded by grains with low
strain energy, by GBM. However, grains with a
large-strain energy have also a larger nucleation
probability and are likely to nucleate new grains
with a low density of dislocations, which will thus
grow preferentially. The LPO predicted by this
model is a function of the coe¤cient of strain
hardening, the relation between strain hardening
and strain energy, the grain-boundary mobility,
and three additional parameters describing the
nucleation process. For suitably chosen values of
the free parameters, the predictions of the model
are in good agreement with the large-strain exper-
imental results of Zhang and Karato [14].

However, the model of Wenk and coworkers
[17,18] has some limitations which motivate the
present work. The model contains a large number
(six) of free parameters for which few experimen-
tal constraints are available, making extrapolation
to the Earth's mantle di¤cult. Further, the pre-
dicted LPO was compared with only a single
`snapshot' of the texture developed in simple
shear; its evolution as a function of strain and
of deformation type was not investigated. Finally,
the VPSC approach is computationally expensive,
and becomes unstable for large deformations
when the LPO is strong. A VPSC-based model
is therefore impractical for incorporation into nu-
merical convection codes.

Here we present a simpler theory for dynamic
recrystallization of olivine aggregates, based on a
kinematic constraint model for plastic deforma-
tion [10]. The model treats dynamic recrystalliza-
tion by estimating the dislocation density in the
crystals as a function of their orientation, and
involves only two free parameters, a dimension-
less grain-boundary mobility and a dimensionless
nucleation coe¤cient. We constrain the values of
these parameters using a variety of observations,
including textural `snapshots' from experiments in
simple shear [14,19] and uniaxial compression [20]
and measurements of the mean orientation and
variance of the LPO as functions of strain in sim-
ple shear [14]. The model a¡ords a savings in
computer time of a factor of at least 100 relative
to the VPSC model, making it highly practical for
geophysical applications.
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2. Plastic deformation

The starting point for the model of plastic de-
formation is the theory developed by Ribe and
Yu [10]. We consider an aggregate of N crystals
of volume fraction fX , (X= 1, 2, T, N). The orien-
tation of each grain relative to an external or `lab-
oratory' frame is described by a set of three Eu-
lerian angles gX = (P1

X , aX , PX2 ) and the related
matrix of direction cosines, aXij : (see above)

The quantity aX
ij is the cosine of the angle be-

tween the ith crystal axis (i = 1, 2, 3 for the axes
[100], [010], and [001], respectively) and the ith
external axis. The grains deform by intracrystal-
line slip, which controls the rotation of the crys-
tallographic axes, and undergo dynamic recrystal-
lization, which controls the evolution of the
volume fractions.

The aggregate is subjected to an externally im-
posed macroscopic deformation described by a
velocity gradient tensor:

Lij � Eij3O ijk6 k �2�

where Eij is the strain rate tensor, 26k is the vor-
ticity vector, and Oijk is the alternating tensor
(Oijk = 1 if ijk are in ascending order, Oijk =31 if
ijk are in descending order and Oijk = 0 if any of
two of ijk are equal). Individual grains in the
aggregate respond to the imposed deformation
by a combination of a rigid body rotation and
simple shear on three independent slip systems
s = 1,2,3, each of which is assumed to obey a
power-law rheology with an activation stress ds

and a stress exponent n. The deformation rate
of each crystal is described by a local velocity
gradient tensor:

dX
ij � GX

ij Q X3O ijkgX
k �3�

where gX is the rotation rate of the crystallo-
graphic axes and QX is the rate of slip on the
weakest slip system. The tensor GX

ij is equivalent
to a Schmidt tensor, and is given by [10] :

GX
ij � 2

XS

s�1

L sX lsX
i nsX

j �4�

where lsXi and nsX
j are respectively unit vectors in

the slip direction and normal to the slip plane of
slip system s, and:

L sX � d 1IsX

d sI1X

d 1IsX

d sI1X

n31
�������� �5�

where IsX = lsXi nsX
j Eij and s = 1 is the weakest slip

system. The factor LsX gives the relative activities
of the di¡erent slip systems as a function of their
critical reference shear stresses and of their orien-
tations relative to the macroscopic strain rate
tensor. Here and henceforth, the Einstein summa-
tion convention is assumed for all indices, except
X and s.

According to von Mises' criterion, three inde-
pendent slip systems are not su¤cient to accom-
modate an arbitrary imposed strain rate Eij . Ac-
cordingly, Ribe and Yu [10] minimize the volume-
averaged di¡erence between the local (grain-scale)
and macroscopic deformation of the aggregate
(`distortion rate'), subject to the constraints of
slip system rheology. In general, the local defor-
mation does not match exactly the imposed defor-
mation, and one needs a small amount of `extra'
deformation of the grains to insure global strain
compatibility. In the present model, we suppose
that this extra deformation is due to secondary
deformation mechanisms like grain-boundary
sliding [21,22] or dislocation climb [23]. These
mechanisms can account for change of shape,
but as they involve o¡-slip plane dislocations,

aX
ij �

cosP X
2 cosP X

13cosa X sinP X
1 sinP X

2 cosa X cosP X
1 sinP X

2 � cosP X
2 sinP X

1 sinP X
2 sina X

3sinP X
2 cosP X

13cosa X
1 sinP X

1 cosP X
2 cosa X cosP X

1 cosP X
23sinP X

2 sinP X
1 cosP X

2 sina X

sina X sinP X
1 3sina X cosP X

1 cosa X

0@ 1A �1�
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they do not induce any rotation of the crystallo-
graphic axes of the crystals and thus do not a¡ect
the LPO [21]. The deformation of a given grain is
thus obtained simply by minimizing the (squared)
di¡erential strain rate:

GRf �
XN

X�1

f X �Lij3dX
ij ��Lij3dX

ij � �6�

The residual di¡erential strain rate, GR*f= GRf/
(LijLij) obtained after minimization, gives the
part of the deformation accommodated by climb-
ing and grain-boundary sliding. For an isotropic
aggregate of olivine, this deformation accounts
for about 13% of the total deformation, with a
minimum value of 9% (for simple shear) and a
maximum value of 16% (for uniaxial compres-
sion). In the calculations presented hereafter, the
`extra' deformation never exceeded 16% of the
total deformation.

The minimization yields a set of 4N linear alge-
braic equations for the quantities QX , gX

i , the so-
lutions of which are:

Q X �
2GX

ij Lij3�Lii�13Li�1i��GX
ii�13GX

i�1i�
2GX

klG
X
kl3�GX

kl�13GX
k�1l��GX

kl�13GX
k�1 l�

�7�

and

gX
i �
�Li�2i�13Li�1i�2�

2
3

GX
i�2i�13GX

i�1i�2�
2

Q X

�i � 1; 2; 3� �8�

In these equations, the cyclically ordered sub-
scripts (i,i+1,i+2) take the values (1,2,3), (2,3,1)
and (3,1,2). Finally, the change of the orientation
gX of each grain is given by the evolution equa-
tion for the direction cosines aXij ,

daXij
dt
� O jklaX

ilg
X
k �9�

This system of equations describes the plastic
deformation of the aggregate and gives the evolu-
tion of the corresponding LPO.

3. Dynamic recrystallization

3.1. Formalism

Dynamic recrystallization is a common process,
observed in almost any material after a certain
amount of deformation. According to Poirier
and Guillopë [24], dynamic recrystallization is a
`deformation-induced reworking of the grain size,
shape or orientation, without chemical change'. It
is a complex phenomenon associated with changes
of microstructures, crystallographic orientations,
and rheological properties. The aim of this paper
is to propose a simple model of dynamic recrys-
tallization, incorporating the e¡ect of GBM and
nucleation as a function of the density of disloca-
tions. We require this model to be in agreement
with observations and with the basic physics of
dynamic recrystallization, and to be £exible
enough to be used to predict the LPO generated
by dynamic recrystallization in an arbitrary man-
tle £ow.

In a deforming crystal, dynamic recrystalliza-
tion is a function of the stored strain energy. On
the one hand, a crystal with a high strain energy
tends to be invaded by grains with a low energy,
by GBM. On the other hand, a grain with a high
energy tends to nucleate new strain-free sub-
grains which will grow by GBM. The LPO of a
crystal aggregate subject to dynamic recrystalliza-
tion thus re£ects the balance between nucleation
and migration, as illustrated for di¡erent minerals
by Wenk and coworkers [17,18].

Because the stored strain energy is a function of
the dislocation density, one needs to evaluate the
density of dislocations in the aggregate as a func-
tion of the orientation of the grains. A complete
model should treat the evolution of the disloca-
tion density as a function of strain. However, it
has been observed that the dislocation density in
deforming olivine crystals reaches a steady state
at a very small strain (about 1% [25]). At steady
state, both theory and experiments indicate that
the dislocation density in olivine depends on the
stress according to:

bOb32 c
W

� �
p; �10�
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where b is the length of Burgers' vector and W is
the shear modulus. Simple dislocation theory [21]
suggests that p = 2. However, high-temperature
creep experiments on olivine single crystals sug-
gest that p varies between 1.6 [25] and 1.4 [26]. We
thus henceforth adopt the value p = 1.5. Accord-
ing to Eq. 10, one expects a correlation between
the Schmidt factor of a grain and its density of
dislocations, which is indeed observed for olivine
crystals [27].

If there were no nucleation, the stored strain
energy density E of a crystal would be just the
strain energy stored by the dislocations:

E � Ab Wb2 �11�

with A a dimensionless constant. In that case, soft
grains (those with high Schmidt factors) have a
larger strain energy and will be consumed by
GBM, while hard grains (low Schmidt factors)
will grow preferentially. However, in simple-shear
experiments [14], it is observed that the texture is
dominated by the soft orientations.

In a highly deformed grain, the density of dis-
locations and the misorientations can be locally
very large, which will induce nucleation. Nuclea-
tion occurs mainly by sub-grain rotation and
grain-boundary bulging and generates strain-free
zones in the parent grain. In that case, the bulk
strain energy of a crystal is the sum of non-recrys-
tallized zones and strain-free sub-grains with zero
strain energy (see Fig. 1):

E � KAb Wb2 �12�

with K the non-recrystallized fraction of the grain.
The key point is thus to quantify the recrystallized
fraction of the grains.

Wenk and Tomë [18], following the classical
theory of nucleation by statistical £uctuations,
consider that the nucleation rate is an exponential
function of the square of the strain energy. How-
ever, it is often considered more appropriate to
link the nucleation rate to the misorientation of
a grain with respect to its neighbors [24]. Because
misorientation is proportional to the density of
dislocations, the nucleation rate is thus likely to
be a function of the density of dislocations. We

assume that the recrystallized fraction of a grain
is an exponential function of the square of its
misorientation (i.e. of the square of its dislocation
density, and thus of the square of its strain en-
ergy, as in [18]) :

K � exp�3V b 2� �13�

where V is a `nucleation parameter', which char-
acterizes the e¤ciency of nucleation. For large
values of V nucleation is very e¤cient (KC0)
whereas for small values of V nucleation is slow
(KC1). This relationship re£ects the basic phys-
ical link between dislocation density and nuclea-
tion, and has the advantage of allowing a simple
parametrization of the phenomenon.

Using the strain energy given by Eq. 12, it is

Fig. 1. Dislocation structure and corresponding stored strain
energy for a soft grain (s) and a hard grain (h) deformed in
simple shear, with and without nucleation. Because nuclea-
tion generates strain-free nuclei, the bulk strain energy of the
recrystallized soft grain is smaller than that of the hard
grain.

EPSL 5866 20-6-01 Cyaan Magenta Geel Zwart

E. Kaminski, N.M. Ribe / Earth and Planetary Science Letters 189 (2001) 253^267 257



straightforward to describe the migration of the
grain-boundaries in the aggregate. The migration
velocity of a grain-boundary is proportional to
the di¡erence of strain energy between grains. Ac-
cordingly, we consider that the change of volume
of a given grain is proportional to the di¡erence
between its strain energy and the average energy
É of the aggregate. If f is the volume fraction of
the grain, the evolution equation has the form:

df
dt
� 3Mf �E3E� �14�

where M is the grain-boundary mobility, which
characterizes the e¤ciency of GBM. If a grain
has a larger strain energy than the aggregate aver-
age energy, it will shrink, whereas it will grow if

its energy is lower than the average. We can now
incorporate Eqs. 12 and 14, in the model of plas-
tic deformation.

3.2. Kinematic model of dynamic recrystallization

To link recrystallization and plastic deforma-
tion we need to relate the density of dislocations
in a crystal to its deformation. To do that we ¢rst
de¢ne a reference state for the crystals, such that
a reference resolved shear stress ds

ref on slip sys-
tem s corresponds to a shear rate _O ref on the slip
plane. Let the associated density of dislocations
be bs

ref . If we de¢ne s = 1 as the softest slip system
for example, b1

ref is the density of dislocations on
the slip plane if the applied stress is d1

ref or equiv-

Fig. 2. Pole ¢gures (Lambert equal-area projection, contours at 0.1 m.r.d. (multiples of a random distribution)) for the [100],
[010] and [001] crystallographic axes of olivine, in the reference frame de¢ned by the principal axes of the strain rate tensor. The
solid line represents the shear plane, and the dashed line the foliation. (a) Experimental results for an olivine aggregate deformed
by simple shear at 1573 K (150% ¢nite strain) [14]; (b) prediction of the kinematic constraint theory [10] for an initially isotropic
aggregate of 1000 grains deformed by the same amount in simple shear; (c) prediction of the present model for M* = 50 and
V* = 5.

EPSL 5866 20-6-01 Cyaan Magenta Geel Zwart

E. Kaminski, N.M. Ribe / Earth and Planetary Science Letters 189 (2001) 253^267258



alently if the strain rate is _O ref . We now express
the density of dislocations on a slip plane s for an
arbitrary deformation in terms of the reference
values.

By Eq. 10, the dislocation density bs on a slip
system s is proportional to the power p of the
resolved shear stress ds acting on that slip plane.
Moreover, d sOM _O sM

1=n, where n is the power-law
exponent that characterizes the rheology of the
slip systems. Thus:

b s

b s
ref
� d s

d s
ref

� �
pr

_O s

_O ref

p=n
�������� �15�

The related stored strain energy is:

Es � AWb2b s exp�3V b 2
s � �16�

where the exponent function accounts for the
fraction of the strain energy released by nuclea-
tion of strain-free sub-grains. We de¢ne the total
stored strain energy in a grain as the sum of the
contributions from the di¡erent slip systems:

E � AWb2
X

s

b s
ref

_O s

_O ref

p=n

exp 3V b s
ref

_O s

_O ref

p=n
���� �2

���� �����������
�17�

One may use a more complex de¢nition of the
total strain energy, including non-linear terms
representing the interactions between dislocations
arising from di¡erent slip systems during nuclea-
tion. However, as no theoretical background is
available to describe the phenomenon in detail,
we choose the simplest expression for the total
strain energy.

To close the system, we need a last relationship
between the reference dislocation densities for the
di¡erent slip systems. These densities are those
required to accommodate the strain rate _O ref on
the respective slip planes, and are given by Oro-
wan's equation:
_O ref � b s

ref bvs �18�

with vs the average velocity of the dislocations on
the slip plane s. The dislocation density for the
slip system s is related to the dislocation density

for the softest slip system s = 1 by:

b s
ref

b 1
ref

� v1

vs �19�

Because the strain rate is proportional to the
stress to the power n and because the disloca-
tion density is proportional to the stress to the
power p, Orowan's equation (Eq. 18) indicates
that the velocity of dislocations is proportional
to the stress to the power n3p. In that case we
have:

b s
ref

b 1
ref

� v1

vs �
d 1

ref

d s
ref

� �n3p

� 1
d s

0

� �n3p

�20�

where d0
s is the normalized (dimensionless) refer-

ence critical shear stress for the slip system s. By
de¢nition, d1

0 = 1. If we take b1
ref = b0 as the dislo-

cation density scale for the problem, and _O ref � _O 0

as the strain rate scale for the problem, we obtain
the expression for the density of mobile disloca-
tions for slip plane s :

b s � b 0
1
d s

0

� �n3p _O s

_O 0

p=n
�������� �21�

The total stored energy in the crystal is a func-
tion of the total density of dislocations, whereas
Orowan's equation gives only the density of mo-
bile dislocations. However, the additional disloca-
tions locked in the cell walls do not drive GBM,
as they belong by de¢nition to the two grains
separated by the wall. The expression for the
stored strain energy driving GBM is thus:

E � AWb2 b 0

X
s

1
d s

0

� �n3p _O s

_O 0

p=n
��������

exp 3V b 2
0

1
d s

0

� �n3p _O s

O 0

p=n
���� �2

���� ���
�22�

Once the energy has been estimated by Eq. 22
(which includes the e¡ect of the nucleation of
strain-free grains), the e¡ect of GBM can be cal-
culated using the GBM equation (Eq. 14). Taking
_O 0 =

�����������������
EijEij=2

p
as the shear rate scale, we obtain

the non-dimensional version of the GBM equa-
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tion:

dfX
dt�
� 3M�fX

X
s

I s�
X exp 3V ��Is�

X �2
� �ÿ �

3

(

X
R

fR
X

s

I s�
R exp 3V � �Is�

R �2
h i� �)

�23�

where t* = _O 0t is the dimensionless time and:

Is�
X �

1
d s

0

� �n3p _O s
X

_O 0

p=n
�������� �24�

are dimensionless Schmidt factors. The sum:

I�X �
X

s

I s�
X �25�

de¢nes the average dimensionless Schmidt factor
for grain X, and quanti¢es the in£uence of the
orientation and of the hardnesses of the slip sys-
tems on plastic deformation. Eq. 23 contains in
addition two free dimensionless parameters: the
nucleation parameter:

V � � V b 2
0 �26�

which characterizes the e¤ciency of nucleation,
and the grain-boundary mobility:

M� � AWb2b 0M
_O 0

r
AWbM

v
�27�

which characterizes the e¤ciency of GBM. The
second of the two equivalent expressions for M*
in Eq. 27 is obtained by applying Orowan's Eq.
18.

For given choices of M* and V*, the calculation
of the texture evolution requires the following
steps for each increment of the imposed deforma-
tion:

1. Calculation of gX
k using the minimization Eqs.

7 and 8.
2. Calculation of the new grain orientations using

the time evolution Eq. 9.
3. Calculation of the changes of volume fractions

due to GBM using the GBM Eq. 27. If the

volume fraction of a grain decreases to zero,
it is withdrawn from the aggregate.

In the following, we assume that the active slip
systems for olivine at high temperature are
(010)[100], (001)[100] and (010)[001]. The £ow
law for these slip systems is inferred from labora-
tory deformations of olivine single crystals [18^
32]. According to the available measurements,
the stress exponent is nW3.5 þ 0.1. The softest
slip system is (010)[100], and by de¢nition has a
normalized reference resolved shear stress d1

0 = 1.
The hardness of the second slip system (001)[100]
depends on the oxygen fugacity, and lies in the
range 19d 2

0 9 2. We assign to the hardest slip
system (010)[001] a value d3

0 = 3 [30]. Using these
values of the reference shear stresses, we now cal-
culate the LPO of an aggregate of N = 3000 oli-
vine crystals as a function of the imposed defor-
mation and of the model parameters, and
compare it with experimental results.

4. Comparison with experiments

To validate the theory, we ¢rst compare our
predictions with the more complete data set of
Zhang and coworkers [14,33] for simple shear.
We then show the agreement between the theory
and the observations of Nicolas and coworkers
[20] in uniaxial compression. The results obtained
by Bystricky and coworkers [19] are largely in
agreement with the results of Zhang and cowork-
ers [14,33], and we will only address the discrep-
ancy between the two sets of experiments. We ¢rst
present the model results using the set of param-
eters that yields the best agreement with the sim-
ple-shear observations. We then discuss the in£u-
ence of the parameters d2

0, M*, and V* on the
model predictions.

4.1. Simple-shear experiments

4.1.1. Direct comparison
Zhang and Karato [14] performed the ¢rst ex-

perimental deformation of an olivine aggregate in
simple shear. The LPO they obtained is described
in detail in [33], using measurements of the orien-
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tations of both relict and newly recrystallized
grains. The mean orientation of the relict grains
follows the strain ellipsoid up to a shear strain of
1, in agreement with the predictions of the classi-
cal models of plastic deformation [9,10,12,13]. At
larger strains, however, the relict grains are such
that their [100] axis is parallel to the shear direc-
tion and not to the long axis of the FSE. The
LPO of newly recrystallized grains is more com-
plex, as they are either aligned with the shear
direction, or perpendicular to the maximum com-
pressional stress [33].

Fig. 2a shows the LPO of an experimental sam-
ple deformed to 150% strain (t* = 1.06) at 1573 K
[14]. The pole ¢gures represent the orientation
distribution of the three crystallographic axes, ob-
tained from the orientation distribution function
(ODF). The ODF was generated from measured
individual grain orientations by considering each
orientation as a Gaussian distribution centered on
the measure and with a standard deviation of ¢ve
degrees. Fig. 2b gives the prediction of the kine-
matic constraint model of Ribe and Yu [10] with-
out recrystallization for the same ¢nite strain. The
LPO follows the FSE and is not aligned with the
shear plane. Fig. 2c gives the prediction of the
present dynamic recrystallization model with
d2

0 = 2, M* = 50, and V* = 5. The theory predicts
correctly the reorientation of the recrystallized
grains on the shear plane, although the pattern
of the LPO is somewhat smoother than that ob-
served. The grains with their [100] axis aligned
with the shear direction display the largest
Schmidt factor I*. They thus have a large density

of dislocations, but because nucleation is active,
they nucleate strain-free sub-grains and have a
low bulk strain energy. These grains are thus fa-
vored by GBM, which generates a peak orienta-
tion on the shear plane. A secondary peak ob-
served in the experiments about 45³ away from
the main peaks is also predicted by the model,
but with a smaller intensity. This secondary
peak, which is also predicted by plastic models
without dynamic recrystallization [12], corre-
sponds to hard grains with low dislocation den-
sities that have not yet been consumed by GBM.
It tends to disappear at larger strain, and does so
faster for larger grain-boundary mobilities.

So far, we have compared the predicted LPO
with that due to porphyroclasts only (Fig. 1).
However, the LPO predicted by the model in-
cludes by de¢nition both porphyroclasts and re-
crystallized grains. It is not possible to separate
the two populations in the model, because we use
a statistical description of nucleation. Neverthe-
less, in the model the recrystallized grains are pre-
dicted to be aligned with the softest orientations,
as they are associated with a larger density of
dislocations, and thus a larger nucleation rate.
Some fraction of the grains newly formed during
the experimental deformation is aligned with the
shear axis, and our model indicates that this ori-
entation is actually the orientation of maximum
nucleation. The second family of recrystallized
grains is perpendicular to the maximum compres-
sive stress. The Schmidt factor I* for this orienta-
tion is actually large ^ because both the (010)[100]
and (001)[100] are activated in that orientation ^

Fig. 3. Same as Fig. 2c, but with slip systems (001)[100] and (001)[100] of equal softness (d1
0 = d2

0 = 1). The [010] and [001] axes
display a similar pattern, in better agreement with Bystricky and coworkers [19] than with Zhang and Karato [14].

EPSL 5866 20-6-01 Cyaan Magenta Geel Zwart

E. Kaminski, N.M. Ribe / Earth and Planetary Science Letters 189 (2001) 253^267 261



which indicate a favorable orientation for nuclea-
tion. The orientations of recrystallized grains in
the experiments correspond then logically to the
orientations of preferred nucleation in the model

4.1.2. In£uence of the model parameters
The model of dynamic recrystallization involves

two free parameters, the nucleation parameter V*
and the grain-boundary mobility M*, whereas
plastic deformation is a function of the reference
critical resolved shear stresses ds

0. Fortunately,
these parameters have very distinct in£uences on
the LPO and can thus be constrained indepen-
dently by the available data.

The most uncertain of the normalized critical
shear stresses is that for the (001)[100] slip system,
19 d2

0 9 2. Fig. 3 shows the pole ¢gures obtained
for the same parametrization of recrystallization
as before (M* = 50, V* = 5), but for d2

0 = 1 instead
of d2

0 = 2. The [001] and the [010] pole ¢gures are
now quite similar, in better agreement with By-
stricky and coworkers [19] than with Zhang and
Karato [14] (see ¢gure 4 of [19]). The [100] axes lie
between the direction of the long axis of the FSE
and the shear direction. They rotate towards the
shear direction if one increases the grain-bound-
ary mobility. This indicates that dynamic recrys-
tallization is less e¡ective if there are two equally
soft slip systems, because plastic deformation is
relatively easier in that case. If d2

0 = 2, the symme-
try is broken, and the [001] pole ¢gure displays a
central peak, in better agreement with the exper-
imental data of Zhang and Karato [14]. In the
following we therefore use d2

0 = 2.

The nucleation parameter V* controls the e¤-
ciency of nucleation and determines the orienta-
tions that will grow by GBM. For values of V*
smaller than 3, nucleation is not very e¤cient, and
the bulk strain energy of hard orientations is
smaller than that of soft orientations. The result-
ing LPO is such that a large fraction of the [100]
axes is normal to the shear direction, in complete
disagreement with the experiments. Fig. 4 shows
the LPO obtained for V* = 2. A strong peak nor-
mal to the shear direction appears in the [100]
pole ¢gure. This peak gets stronger for smaller
values of the nucleation parameter. The [010]
and [001] pole ¢gures are also quite di¡erent
from the observations. For values larger than 3,
nucleation is more e¤cient, the soft orientations
recrystallize preferentially and their bulk strain
energy is low. The resulting LPO is such that
the [100] axis of the crystals is aligned with the
shear direction, in agreement with experiments.
The absolute value of V* has no signi¢cant in£u-
ence on the LPO development as long as it is
larger than 3, because the orientations favored
by dynamic recrystallization do not change. For
values of V* larger than about 50 however, nucle-
ation is so e¤cient that the stored strain energy
becomes negligible in the grains, completely
damping GBM. In that case, the LPO will follow
the FSE. We take V* = 5 as a reference value be-
cause it leads to the best agreement with the ex-
periments of Zhang and Karato [14], and we
study in detail the in£uence of the dimensionless
grain-boundary mobility M*.

The value of M* (Eq. 27) is a function the in-

Fig. 4. Same as Fig. 2c, but with less e¤cient nucleation (V* = 2). Hard orientations are favored by GBM, and a strong addition-
al peak appears in the [100] pole ¢gure, which is not observed in experiments.
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trinsic grain-boundary mobility M, the dislocation
velocity v, and the unknown constant A. Among
these parameters, some constraints are available
on the grain-boundary mobility [34], but the pro-
posed values are highly sensitive to the experimen-
tal conditions, like the amount of water or the
impurity concentration in the boundaries [21]. It
is thus di¤cult to constrain M* a priori. How-
ever, because the experiments of Zhang and Kar-
ato [14] give the LPO as a function of strain, they
provide strong additional constraints on M*,
which is the main parameter that controls the
rate of growth of the peaks of the LPO.

Fig. 5 shows the evolution of the average ori-
entation if the [100] axis relative to the shear di-
rection from [14], and the predictions of our mod-
el for three di¡erent values of M*: 0, 50 and 200.
If M* = 0, there is no GBM, and the LPO follows
the FSE because the deformation is purely plastic
[13]. For larger mobilities, the average orientation
of the aggregate rotates faster towards the shear
plane. Values of M* between 50 (for the low-tem-
perature experiments) and 200 (for the high-tem-
perature experiments) lead to acceptable predic- tions. Only three points obtained at high

temperature require a substantially larger grain-
boundary mobility (M*s 300). One possible ex-
planation is that the grain-boundary mobility in-
creases with temperature, or depends on such ad-
ditional factors as water content and the
concentration of impurities on grain-boundaries
which may vary from sample to sample. However,
we also note that two of the data in question
correspond to very low strain, and are therefore
probably not reliable because the weak texture is
still in£uenced by the small initial anisotropy. We
therefore believe that M* = 200 is a reasonable
value for the high-temperature grain-boundary
mobility given the currently available experi-
ments. The range of estimates M* = 125 þ 75
does not seem unreasonable in view of the likely
variability of grain-boundary mobility.

A second constraint on M* is obtained from
the evolution of the so-called `J-index' [35] :

J �
Z

f 2�g�dg �28�

which describes the sharpness of the LPO. Fig. 6

Fig. 6. Evolution of the J-index (Eq. 28) as a function of the
¢nite strain for simple-shear deformation. The circles, which
have the same meanings as in Fig. 5, represent the experi-
mental results of Zhang and Karato [14] as estimated by
Tommasi and coworkers [12]. The lines give the predictions
of the model for various values of M*. Values of M* be-
tween 50 and 200 lead to predictions in agreement with the
experiments.

Fig. 5. Evolution of the mean angle between the [100] axes
in the aggregate and the shear direction as a function of ¢-
nite strain in simple shear. The circles represent the experi-
mental results of Zhang and Karato [14] at 1573 K (black),
at 1473 K (gray), and under water-saturated conditions
(white). The lines give the predictions of the model for vari-
ous values of dimensionless grain-boundary mobility M*.
For M* = 0, the LPO follows the FSE, whereas it rotates to-
wards the shear plane for increasing M*.
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shows the comparison between the values of
J predicted by our model with those calculated
from the experiments of Zhang and Karato [14]
by Tommasi and coworkers [12]. Again the results
of the model are acceptable for values of M* be-
tween 50 and 200, providing further support for
our estimate M* = 125 þ 75.

4.2. Uniaxial compression

Experiments in uniaxial compression have been
performed by Nicolas and coworkers [20]. Fig. 7a
shows the pole ¢gures corresponding to the LPO
measured for a synthetic dunite shortened by 58%
in axial compression [20] (t* = 1.06). This LPO is
at ¢rst order in agreement with the LPO predicted

by purely plastic deformation models [9,10], as
shown in Fig. 7b. However, the purely plastic
deformation model predicts a strong peak of
[001] axes parallel to the direction of shortening,
corresponding to a hard orientation, which is not
observed in the experiments. Fig. 7c shows the
predictions of the dynamic recrystallization model
using the same parameters as for the simple-shear
case (d2

0 = 2, V* = 5 and M* = 50), and for the same
¢nite strain as in the experiment. The additional
peak vanishes when dynamic recrystallization is
active. The overall agreement between the experi-
ment and the model predictions is good, although
the predicted LPO is noticeably weaker than the
experimental LPO. A better agreement could be
obtained by using a larger grain-boundary mobil-

Fig. 7. Pole ¢gures (Lambert equal-area projection, contour interval 0.1 m.r.d.) for the [100], [010] and [001] crystallographic axes
of olivine, in the reference frame de¢ned by the principal axes of the strain rate tensor for uniaxial compression (58% shorten-
ing). The shortening direction is at the center of each diagram. (a) Experimental results from Nicolas and coworkers [20]; (b)
prediction of the kinematic constraint model [10] theory for an initially isotropic aggregate of 1000 grains; (c) prediction of the
present model for M* = 50 and V* = 5. The secondary peak in the [001] ¢gure predicted by kinematic plastic models [10], corre-
sponding to a hard orientation, disappears if dynamic recrystallization is active.
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ity, which would sharpen the predicted LPO. An-
other possible explanation of the discrepancy is
that the experimental pole ¢gures do not include
the more random component of LPO associated
with small recrystallized grains [12].

5. Discussion

The principal goal of our work has been to
develop a model of dynamic recrystallization
that is both realistic enough to match experimen-
tal data and simple enough for application to the
complex deformation histories occuring in the
Earth's mantle. The plastic £ow portion of the
model is analytical, which makes the numerical
code both e¤cient and stable. Obviously, a nu-
merical algorithm for calculating LPO can only
be included in mantle convection codes if it does
not overwhelm the calculation of the convective
£ow itself. The present semi-analytical model is
more than two orders of magnitude faster than
the matrix-based kinematic constraint model of
Ribe and Yu [10], which is in turn about two
orders of magnitude faster than a VPSC code
[10], yielding a savings in computer time of
some four orders of magnitude. Numerical codes
for equilibrium-based models (EQBA) are faster
than VPSC ones, but our code is still at least one
order of magnitude faster than EQBA (for the
same time stepping scheme; A. Tommasi, person-
al communication, 2001). The present model is
therefore practical for use in the direct calculation
of anisotropy in convective £ows.

In our theory, dynamic recrystallization de-
pends on only two free parameters that can be
constrained by available laboratory experiments:
the nucleation parameter V* and the dimension-
less grain-boundary mobility M*. We have seen
that a nucleation parameter V*s 3 leads to pre-
dictions in good agreement with experimental ob-
servations. If nucleations were less e¤cient in the
mantle, one would expect hard orientations to
dominate the LPO, which is contrary to observa-
tions of natural samples of mantle peridotites [36].
A value V* = 5 is probably suitable for the mantle,
as the exact value of V* (between 3 and 50) does
not signi¢cantly in£uence the LPO.

Our results further show that a dimensionless
grain-boundary mobility M* = 125 þ 75 is in
agreement with the LPO evolution at low and at
high temperatures. If temperature is the main con-
trolling factor of GBM in the mantle, these values
are probably suitable for the Earth too. However,
the laboratory experiments are performed at
stresses much higher than those in the upper man-
tle. If the absolute value of the stress controls
dynamic recrystallization, there is no way to ex-
trapolate the experimental results to the mantle.
That is a problem faced by all rheological models.
However, it is important to note that our dimen-
sionless grain-boundary mobility M* depends
only on the ratio M/v of the intrinsic grain-
boundary mobility and dislocation velocity.
Thus M* will be relatively constant if both
M and v depend in the same way on stress, a
reasonable ¢rst-order assumption.

A last unknown is the activity of the (001)[100]
slip system relative to the (010)[100] slip system.
We have seen that this depends on the oxygen
fugacity which can vary from place to place in
the mantle. However, the value of d2

0 mainly af-
fects the [001] (c) axes orientation, whereas the
[100] (a) axes always rotate towards the shear di-
rection. For seismic anisotropy, the orientation of
the axis of fastest seismic wave propagation, the
(a) axis, is the most relevant, and the exact value
of d2

0 is of little importance. Additionally, recent
experiments [37] indicate that water content in
olivine may have a large in£uence on the relative
strengths of the slip systems, and can induce dif-
ferent LPO from that obtained under water-poor
conditions. This e¡ect can easily be incorporated
in the model when the experimental data become
su¤cient to constrain it. For now however, be-
cause the large majority of natural samples dis-
play an LPO in agreement with experimentally
obtained LPO [12], we consider that d1

0 = 1,
d2

0 = 2, and d3
0 = 3 are reasonable choices for the

conditions in the mantle.
In conclusion, given the good agreement be-

tween the model predictions and the laboratory
experiments, and given the uncertainties involved
in the de¢nition of the model parameters, we pro-
pose that the present theory can be used to inves-
tigate the relationship between seismic anisotropy
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in the mantle and the convective £ow which
causes it. A suitable set of model parameters is
d2

0 = 2, V* = 5 and M* = 125. The application of
the model to the Earth will be the object of a
companion paper.
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