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Expansion and quenching of vesicular magma fragments
in Plinian eruptions

Edouard Kaminski and Claude Jaupart
Institut de Physique du Globe de Paris, France

Abstract. The conditions of pumice generation in Plinian eruptions are studied.
A physical model describes the behavior of gas bubbles in a magma. fragment
which is carried upward in a volcanic conduit and an atmospheric eruption column.
The effects of pressure release and cooling are calculated for a range of eruption
conditions. The magma fragment expands in the conduit and stops expanding soon
after leaving the vent, when a thin viscous rind forms against the cold mixture
of magmatic gas and air. This rind prevents further volume changes. Pumice
vesicularity is a function of the decompression rate in the conduit, which depends
on ascent velocity and fragmentation depth. It is also sensitive to the cooling rate
in the atmospheric column, which depends on vent radius and mass discharge rate.
Different fragments follow different trajectories in the column and are subjected to
different cooling rates. This generates a range of vesicularities which reflects the
eruptive conditions. All else being equal, pumice vesicularity increases as magma
viscosity decreases. These predictions are consistent with observations. Pumices
provide quantitative constraints on conduit flow conditions and mass discharge rate.
These concepts are applied to two Plinian eruptions. Vesicularity values for the
Bishop Tuff, Long Valley caldera, require a mass discharge rate between 10® and
10° kg s~1. Vesicularity variations during Plinian phase 1 of the Minoan eruption,
Santorini, are explained by the conduit radius increasing from about 30 m to 120 m.
Both cases require large decompression rates in the eruption conduit, suggesting
that flow pressures were close to lithostatic values.

Introduction

Our understanding of explosive volcanic eruptions is
extensive for atmospheric eruption columns, but re-
mains rudimentary for the processes which occur at
depth in volcanic conduits. From a given set of con-
ditions at the vent, one can predict whether an erup-
tion is in a Plinian or pyroclastic flow regime [Sparks
and Wilson, 1976; Woods, 1988; Valentine and Wohletz,
1989; Woods and Caulfield, 1992; Dobran, 1992]. How-
ever, one cannot predict with confidence conditions at
the vent from initial conditions in the deep magmatic
system. Uncertainties arise from several sources. One
is the size and shape of the volcanic conduit at depth,
which determines the flow pressures. Another source
of uncertainty is the process of fragmentation, such
that the rising magma disintegrates into a spray. This
process has been the focus of a lot of attention re-
cently. Laboratory experiments have documented how
a shock wave fragments a material [Anilkumar et al.,
1993; Mader et al., 1994; Sugioka and Bursik, 1995;
Phillips et al., 1995; Alibidirov and Dingwell, 1996].
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However, the scaling rules for these complex phenomena
have not been established with all the necessary details,
and the experiments may not be faithful analogs of the
true volcanic situation. While one may anticipate key
results from this line of research, it is desirable to ob-
tain constraints on fragmentation and high-speed flows
in true volcanic conduits. In this paper, we evaluate
the record of eruption conditions which is provided by
pumice samples.

Measurements of the volume fraction of gas bubbles
(vesicularity) and textural descriptions have recently es-
tablished that “dry” Plinian pumices are much more
varied than previously thought [Houghton and Wilson,
1989; Klug and Cashman, 1994; Cashman and Mangan,
1994; Gardner et al., 1996). Significant differences in
vesicularity occur between different eruptions and as a
function of time during an eruption. Another impor-
tant feature of Plinian deposits is that the vesicularity
of pumicss from a single stratigraphic level, represent-
ing an instantaneous sample of the eruption products,
spans a large range of values. As emphasized by Thomas
et al. [1994], these variations of vesicularity values im-
ply large differences of bubble pressure which are not
accounted for by existing models.

Thomas et al. [1994] have developed a quantitative
model to describe the evolution of a vesicular magma
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fragment after fragmentation, as it is carried upward in
the volcanic conduit and in the atmospheric eruption
column. They did not solve for the full temperature
evolution, and this provides our starting point. We add
a description of processes in the atmospheric column.
Another aim is to study the behavior of gas bubbles
inside a magma fragment, because it may be useful for
the interpretation of pumice texture. These bubbles
are subjected to decompression and cooling and may
end up overpressured or underpressured depending on
the relative importances of these two effects.

Physical Processes Involved in Plinian
Eruptions

A realistic description of a Plinian eruption must deal
with the bulk flow of the mixture of gas and magma
fragments and with the magma fragments themselves
(Figure 1).

Volcanic Conduit

Key factors for the dynamics of conduit flow are
the conduit size and how it varies with height [Wil-
son et al., 1980; Macedonio et al., 1994]. In one end-

member model, the conduit walls have been eroded by
the ascending mixture and have adopted an equilib-

rium configuration, such that flow pressures are litho-
static everywhere. In this model, the flow pressures
are specified and the conduit radius is solved for. Ve-
locities may be supersonic and reach values in the 200-
500 m s~! range [Wilson et al., 1980]. For a crustal den-
sity of 2.7x10% kg m~3, the decompression rate above
the fragmentation level has a representative value of
10 MPa s~!. In the second end-member model, the
conduit size is prescribed and flow pressures are calcu-
lated. Velocities cannot exceed sonic values and are sel-
dom greater than 150 ms™! [ Wilson et al., 1980; Woods,
1995]. Above the fragmentation level, the vertical pres-
sure gradient is typically less than 5x10% Pa m~! and
a representative value for the decompression rate is
0.7 MPa s~!, which is much smaller than in the first
type of flow model.

Above the fragmentation level, the continuous gas
phase expands by large amounts and would cool to very
low temperatures if it was not exchanging heat with sus-
pended magma fragments [Giberti et al., 1992]. Assum-
ing complete thermal equilibrium, Wilson et al. [1980]
calculate a temperature decrease between 15 and 50 e
depending on the mass fraction of gas. The true value
must be larger than this because many fragments are
too big to equilibrate.

Eruption Column

Volcanic eruption columns have large momentum flu-
xes and behave as jets at small altitudes, in what has
been called the “dense gas thrust” region [Sparks, 1986].
Cold air is entrained into the column and mixes with
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Figure 1. Illustration of the various processes involved
in a Plinian eruption. Magma clasts are generated by
fragmentation at some depth in the conduit. Above the
fragmentation level, they undergo pressure release and
small amounts of cooling due to adiabatic expansion. In
the atmospheric eruption column, they are subjected to
large amounts of cooling because of mixing with cold at-
mospheric air. The total amount of expansion depends
on the relative importances of decompression and cool-
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magmatic gas. This leads to a large cooling rate, whose
magnitude depends on mass flux, gas content and vent
size (Figure 2). At fixed eruption velocity, the cooling
rate decreases if the conduit enlarges. For the parame-
ters of most known Plinian eruptions, the cooling rate
varies by a factor of about 2 around a mean value of
60 Ks™1.

In the atmospheric eruption column, pressure follows
the atmospheric profile, which leads to a small rate of
variation. In some conditions, corresponding to “fixed
size” conduit models, the flow is choked. The volcanic
jet issues overpressured from the vent and decompresses
rapidly in the atmosphere. Thislate stage pressure drop
is typically less than 1.5 MPa [Dobran, 1992] and is
achieved in a few seconds [Dobran et al., 1993]. This is
small compared to the pressure release in the conduit,
which is typically more than 10 MPa [Thomas et al.,
1994]. Thus, for a fragment which leaves the conduit
and expands in the column, external pressure conditions
cannot be distinguished from those of a constant, and
small, pressure.
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Figure 2. Average cooling rate in the atmospheric
eruption column as a function of vent radius, according
to the model of Woods [1988]. Curves are drawn for
a fixed mass fraction of gas of 3 wt %. Note that the
largest differences of cooling rate occur for conduit radii
smaller than 100 m.
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In an eruption column, all fragments do not follow
the same trajectories and hence are not subjected to the
same cooling rates. This provides a mechanism to gen-
erate a range of vesicularity values from homogeneous
starting material. An alternative mechanism, bubble
connection leading to permeability development, is dis-
cussed in Appendix A.

Vesicularity Data

When using field data, we face two different issues.
One 1s to further our understanding of volcanic flows,
and the other is to address the particulars of each erup-
tion, for example, temporal changes of conduit size. We
briefly review recent measurements on “dry” Plinian
pumices and summarize the conclusions of Gardner et
al. [1996]. Data are presented as values of the volume
ratio of gas to melt, which is most sensitive to pressure.
The behavior of vesicular fragments above the fragmen-
tation level depends on the eruption dynamics as well
as on the melt viscosity. At fragmentation, melt has al-
ready been degassed somewhat, and this must be taken
into account when estimating viscosity. For eruptions
involving different magmas with mass discharge rates
varying in a restricted range, the average gas/melt vol-
ume ratio of pumices correlates with the “degassed”
magma viscosity (Figure 3). The range of gas volume
ratios in a deposit is a decreasing function of magma
viscosity (Figure 4). Not shown here is the systematic
increase of pumice vesicularity during Plinian phase 1
of the Minoan eruption, Santorini volcano, because it
has already been discussed at length by Thomas et al.
[1994]. Our basic information is therefore three fold:
pumice vesicularity depends on the viscosity of magma,
varies within a rather large range even in a single strati-
graphic level, and may change with time during an erup-
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Figure 3. Mean gas volume ratio of pumices from
“dry” Plinian eruptions as a function of “degassed”
magma viscosity. The mass discharge rates of all
these eruptions were in a restricted range of 107 -
2.5x10® kg s~!. Solid circles correspond to the Hatepe
(H), Fogo (F), Middle Pumice (MP), Minoan (M),
Mount St. Helens T (MT), Wn (MW) and Yn (MY).
Open circles (V) correspond to the two main phases
of the 79 A.D. Vesuvius eruption, which went through
large changes of magma composition. Data are taken
from Houghton and Wilson [1989] and Gardner et al.
[1996]. “Degassed” magma viscosity correspond to es-
timates at fragmentation and are based on the empir-
ical scheme of Shaw [1972]. These estimates must be
regarded as accurate to within a factor of about 5.

tion. We shall see that these characteristics provide
surprisingly strong constraints.

Physical Model

Several features of pumices may be studied, includ-
ing vesicularity, vesicle shapes, and vesicle sizes. We re-
strict our attention to vesicularity because a large data
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Figure 4. The total range of gas volume ratios for the
same “dry” Plinian eruptions as in figure 3.
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set is now available and because the quantitative pre-
diction of vesicle shape is beyond our present modelling
abilities. Our study elaborates on the physical model
by Thomas et al. [1994]. The basic principle is to treat
a vesicular magma fragment as a continuous medium,
whose physical properties are allowed to vary in space
and time. The model accounts for the viscous stresses
generated by the expansion of gas bubbles, and its key
feature is that pressures in a bubble and in the liquid
around it are not equal. For simplicity, the fragment is
spherical and is studied in a frame of reference which
moves with it (Figure 5). In this way, we only solve
for the internal evolution of the fragment and spheri-
cal symmetry is maintained. The velocity field is radial
and described by v(r,t). Variables are the local val-
ues of vesicularity, ¢, pressure, p, temperature, T, and
all depend on radius and time (Figure 5). Changes of
external pressure and temperature are specified.

Basic Equations

We use the following relationship between stress and
strain rate for the mixture of gas bubbles and viscous
liquid [Taylor, 1954; Prud’homme and Bird, 1978; Bag-
dassarov and Dingwell, 1993; Thomas et al., 1994]:

F o opio i+ [gu—[(] Vi, ()

where 7 is the stress tensor, @ is the strain rate tensor, §
is the identity tensor, and p is the bubble pressure. The
first coeflicient of viscosity, y, describes shear deforma-
tion. The second coefficient of viscosity, K, also called
dilatational viscosity, introduces a difference between
the local values of pressure in the gas and in the liquid.
It is this pressure difference which drives the contrac-
tion or expansion of gas bubbles. For radial motion
with velocity v, conservation of mass and momentum
may be written as

dp

1 9
‘3;“1*7,—2'5;(91”’) = 0, (2)
Op OTer o (vy _
“momtug(p) =00

where 7, is the radial stress component given by

1
Typ = —2;;%; + Eu - K} [ﬁg;(UTZ)] @
To write the energy equation, we use several simpli-
fications which are justified by Thomas et al. [1994].
Heat diffusion is rapid, and hence temperature is only
allowed to vary on a scale much larger than the bubble
size. The heat of the mixture is essentially in the lig-
uid phase, and hence we neglect the heat content of the
gas. We take into account the energy loss due to gas
expansion and write
Zy Cvl 8(';31) =
V. [ CupTv—(p+KV.o)v—-kVT], (5)
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ties used to describe the evolution of a vesicular magma
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where k is the thermal conductivity of the two-phase
mixture, x; is the mass fraction of liquid, and Cu, is the
heat capacity of liquid. Thus cooling occurs because of
contact against cold atmospheric air and because of the
work of bubble pressure during expansion. The equa-
tion of state for the mixture is
l = ﬁ + l_—_xi’ (6)
P Pg Pl
where 24 is the mass fraction of exsolved gas and p; and
o stand for the densities of gas and melt, respectively.
The gas phase is supposed to be water and to behave
ideally, such that

R
p = —M—pgT> (7)

where M is the molar mass and R is the ideal gas con-
stant.

Material Properties

During rapid decompression, it is likely that bubble
nucleation and growth do not proceed at equilibrium
[Hurwitz and Navon, 1994; Proussevich et al., 1993].
For simplicity, such kinetic effects will be evaluated
by comparing two extreme situations corresponding to
different behaviors for x4, the mass fraction of gas in
the fragment. One is such that z, remains constant,
which implies that there is no bubble nucleation and
that diffusion contributes little gas to the existing bub-
bles. This approximation is reasonable for the very
short times of interest here, as discussed by Thomas
et al. [1994]. In the other extreme, diffusion and nucle-
ation are very efficient and keep the melt just at satu-
ration. In this case, z4 is set equal to z, — 2., where
T, 1s the initial water concentration and x,, is the local
time-dependent concentration. The concentration z,, 1s
given by the empirical solubility law

sv/p, -8

Ty =
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where s is equal to 4.11x107¢ Pa~1/2,

Thermal conductivity depends on temperature and
gas volume fraction. At high temperature, radiation is
in principle the dominant mechanism of heat transport.
However, magma contains bubbles and crystals which
scatter photons and hence cannot transmit thermal ra-
diation efficiently. Bagdassarov and Dingwell [1994]
have measured a thermal conductivity of 0.2 W m~2 in
magmatic foams. This value is close to that for phonon
conduction in silicate melts [Snyder et al., 1994] and is

used in most of our calculations.
The liquid viscosity, p;, varies with temperature ac-

cording to the following law [Richet, 1982; Neuville et
al., 1993; Neuville, personnal communication, 1996]:

To—=T
u(T) = pp 107 T=TIT=T5) ©)

where py, 1s viscosity at the initial temperature T,. Co-
efficients B and T, are determined in the laboratory.
Three different cases are considered, corresponding to
phonolitic, andesitic, and rhyolitic melts (Table 1). We
also consider the effect of dissolved water content on
melt viscosity. Available data are few, and we take a
simple equation:

Hio = Ho €XpP [_ﬁ (ww - 5”0)] » (10)
where p, 1s the melt viscosity at the initial water con-
tent z,. Coeflicient 3 is such that viscosity increases by
a factor of 10 for each weight percent exsolved.

Dilatational viscosity is calculated using a two-phase
model originally developed by Prud’homme and Bird
[1978]. The resulting expression, given below, reduces
to known values in the limits of small and large gas
fraction [see Thomas et al., 1994]:

4 1—¢

K = g,ul p ; (11)

where p; is the viscosity of the liquid phase. The first
coefficient of viscosity is more difficult to specify [see
Stein and Spera, 1992; Li et al., 1995]. If bubbles de-
form due to shear, it may be approximated by

(12)

Surface tension may resist bubble deformation, in which
case one should write

= (=)

There is no general expression valid in all cases. Fortu-
nately, in the present problem, expansion induces little
shear deformation, and one expects that the first co-
efficient of viscosity has a small impact on the model
results. This was confirmed by calculations made with
each viscosity expression.

The main uncertainty of the physical model is in how
viscosity depends on the volume fraction of gas and on

p=(1-e) m

wlor

M- (13)
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Table 1. Viscosity Parameters for Three Types of Melt
Composition

Melt Composition B, x1073 Ty, K
Andesite, p; 7.185 508.7
Phonolite, i 11.513 291.4
Rhyolite, us 19.181 22.3

crystal content. However, the same uncertainty affects
the interpretation of data. The model framework is
robust and can include new experimental constraints.

Method of Solution

The general problem with variable viscosity requires
numerical techniques. The fragment is expanding and
hence has a moving boundary whose position must be
solved for. The equations are recast as a function of
dimensionless variable:

r

"= Tay (14)

Boundary conditions at » = 0 arederived in Appendix B.
Boundary conditions at the outer edge of the fragment,
le., at n = 1, are the values of external pressure, p(t),
and temperature, Te(t). These depend on the large-
scale dynamics of the eruption. Separate pressure and
temperature paths are specified for the conduit and for
the atmospheric column. Equations are solved using
centered finite differences for radial derivatives and a
fourth-order Runge-Kutta scheme for time increments.

Viscous Quenching of Magma Fragments
Basic Framework

In this section, we focus on the atmospheric eruption
column. There, as discussed above, external pressure
conditions cannot be distinguished from those of a con-
stant, and small, pressure. We start the calculation at
the vent and specify the values of the various variables
there. At the vent, bubbles in a fragment are over-
pressured with respect to surrounding magmatic gas
because of earlier viscous retardation [Thomas et al.,
1994]. For clarity, we consider a constant cooling rate
in the atmospheric eruption column and postpone the
study of more realistic cooling conditions to a later sec-
tion. The calculation requires five input parameters:
Ap, the bubble overpressure at the vent; v, the fixed
cooling rate; py, the magma viscosity; ¢;, the initial
vesicularity of the fragment (i.e. at the vent); and L;,
the initial radius of the fragment. The effect of changing
the value of ¢; is straightforward [Thomas et al., 1994],
and we shall only show results for one particular value,
60%. We shall see that the initial size of the fragment
has a weak effect, and we shall emphasize the remaining
three parameters, Ap, v and ;.
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Table 2. Standard Eruption Model Used to Study the
Evolution of Magma Fragments in the Eruption Column

Parameter Value

Melt composition Phonolite with 4 wt % H20

Initial melt viscosity u; 2107 Pa s
Initial vesicularity e; 60%

Initial overpressure Ap 20 MPa
Conductivity & 02 Wm™!K™!
Cooling rate v 100 K st
Initial radius L; 0.1 m

A Numerical Experiment

A fragment leaves the volcanic vent with a bubble
overpressure of 20 MPa and is cooled at a constant rate
of 100 K s=1. Melt has an initial viscosity of 2x10” Pa s
(Table 2), and its viscosity varies with temperature ac-
cording to the “phonolitic” function (see above).

The temperature evolution is straightforward: a cold
boundary layer grows at the edge of the fragment (Fig-
ure 6). At small times, expansion is homogeneous be-
cause there is little temperature variation. Cooling in-
duces three effects. The gas phase tends to contract.
The temperature decrease induces a local increase of
viscosity which slows down bubble dilatation. Thus the
volume fraction of gas increases less rapidly in the rim
than in the interior of the fragment (Figure 7), and a
gradient of vesicularity develops. Finally, the viscous
rind acts to impede the expansion of the whole frag-
ment. After a short time, this prevents further volume
change, and the fragment is “quenched” viscously be-
fore temperature reaches the glass transition. Subse-
quently, temperature continues to decrease (Figure 6).
Vesicularity stays constant, and bubble pressures con-
tinue to decrease at constant volume (Figure 6).

It takes a few seconds to stop expansion in the atmo-
spheric eruption column (for observations relevant to
this result, see Thomas et al. [1994]). We found that
this “viscous quench” effect is not sensitive to the rind
thickness. The critical effect is that the outer edge tem-
perature drops below a certain value, such that viscosity
reaches a threshold value. One consequence is that the
final vesicularity does not depend on the radius of the
fragment, in agreement with the observations [Houghton
and Wilson, 1989; Gardner et al., 1996]. Another conse-
quence is that the thermal conductivity value needs not
be known with high accuracy. To verify this point, we
carried out calculations with conductivity values vary-
ing between 10 and 0.1 W m~! K~! and found that the
results differed by small amounts.

An Approximate Quenching Temperature

The calculations show that expansion stops when the
liquid viscosity at the outer surface reaches a value of
about 5x10'° Pa s. This threshold value is valid for
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Figure 6. (top) Radial profiles of bubble pressure at
different times in a magma fragment for the model pa-
rameters of Table 2. The effect of expansion dominates
at small times and bubble pressures are quite uniform
through the sample. After viscous quenching, the bub-
ble pressure decreases due to cooling only and varies in
a boundary layer at the edge of the fragment. (middle)
Radial profiles of temperature for the same calculation.
Note the progressive decrease of the exterior tempera-
ture and the growth of a cold boundary layer at the edge
of the fragment. (bottom) Radial profiles of vesicular-
ity for the same calculation. Vesicularity increases with
time everywhere but not at the same rate. A gradient
of vesicularity develops at the edge of the fragment.

the decompression rates reached in Plinian eruptions
and would not be relevant for other cases. A simple
expression for the quenching time is
AT
tg=—,
vy
where AT is the temperature difference required to
bring the melt viscosity to the threshold value and «
is the cooling rate. The quenching time depends on

(15)
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Figure 7. Evolution of gas volume ratio (normalized to
the initial value) as a function of time at two locations in
the fragment: the center (» = 0) and the rim (r = L(t)).

the initial viscosity of the melt and on the extent of
degassing as pressure is released. Figure 8 shows the
values of AT for the three viscosity functions of Ta-
ble 1 and for different amounts of exsolved water (0, 1,
and 2 wt %). All else being equal, the larger the initial
viscosity, the smaller the quenching time.

Parametric Study

The amount of expansion is obviously an increas-
ing function of initial bubble overpressure at the vent,
Ap (Figure 9). For viscosity values larger than about
108 Pa s, this dependence is weak because there is little
expansion. For smaller values of viscosity, one may de-
fine two behaviors. For small values of Ap, expansion

250
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AT (K)
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Figure 8. Temperature drop required for viscous
quenching of magma fragments, as a function of initial
melt viscosity. Three curves at the top show the three
forms of temperature dependence defined in Table 1.
The two curves at the bottom show the temperature
drop required for quenching assuming that the melt de-
gassed 1 and 2 wt % water.
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Figure 9. Final value of gas volume ratio (normalized
to the initial value) as a function of the imposed pres-
sure drop for the model parameters of Table 2. Curves
are drawn for four different values of the initial melt
viscosity. Note that above a certain value of pressure
drop, expansion is stopped by viscous quenching bef(?re
pressure equilibrium between gas bubbles and outside

air is achieved.

nearly proceeds to completion and gas volume is an al-
most linear function of Ap. For values of Ap larger
than about 10® Pa, this simple relationship no longer
holds. Viscous quenching occurs after some finite pres-
sure drop, implying that the final vesicularity is weakly
sensitive to Ap.

The final vesicularity achieved in a fragment depends
on the competing effects of pressure release and cool-
ing. The key point is that for all Plinian eruptions, the
cooling rate does not vary by more than 1 order of mag-
nitude, whereas the rate of expansion is proportional to
viscosity and hence may vary by many orders of mag-
nitude. In the limit of small viscosity, cooling starts
to operate when the fragment is already fully expanded
and hence does not affect vesicularity. In the other limit
of large viscosity, the fragment gets quenched before it
can expand. Thus, in both limits, vesicularity depends
weakly on the history of cooling (Figure 10). Large dif-
ferences of vesicularity are predicted in the intermediate
viscosity range of 105-10° Pa s. For known Plinian de-
posits, the cooling rate varies in a range of 20-120 K s~!
(Figure 2). It isin this range that significant differences
of expansion are generated (Figure 10), and this ex-
plains why vesicularity values are so contrasted in the
different deposits studied. This also emphasizes that
the model parameters must be in the appropriate range
for predictions to agree with the data.

Bubble Connection

Depending on the respective amounts of expansion
and cooling, bubble pressures may evolve differently and
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bubbles may connect by bursting or by collapsing. Be-
cause of the viscous rind, these internal rearrangements
do not lead to any variation of bulk vesicularity. Critical
variables are magma viscosity and decompression rate.
At high viscosity or at high decompression rate, the ini-
tial overpressure is large, and cooling-induced contrac-
tion is not sufficient to decrease bubble pressures below
atmospheric values. Thus, when bubbles connect, they
are overpressured and lose some of their gas to the exte-
rior. At small viscosity or at small decompression rate,
magma fragments remain in pressure equilibrium until
quenching. Subsequent cooling induces underpressure
in the gas bubbles, which generates an inflow of outside
air at the onset of connectivity.

Constraints on Eruption Dynamics

Particle Trajectories in the Atmospheric
Eruption Column

The most surprising feature of Plinian deposits is per-
haps that pumice vesicularity is so variable. This is true
both for a whole deposit and for individual levels in a de-
posit. Variations over the thickness of the deposit may
be explained by changes of eruption conditions, and this
idea is pursued below. Variations in a single level may
be due to the fact that different fragments have different
trajectories in the eruption column, and hence have dif-
ferent histories of cooling. Models of volcanic jets are
developed in Appendix C and predict significant dif-
ferences between the horizontal average of temperature
and the centerline temperature (Figure 11).

As shown by the previous calculations, quenching oc-
curs at small altitudes in the eruption column. Pro-
cesses in this region are therefore analogous to those of a
gas-particle two-phase turbulent jet. We briefly review
our current understanding of these flows [Chung and
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Figure 10. Final vesicularity as a function of cooling
rate for four different values of the initial melt viscosity
(parameters are given in Table 2).
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Figure 11. Temperature as a function of height above
the vent in the column model of Appendix C with the
parameters of Table 3 and with the entrainment law of
Woods [1988]. Curves are shown for the average tem-
perature in the jet and for two straight trajectories is-
suing from the centerline and the edge of the vent. The
centerline region is affected by adiabatic expansion only
between z=0 and z=15xD, and by the entrainment of
outside air at greater heights.

Troutt, 1988; Ishii et al., 1989; Eaton and Fessler, 1994;
Prevost et al., 1996]. The key effect is that large par-
ticles disperse less than surrounding gas. The problem
has two time constants, one for the particle response:

2 pp L*
TP = ——— 16
p= (16)
and the other for the turbulent flow field:
D
==2 17
F U,’ ( )

where p, and L are the particle density and radius, puy
is the viscosity of gas, D, is the vent radius, and U, is
the centerline velocity at the vent. The ratio of these
two times, St = 7p /7p (the Stokes number), character-
izes the effectiveness of large eddies for moving particles
laterally. At large St, particle trajectories are weakly
affected by turbulence.

St is the key dimensionless number for the dynam-
ics of relative particle motions in the global flow pa-
rameterization. However, it does not describe the local
behavior of a particle everywhere in the jet. Particle
response time 7, is a reference scale which corresponds
to small relative motions between particles and gas. As
the flow develops, particle velocities may deviate from
those of gas by large amounts, and one may define a
local response time which is smaller than 7, by factor
I [Clift et al., 1978]:

f=1+015Re?. (18)

Re, is the Reynolds number for relative particle motion:
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where p; is the gas density, U, is the particle veloc-
ity and U 1is the local gas velocity. At high particle
concentration, the flow dynamics are very complicated
and involve the formation of particle clouds [Faton and
Fessler, 1994]. In volcanic plumes, however, the volume
fraction of particles is typically less than 1%, and the
mixture may be considered dilute [Hardalupas et al.,
1989]. Most studies have dealt with monodisperse and
moderately polydisperse dilute mixtures, which have
the same behavior [Prevost et al., 1996]. For a given
St, lateral dispersion increases with increasing distance
from the vent and only becomes significant at some dis-
tance noted X. A rough rule of thumb is X/D, ~ St
[Chung and Troutt, 1988; Ishii et al., 1989; Prevost et
al., 1996]. The extent of dispersion also depends on
the initial radial position of the fragment, but this is a
weaker effect.

In a Plinian column, complications may arise because
of the extreme polydispersity of the volcanic mixture.
Typical values for the density of vesicular magma frag-
ments, the viscosity of hot air, the vent radius, and the
centerline velocity are 700 kg m~2, 1075 Pa s, 100 m,
and 150 m s~!, respectively. Fragments with radii of
1 mm or more have Stokes numbers larger than 10.
Such fragments develop significant velocity differences
with respect to their surroundings, and it may be more
appropriate to view them as flowing through a mixture
of air and ash. An accurate assessment of such a sit-
uation is not possible with current models [Ishii et al.,
1989], and we develop a qualitative argument. The mix-
ture of gas and ash is dilute, and we use the dusty gas
approximation. Dusty gas is denser than pure gas but
has the same dynamic viscosity [Marble, 1970]. If all
else stays the same, this acts to increase the Reynolds
number for the relative particle motion and hence to
decrease the local particle response time. At large Rep,
the correction is equal to the dusty/pure gas density ra-
tio raised to the 2/3 power (equation 18). A represen-
tative value for the mass fraction of gas in the volcanic
dusty mixture is 5 wt %. In this case, the dusty gas is
about 10 times denser than pure gas, and the particle
response time may be decreased by a factor of about
5. As a first approximation, we may consider that a
fragment behaves in fact as if its Stokes number was 5
times smaller than the “pure gas” value. For the above
parameters, fragments with radii of 3 mm or more have
“effective” Stokes number larger than 10. Pumice sam-
ples analyzed for vesicularity are larger than this and
hence may be studied in the large St limit.

The two extreme histories of cooling correspond to
fragments erupted near the axis and the edge of the
vent. For the former, lateral dispersion is negligible
over a height z of more than 10xD,, corresponding to a
time of more than 10 s which is close to the quenching
time. For the latter, lateral dispersion becomes signifi-

Re, (19)
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cant at smaller heights but no less than z ~ 2xD,. For
those, quenching is almost instantaneous and in fact
is not sensitive to changes of jet temperature. Some
of these particles may eventually be mixed back into
the core of the jet but at much greater heights, where
temperatures are small. Thus they donot get reheated
by large amounts. We conclude that for our purposes,
it is sufficient to consider vertical particle trajectories
through the jet.

Fragments going through turbulent eddies experience
temperature fluctuations. The size of the largest ed-
dies is given by the integral turbulence length-scale A
[Hinze, 1975, p. 43]. Dimensionless ratio A/ D, where
D is the jet radius, increases from 0.2 at the axis to
0.4 at the edge of the jet [Hinze, 1975, p. 555]. Tem-
perature fluctuates over characteristic time A /U, which
is less than 0.3 s for the above jet parameters. This
is small compared to the quenching time, and hence it
is sufficient to consider a time-averaged external tem-
perature evolution in our calculations. In exceptionally
powerful eruptions, the vent must be very large, and the
characteristic time for temperature fluctuations may be
close to the quenching time. In this case, vagaries of
the external temperature may generate some scatter in
pumice vesicularity.

Figure 11 shows the variation of temperature with
height along vertical trajectories in the jet. A particle
which starts at the axis sees little temperature change
before entrainement has reached into the core region of
the jet. At the other end of the spectrum of possibili-
ties, a particle which starts at the edge of the vent goes
rapidly in contact with cold air, and hence sees a very
rapid temperature drop. Starting from the same condi-
tions as before (overpressure of 20 MPa, vesicularity of
60% at the vent), we have calculated the average and
the two extreme cooling histories (Figure 12). With
decreasing viscosity, the range of vesicularity values in-
creases, which is consistent with the data of Gardner et
al. [1996].

Three important results emerge: (1) the rate of ex-
pansion depends on melt viscosity, (2) some fragments
are cooled more rapidly than others, and (3) the final
vesicularity value depends on the cooling rate and hence
on the radius of the eruption column.

Dynamics of Flow in the Conduit

In the conduit, we focus on the most significant ef-
fect, decompression, and assume that temperature stays
constant. The calculations include a simple parame-
terization of conduit flow, with a fixed decompression
rate, and a complete atmospheric column model (Ap-
pendix C).

As pressure is released, some water may exsolve from
the melt. This acts to increase melt viscosity, and
hence, as far as bulk vesicularity is concerned, there
are two competing effects: the addition of gas to the
bubbles and a decreased ability to expand. To evaluate



12,196

6 65 7 15 8
log(1) (Pa s)

Figure 12. The gas volume ratio of pumices as a func-
tion of initial melt viscosity. The calculations are done
for the model parameters of Table 3 and for the entrain-
ment law of Woods [1988], as explained in Appendix C.
Curves are drawn for the bulk average and for two tra-
Jectories issuing from the axis and edge of the vent.
These trajectories lead to the maximum and minimum
values of vesicularity and allow an evaluation of the dis-
persion of vesicularity values in a Plinian deposit.

the importance of this effect, we consider the two end-
member cases defined above, corresponding to no de-
gassing and to equilibrium degassing. Figure 13 shows
results for the “standard” model of Table 3 and for var-
ious values of “degassed” melt viscosity. The initial
water concentration was set at 4 wt %, and the amount
left in solution at fragmentation is 2 wt %, correspond-
ing to a volume fraction of exsolved gas of 60%. At high
viscosity, melt degassing has a negligible effect on vesic-
ularity because there is little expansion. At low values
of viscosity, the effect is more pronounced but remains
small. The reason is that degassing is a self-defeating
mechanism: melt degasses because the bubble pressure
decreases, but the bubble pressure can only decrease if
bubbles can expand. Exsolution acts to increase melt
viscosity, which reduces the amount of pressure release
and hence decreases the amount of exsolution.

As explained above, decompression rates are much
larger in a variable conduit size model with lithostatic
flow pressures than in a constant conduit size model. To
investigate the implications of this, we use the Bishop
Tuff magma because of its high viscosity. Its pumices
are amongst the least vesicular ones and hence are least
likely to have been affected by early bubble interconnec-
tion (Appendix A). Furthermore, as just shown, a large
viscosity minimizes the influence of melt degassing. Us-
ing the same fragmentation conditions as by Thomas et
al. [1994] (Table 4), we find that vesicularity values de-
crease with increasing decompression rate, as expected
(Figure 14). A less obvious result is the relationship
between the spread of vesicularity values and decom-
pression rate. At very small decompression rates, less
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Figure 13. Vesicularity as a function of initial melt
viscosity for the model parameters of Table 3. The cal-
culations include the effects of ascent and decompres-
sion in the eruption conduit. Curves are shown for two
limit cases for the melt behavior: no degassing and equi-
librium degassing. The differences are small for high-
viscosity melts because little pressure release is achieved

in the bubbles.

than 1 MPa s™!, bubble pressures remain close to the
exterior pressure. When fragments are erupted into the
atmosphere, they cannot expand much more, and the
effects of different cooling rates are correspondingly lim-
ited. At larger values of the decompression rate, bub-
bles are overpressured at the vent, they have a greater
potential for expansion, and hence they are sensitive to
different cooling rates. Effects are nicely illustrated by
the maximum vesicularity value, achieved in fragments
erupted near the jet axis. For values of decompression
rate between 1 and 5 MPa s™!, the vesicularity of these
fragments decreases with increasing decompression rate
(Figure 14). In these, the bubble overpressure at the
vent increases with increasing decompression rate, but
cooling is rapid and stops expansion before it can ef-
fect significant changes. Above a decompression rate of
5 MPas™! however, the bubble overpressure is so large

Table 3. Extended Eruption Model Used to Study the
Evolution of Magma Fragments in the Conduit and in
Atmospheric Eruption Column

Parameter Value

Melt composition Phonolite with 4 wt % H,O

Initial melt viscosity 2x10" Pa s
Initial vesicularity e; 60%

Initial overpressure Ap 20 MPa
Conductivity k 0.2Wm™K™!
Decompression rate 12 MPa s~}
Vent radius 100 m

Exit velocity 300 m s™!
Initial gas content in the jet 3 wt %
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Table 4. Parameters Used to Model the Bishop Tuff and Minoan Eruptions

[o]
Eruption Zo, Wt % €, % Ap, MPa Lo, Pa's Temperature, C
Bishop Tuff 2.2 60 27 8x107 750
Minoan 1.8 60 18 2x107 850

Physical properties are given at the fragmentation level; z, is the dissolved water content at fragmentation; and Ap is

the pressure drop between fragmentation and the atmosphere.

that expansion is faster than cooling, and the maxi-
mum vesicularity increases with increasing decompres-
sion rate.

The observed mean and range of vesicularity values
are sensitive to the decompression rate, and hence pro-
vide constraints on flow conditions in the conduit. In
particular, it is possible to distinguish between “con-
stant conduit size” conditions and “variable conduit
size” conditions with flow pressures close to lithostatic
values.

Two Test Cases

We now pursue the implications of our model for two
specific eruptions, the Bishop Tuff, Long Valley caldera,
and the Minoan, Santorini. We use vesicularity data
to constrain the characteristics of these eruptions and
discuss independent observations. We do not attempt
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Figure 14. Final value of vesicularity for the Bishop
Tuff model of Table 4, as a function of decompression
rate in the conduit. The vent radius is fixed at a value
of 100 m, the initial eruption velocity is 300 m s=!, and
the initial mass fraction of gas in the erupting mixture
is 3 wt %. For this set of parameters, the mass discharge
rate is 108 kg s~1. The three curves correspond to the
minimum, average and maximum vesicularity values.
The total dispersion observed in the Bishop Tuff deposit
is 63-79%. To achieve these values, the decompression
rate must be large.

to explain every single pumice in a deposit. As ex-
plained in Appendix A, it is likely that some fragments
become permeable before quenching, which acts to stop
expansion early. This implies that the lower end of the
vesicularity distribution cannot be accounted for by our
model. Complications may also be due to small het-
erogeneities of composition and crystal content or to
interaction with the cold conduit walls. Therefore we
only treat the statistically significant part of the ob-
servations. We use the population defined by the mean
value and a total dispersion of four standard deviations,
i.e. the largest and smallest vesicularity values are equal
to the mean plus and minus two standard deviations,
respectively.

We use an initial vesicularity of 60% at fragmenta-
tion and an estimated magma viscosity. Both are sub-
ject to uncertainties. From their data, Gardner et al.
[1996] argued that fragmentation occurs for vesicular-
ity values in the 60-65% range and noted that this is
consistent with shear-induced breakdown of a bubbly
liquid. In our calculations, changing the initial value
of vesicularity by a small amount, from 62% to 58%,
say, simply acts to shift the final values by the same
amount, and hence does not affect the range of values.
Thus, we can use the dispersion of pumice vesicularities
as an independent constraint. Uncertainties on magma
viscosity come from several effects. One is the initial
magma temperature, which is only constrained by exist-
ing methods to within a few tens of degrees. Another is
the inaccuracy of empirical prediction schemes [Baker,
1996]. A third problem is cooling in the conduit above
the fragmentation level. We thus allow for variations of
viscosity from the initial estimates.

Bishop Tuff Eruption

For this eruption, we consider average, minimum, and
maximum values of vesicularity of 71%, 63%, and 79%,
respectively. We note that even in this high-viscosity
magma, vesicularity has a large range of values. Fig-
ure 15 shows the model predictions for different val-
ues of conduit radius using the parameters of Table 4
and a fixed conduit decompression rate of 10 MPa s~ 1.
For this large viscosity value, the minimum vesicularity
is not sensitive to vent size because fragments erupted
at the edge of the vent get quenched almost instanta-
neously. If the vent radius is small, cooling is rapid
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everywhere in the column, which leads to a small dis-
persion of vesicularity. If the vent radius is large, the
core region of the eruption column stays hot for some
time, and vesicularity values are dispersed.

We use two independent arguments to demonstrate
that the Bishop Tuff eruption had a large discharge rate.
We know that the decompression rate had to be very
large, at least 10 MPa s™!, say, to account for the small
values of vesicularity found (Figure 14). This implies
that the eruption velocity was at least 300 m s~t. We
also know that vesicularity values are dispersed, which
implies a wide vent. The observed range of 16% re-
quires a radius larger than 100 m (Figure 15). Com-
bining these constraints and using a value of 10 kg m~3
for the mixture density at the vent, we obtain a min-
imum value of 108 kg s™! for the mass discharge rate.
Field determinations lead to an estimate of 8x108 kg s~!
[Gardner et al., 1991]. We now refine this comparison
further.

Predicted vesicularity are slightly too high, which
may be due to the magma viscosity chosen. We cal-
culate the magma viscosity which is required to ob-
tain a minimum vesicularity of 63%, as a function of
decompression rate (Figure 16). For reasonable val-
ues between 10 and 12 MPa s~!, viscosity must be in
the range of 2.5 — 3.0x108 Pa s. These viscosity val-
ues are higher than our initial estimate by a factor of
4, corresponding to a temperature difference of -30° C,
which is within the expected error margin. Using a
magma viscosity of 3x10® Pa s and a mass discharge
rate of 10° kg s™!, we solve the equations for a “vari-
able size” conduit model with lithostatic flow pressures,
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Figure 15. Final vesicularity for the Bishop Tuff model
of Table 4, as a function of conduit radius. The de-
compression rate in the conduit is fixed at a value of
10 MPa s™!. The three curves correspond to the min-
imum, average, and maximum values. To achieve the
observed range of values, 14%, the conduit radius must
be about 200 m. Smaller conduits lead to rapid cooling
and a small dispersion of vesicularity values.
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Figure 16. Decompression rate needed to achieve the
minimum vesicularity of 63% in the Bishop deposit, as
a function of melt viscosity. In this calculation, there is
no melt degassing.

as by Wailson et al. [1980]. For an initial water con-
tent of 5.5 wt %, calculated decompression rates are
6 MPa s~! at fragmentation and 14 MPa s~! at the
vent, corresponding to a mean value of 10 MPa s™!.
Fragmentation at 60% vesicularity releases 3.4 wt %
gas. The predicted values of vent radius and exit ve-
locity are 330 m and 440 m s~!. These results provide
the required inputs for the column model, and we find
values of 63%, 70%, and 78% for the minimum, average,
and maximum vesicularities, which are almost identical
to the observed values. In conclusion, pumice vesicular-
ities indicate a mass discharge rate of 10% kg s™!, close
to the field estimate of 8x10® kg s=! [Gardner et al.,
1991].

Minoan Eruption

Pumice vesicularity is sensitive to changes of erup-
tion conditions, and this can be illustrated by the ini-
tial phase of the Minoan eruption (phase 1), Santorini
volcano [Bond and Sparks, 1976; Heiken and McCoy,
1984]. During this phase, the eruption was in a “dry”
Plinian regime [Sparks and Wilson, 1990], and the av-
erage vesicularity increased steadily with time [Wilson
and Houghton, 1990]. We interpret this as due to the
conduit enlarging by erosion. For our model, we use the
parameters of Table 4. We find that the conduit radius
increased from an initial value of about 30 m to slightly
more than 100 m (Figure 17). This is consistent with
the observations. The deposit is reversely graded, which
shows indeed that the eruption intensity increased with
time [Heiken and McCoy, 1984; Sparks and Wilson,
1990]. Also, the lithic contents of erupted material
increased with time, which indicates that the conduit
was being eroded [Bond and Sparks, 1976; Hetken and
McCoy, 1984]. The top of the Plinian deposit records
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a change of eruption conditions to a phreatomagmatic
regime with abundant interaction with seawater, and it
is tempting to link this with vent widening.

Discussion

Our physical model is able to explain several features
of Plinian pumices: (1) the systematic decrease of vesic-
ularity as the melt viscosity increases, (2) the dispersion
of vesicularity values, (3) the systematic decrease of the
dispersion of vesicularity values as the melt viscosity in-
creases, and (4) progressive changes of vesicularity with
time during an eruption. Quantitative agreement with
data from the Bishop Tuff and Minoan eruptions require
large values of decompression rate in the conduit and
viscosity values which are slightly larger than predicted
from the known magma composition and initial water
content. Both points deserve comments.

The erupting mixture cools in the conduit because
of expansion but also because of lithics incorporated in
the flow. The consequence is that the melt viscosity
must be calculated at a temperature lower than the ini-
tial magmatic temperature. A complete model should
include these effects and, to be precise, should take into
account the size distribution of fragments. This will be
investigated in the future.

Large decompression rates are achieved in a conduit
with depth-dependent size, with flow pressures close to
lithostatic values. In such a case, predicted exit ve-
locities are between 200 and 500 m s~!, significantly
greater than sonic values (90-200 m s™!) [Walson et al.,
1980]. These large velocity values are confirmed by the
ballistics of large blocks found near the vents of many
Plinian eruptions [Wilson, 1976]. These conditions are
probably due to conduit erosion for which there is in-
dependent evidence in the form of lithic fragments and
of temporal increases of discharge rate.
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Figure 17. Average vesicularity as a function of strati-
graphic height in the Minoan Plinian deposit for the
model parameters of Table 4. The conduit radius which
is required to produce the observed vesicularity is indi-
cated on the right-hand axis. This example suggests
that the conduit widened.
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One can get three quantitative constraints on the dy-
namics of “dry” Plinian eruption from their deposits:
the dispersal characteristics and the mean and range of
pumice vesicularity values. One may also determine
magma composition and initial water concentration.
The dispersal characteristics allow an estimate of the
mass discharge rate, which may be achieved in differ-
ent ways. For a “constant conduit size” model, the exit
velocity is smaller, and the vent radius is correspond-
ingly larger than for a “variable conduit size” model.
Vesicularity data allow us to distinguish between these
two possibilities and hence provide constraints on the
conduit size.

Conclusion

The distribution of pumice vesicularities provides con-
straints on flow conditions in both the conduit and the
atmospheric column. Eruption column models can be
checked against several types of data, but very few con-
straints are otherwise available for conduit flow. Vesic-
ular magma fragments can be regarded as Lagrangian
tracers which record temporal changes of pressure and
temperature in the erupting mixture. Thus constraints
on these changes may be derived independently of any
specific flow model. It is encouraging that our calcu-
lations compare with observations only when the rates
of decompression and cooling are set to realistic values.
The physical framework may be refined to include more
effects, such as, for example, diffusion of volatile species.

Appendix A: Connection of Gas Bubbles
in an Expanding Fragment

Vesicularity values in Plinian pumices are dispersed.
The explanation pursued in this paper is that differ-
ent fragments have different histories of cooling in the
eruption column. An alternative explanation is that
fragments become permeable before quenching. In this
case, a magma fragment cannot sustain large pressure
differences between its interior and the exterior. In a
large population, it is unlikely that all fragments are
affected simultaneously. In this model, therefore, differ-
ent fragments are subjected to the same pressure and
temperature evolution, but become permeable at differ-
ent times, after expanding by different amounts. Two
arguments suggest that this cannot account for all the
data.

Discriminating between the two explanations hinges
on the process responsible for bubble connection. In a
liquid fragment, neighboring bubbles may connect only
if the film which separates them gets thinned. This may
be achieved by two mechanisms. One is shear [Li et al.,
1995], which is not expected to be important for indi-
vidual magma fragments suspended in a gas jet. The
other mechanism is bubble expansion, which is relevant.
The critical thickness for liquid film rupture is slightly
less than 1 pm [Vréj, 1966; Princen, 1979; Erneur and
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Davis, 1993; Cashman and Mangan, 1994]. For typi-
cal bubble sizes, this requires vesicularity values in ex-
cess of 95%. Such high values of vesicularity cannot be
achieved in high viscosity fragments.

The second argument relies on the systematics of
pumice vesicularity in Plinian deposits [Gardner et al.,
1996]. At viscosities larger than about 10° Pa s, the
maximum pumice vesicularity increases as magma vis-
cosity decreases, which is clearly consistent with expan-
sion. These pumices are permeable when found on the
ground, but bubble connection may be achieved late,
because of thermal stresses during late stage cooling
or following impact on the ground and burial in a de-
posit. For magma viscosities around 10% Pa s, pumices
are highly inflated: vesicularity values are larger than
80% on average, and commonly exceed 90%. Below this
threshold viscosity value of about 10° Pa s, the relation-
ship between vesicularity and viscosity breaks down. In
these low-viscosity cases, expansion is able to proceed
to the very large values of vesicularity needed for bubble
connection. This occurs early, when flow temperatures
are still high. With most of its bubbles connected, a
magma fragment is an open network of melt and tends
to collapse under the action of surface tension [Gardner
et al., 1996]. This generates small vesicularity values
which are indeed observed.

A final observation is that, in the Minoan Plinian
eruption, vesicularity values increased systematically
as the eruption was proceeding [Wilson and Houghton,
1990; Thomas et al., 1994]. This is difficult to explain
by early bubble connection.

Appendix B: Boundary Conditions
at =20

The cooling rate remains finite at the center, and
hence all terms in the heat equation remain finite. We

recall that 52 5
| 2 91

vep= 24 20

= or: = r Or’

This remains finite as r goes to zero if and only if the
temperature gradient is zero at r = 0:

(B1)

oT

—(0,7) = 0.

or (0,4)=0
Because of this, conditions in the vicinity of the origin
are those of homogeneous expansion, which has been
studied by Thomas et al. [1994], and we may deduce
that

(B2)

OTrr _

a—g(O,t) = 0 (B3)
14 _

'2;(0,15) = 0, (B4)
p _

P00 = o0, (B5)

Using the continuity equation, we obtain

KAMINSKI AND JAUPART: EXPANSION AND COOLING OF PUMICE
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The divergence term is written using the followingiden-
tity:
v v

lim — = 5~(0.0). (B7)

Finally, we use the energy equation to obtain

opT [ pTVv (pL+KVw)Vu
3t (0’ t) N <_ L B L2 x| CU[ (0’ t).

(B8)

Appendix C: Dense Gas Thrust Region
of Eruption Columns

In the volcanic conduit, flow is in fully-developed tur-
bulence. Thus, at the vent, the radial profiles of vertical
velocity and temperature have a top-hat shape. As en-
trainment develops, these profiles gradually change to a
bell shape (Figure 18). For this study, it is essential to
describe these changes in order to calculate cooling rates
for different particle trajectories. The radial profiles are
defined by the maximum values of velocity and temper-
ature, Ups and fyr, at the center of the jet (r = 0),
and a dimensionless shape function f(r). This function
is such that f(0) = 1 and tends to zero as r goes to
infinity. The mass flux is written as

o0
BU rD? :/ BUn f(r)2mrdr, (C1)
0
where f is the jet density, U is the mean velocity and
D is the effective jet radius. The flux of vertical mo-
mentum is

Edge

Mixing zone

Core Region

Figure 18. Evolution of velocity profile in the gas
thrust region of an atmospheric eruption column. The
profile becomes self similar when the mixing zone ex-
tends to the centerline.
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BU*rD? = / h BUZ, f2(r)2mrdr. (C2)
0

The buoyancy flux is
[ee]
BC,U0mD? = / BC,Untbr f2(r)2rdr,  (C3)
0

where 0 is the horizontal average of temperature. The
turbulent jet entrains surrounding air with density « at
rate U.. The conservation equations are

B(-lz-(ﬁUDz) = 2aU.D, (C4)
L pup?) = gla-pp, ()
diz(ﬂCpBUDQ) = —alUD?%

+ (CaT+ g;) % (BUD?). (C6)

The rate of entrainment can be written as follows [ Woods,

1988]: os
e U 2 8\"
i () (2

where A* is a constant which is usually taken to be
0.125. One simplification is to assume that Uy ~ U
[Woods, 1988]. This entrainment model relies on a small
number of experimental studies and may be somewhat
in error for particle-laden jets.

Function f(r) is allowed to change with height. We
use the following form:

f@:z)=exp([—2(§)q)’

where width § and exponent n are functions of z. At the
vent, the top-hat profile is described by a large value of
n. For a particle-laden jet in the self-similar fully de-
veloped region, n takes a value of about 4 [Chung and
Troutt, 1988]. At greater heights in the atmosphere,
the concentration of particles is small and the eruption
column may develop into a buoyant thermal plume, for
which n = 2 [Turner, 1973]. A variable exponent intro-
duces an additional unknown, and a fourth equation is
needed. At small heights above the vent, entrainment
only affects the outer regions of the jet and does not
reach into the core region. The centerline temperature
therefore evolves by adiabatic decompression only. This
is written as follows:

donp

dz

(€7

~

(C8)

a g

TR (C9)

We may now calculate all variables as a function of 2.
The exponent n reaches the value of 4 at z = H, where
the dense jet is everywhere affected by entrainment.
The value of H is not assumed and is calculated and
depends on the vent radius. Between z =0 and 2 = H
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Figure 19. Bulk characteristics of the atmospheric

eruption column for the parameters of Table 3 and for
three different entrainment laws. (top) Radius of the
eruption column as a function of height above the vent.
Both variables are made dimensionless with the vent ra-
dius D,. The three curves correspond to three different
entrainment laws (equation (C7)) (1, \* = 0.125, Up =
U; 2,A* =0.125, Uy #U; 3, \* =0.3,Up # U). The
first entrainment law reproduces that of Woods [1988].
The third entrainment law leads to H=8xD,, as ob-
served in turbulent homogeneous jets [Hinze, 1975, p.
536]. (bottom). Average column temperature as a func-
tion of height for the same three entrainment assump-
tions. The entrainment law has a marked effect because
it fixes the amount of mixing with cold atmospheric air.

the core region of the jet expands laterally, as shown by
the change of horizontal structure. For typical condi-
tions, we find that H is smaller than the critical height
at which the column may collapse, as well as smaller
than the height at which the column may become buoy-
ant. Vesicular magma fragments stop expanding before
leaving the dense gas thrust region, and hence we do
not follow the column into the buoyant plume regime.
The model is simplified in the sense that the core and
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marginal regions are described together but gives a rea-
sonable temperature structure for our calculations. A
more detailed approach would be beyond the scope of
this paper.

We have considered three forms of the entrainment
law and found significant differences in the predictions
(Figure 19). All calculations discussed in the main text
were made with the entrainment law of Woods [1988],

lLe.,
0.5
e=0125U (—ﬁ~> .
«

Above z = H, the centerline temperature starts de-
creasing more rapidly because of mixing with cold at-
mospheric air (Figure 12). There is a slight break in
this evolution at z = H due to the simple method used
to parameterize entrainment. The calculation remains
robust because all the conservation equations are sat-
isfied, and, indeed, the average quantities have smooth
evolutions.

(C10)
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