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The description of entrainment in turbulent free jets is at the heart of physical models
of some major flows in environmental science, from volcanic plumes to the dispersal
of pollutant wastes. The classical approach relies on the assumption of complete
self-similarity in the flows, which allows a simple parameterization of the dynamical
variables in terms of constant scaling factors, but this hypothesis remains under
debate. We use in this paper an original parameterization of entrainment and an
extensive review of published experimental data to interpret the discrepancy between
laboratory results in terms of the systematic evolution of the dynamic similarity of
the flow as a function of downstream distance from the source. We show that both
jets and plumes show a variety of local states of partial self-similarity in accordance
with the theoretical analysis of George (1989), but that their global evolution tends
to complete self-similarity via a universal route. Plumes reach this asymptotic regime
faster than jets which suggests that buoyancy plays a role in more efficiently exciting
large-scale modes of turbulence.

1. Introduction

Turbulent jets are encountered in diverse natural flows, ranging over orders of
magnitude in size. Important examples linked to human or industrial activity are
smoke plumes from chimneys or oil fires, effluent from submerged pollution outlets,
or even the extreme case of a nuclear accident, while naturally occurring flows include
activity of seafloor hydrothermal vents, convection in clouds or, most energetic of all,
stratospheric plumes due to explosive volcanic eruptions. These flows are canonical
examples of turbulent flow, in particular of the process of turbulent entrainment of
ambient fluid in a shear layer within the edges of the jet because this largely controls
their dynamics.

The classical approach to turbulent entrainment of Morton, Taylor & Turner (1956)
based on macroscopic conservation equations for fluxes of mass, momentum and
buoyancy, supposes that turbulent jets are self-similar with respect to dimensionless
downstream distance from the source. In this hypothesis of ‘complete’ self-similarity
the entrainment rate is a constant fraction of the vertical velocity of the jet which
defines an ‘entrainment coefficient’, &,. Numerous experimental studies have provided
values of the entrainment coefficient in jets and plumes. For a ‘top-hat’ description of
jets (in which the dynamical variables are supposed constant inside the jet at a given
distance from the source and zero beyond an effective radius), measured values vary
between 0.10 and 0.16 in plumes and from 0.065 to 0.080 in jets (Fischer et al. 1979;
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Authors Flow Fluid Nozzle Method Re z" o,

Forstall & Gaylord (1955) J L p w - 10-20  0.070
Wang & Law (2002) J L p 1 12700 40-80 0.075
Papanicolaou & List (1988) J L c 1 2460-10900 40-50 0.074
Papanicolaou & List (1988) J L c 1 2460-10900 50-80 0.079
Rosensweig et al. (1961) J G c w 26200 15-35 0.076
Panchapakesan & Lumley (1993) ] G p w 11000 90-120 0.095
Ruden (1933) J G c 4 - 15 0.070
Papanicolaou & List (1988) P L c 1 600 2240 0.130
Papanicolaou & List (1988) P L c 1 600 41-53  0.126
Papanicolaou & List (1988) P L c 1 600 56-85 0.121
Wang & Law (2002) P L c 1 1550-12700 31-55 0.124
Rouse et al. (1952) P G c w - 75 0.120
George et al. (1977) P G c 4 870 8-16 0.159
Shabbir & George (1994) P G c w 800-1800 10-28 0.154
Nakagome & Hirita (1977) P - - - - 11.5 0.170
Schmidt (1941) P - - - - 145  0.170

TaBLE 1. Experimental conditions and measured values of entrainment coefficient, «,. Flow:
J = jet, P = plume; Fluid: L = liquid, G = gas; Nozzle: p = pipe, ¢ = constriction; Method:
w = hot-wire probe anemometers; 1 = laser-Doppler anemometry and laser-induced
fluorescence concentration technique; Re: Reynolds number.

Chen & Rodi 1980; Linden 2000; Kaminski, Tait & Carazzo 2005). The systematic
difference between the values measured for jets and for plumes undermines the concept
of a universal, constant value of «,, and suggests that genuinely larger values of «, in
plumes than in jets are likely to be due to buoyancy-enhanced turbulence (List 1982;
Kaminski et al. 2005). Moreover, the origin of the variability in «, within jets and
plumes remains unexplained. Differences between measurement techniques, the nature
of fluids and shapes of nozzles are usually suggested to explain such discrepancies.

Table 1 reports the data available in the literature that we have used as a basis
for our study organized according to these criteria, and no definitive trend appears.
The data appear to demand a framework with a wider explanation. One approach
in the literature has been to assume that the entrainment coefficient is indeed a
constant, whose value is best extracted globally from data in a given experiment by
applying the ‘virtual origin’ correction. In the Appendix, we show that, although this
correction can be significant (~20% for «,) in the case of ‘lazy’ plumes (Hunt &
Kaye 2001), it is negligible (<1% for «,) for the ‘forced’ plumes of the experiments
analysed here. A virtual origin correction cannot, for example, explain the differences
between the ‘plume’ entrainment coefficients measured by different authors in table 1.
In an attempt to explain this apparent paradox of conflicting measurements, George
(1989) suggested that these differences are due not to experimental errors, but to
the restrictive manner in which the concept of self-similarity has been applied.
According to George’s theoretical analysis universal self-similarity is not required
by the mathematical structure of the conservation equations but there can exist a
multiplicity of self-preserving states determined by initial conditions.

Richards & Pitts (1993) and Mi, Nobes & Nathan (2001) studied experimentally
the influence of the initial conditions on the establishment of self-similarity. Mi et al.
(2001) generated turbulent free jets issuing from two different nozzles and measured
the evolution of the scalar field. They found that the asymptotic centreline decay rate
of a jet issuing from a smooth contraction nozzle is a function of Reynolds number
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whereas for a jet issuing from a long straight pipe there is no such dependence. They
interpreted these observations in terms of differences in the turbulence structure and
provided support for the analysis of George (1989). On the other hand, Richards &
Pitts (1993), who studied the effects of initial conditions on jets by varying the nozzle
and the global density ratio, did not find any discrepancy in their experiments. They
explained the differences between experimental studies by contamination of the jet
by buoyancy and coflow effects and provided support for the hypothesis of universal
self-similarity of the jet far from the source. It thus appears that one single ‘local’
study is not able to solve the problem introduced by George (1989).

Whilst generating some discord, George (1989) also suggested the path to solve the
problem: that an analysis of equations involving second-order quantities (i.e. related
to Reynolds stresses) might enable identification of additional physical constraints.
We propose to follow this idea here using the equation for the flux of mean kinetic
energy (Priestley & Ball 1955), and then to reappraise the data from previous studies
within the resulting framework to provide a quantitative answer to the problem of
self-similarity in jets and plumes.

2. Theoretical framework

A key point in understanding the evolution of self-similarity is to define a coherent
framework that provides a hierarchy between the different phenomena in play.
Our main aim is a pragmatic one of arriving at a description of self-similarity
adequate for quantifying entrainment. Our approach, detailed in a companion paper
(Kaminski et al. 2005), is based on a ‘top-hat’ kinetic energy balance and evaluates
the consequences for entrainment if the shape of the profiles of velocity, of reduced
gravity and of turbulent stress evolve as a function of distance from the source. In
that case, instead of being a universal constant, «, is a function of the shapes of the
(Reynolds-averaged) profiles:

C 1 . R 1dA
ae_2+<1_A)Rl+2DAdz*’ @D

where R is the ‘top-hat’ jet radius, z* is the ratio z/D with z the distance from the
source and D the source diameter, Ri = g’R/U? is the local Richardson number, with
g’ the ‘top-hat’ reduced gravity and U the ‘top-hat’ velocity, and A and C are integral
profiles that depend on velocity, buoyancy and turbulent stress profiles as
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C:

. (23)

where f, h and j are the shape functions for the profiles of velocity, reduced gravity
and turbulent shear stress, respectively, and r* = r/b,, with b,, a radius scale. We
calculate A and C from experimental profiles using the method of least-squares
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residual based on the following theoretical fits:

4

f(r',2) =exp (Z ann">, (2.4)
an

h(r",z) = exp <j{:bnn”>, (2.5)
n=2

J(r*, z) = =2co [exp(—ci(n — ¢2)) — exp(—ci(n + c2))], (2.6)

where n = r/z and a,, b, and ¢, are fitting parameters reported in table 2. Such
equations for velocity and reduced gravity allow the data near the central axis to
be accounted for as well as those far from it by adding parameters for curves. As
illustrated by the values of the linear regression coefficient given in table 2, these fits
explain the data better than the classical Gaussian fit. Nevertheless, when complete
experimental data are not available, Gaussian profiles are retained and A and C take
the convenient compact forms

A=21+2), (2.7)
C=—6(1+ }uz)/ r exp(—r*z)j(r*)dr*, (2.8)
0

where 4 is the ratio of the characteristic (1/¢) width of the buoyancy profile to
that of the velocity profile. C gives the fraction of the total energy flux available
for entrainment due to dissipation by turbulent shear stress and A encompasses the
influence of the shape of the velocity and reduced gravity profiles on the transfer of
gravitational energy to turbulent stress (Kaminski et al. 2005). Complete self-similarity
implies that the shapes of the profiles do not depend on z*, requiring constant A
and C. In the case of local self-similarity the profiles may evolve as a function of 77,
and A and C can then be used as a proxy to describe quantitatively the evolution of
self-similarity.

We have reappraised all the data from laboratory experiments in the literature that
allow a calculation of A and C to check if these are constant, if they change erratically
or if they show a systematic evolution as a function of z*. To use equation (2.1) we
focused on jets (no buoyancy flux) and plumes (no momentum flux at the source)
for which Ri and R/z are analytically known. In practice experiments have been
made on buoyant jets with both finite momentum and buoyancy fluxes at the source.
Nevertheless, Fischer et al. (1979) defined a characteristic length L,, = M3*/B!/2,
with M and B the momentum and buoyancy fluxes at the source respectively, that
can be used to define ‘pure’ jets and ‘pure’ plumes. Pure jets correspond to z/L,, < 0.5,
where Ri ~ 0 and R/z = 2a,, and pure plumes to z/L,, > 5 where Ri = 8«,/5 and
R/z = 6a,/5.

Values of C are sparse as they require the measurement of the turbulent stress
profile. The available data do not show any systematic variation. They can be
considered as constant within the experimental error bars and equal to 0.135 + 0.005
for both plumes and jets. Values of A shown in figure 1, reveal a systematic variation
between jets and plumes, from one experiment to another, and as a function of z".
This trend is not linked to the fluids, technique or source conditions used in the
experiments (table 1). This evolution shows that for both jets and plumes A # const,
and that the description in terms of local self-similarity only is more accurate, as
proposed by George (1989).
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Forstall & Gaylord (19595) —102.0
Wang & Law (2002) —89.0
Papanicolaou & List (1988) —92.5
Papanicolaou & List (1988) —79.7
Rosensweig et al. (1961) —-90.9
Panchapakesan & Lumley (1993) —33
Ruden (1933) —943
Papanicolaou & List (1988) —90.7
Papanicolaou & List (1988) —95.5
Papanicolaou & List (1988) —112.2
Wang & Law (2002) —147.6
Rouse et al. (1952) —165.7
George et al. (1977) —87.0
Shabbir & George (1994) —101.8
Nakagome & Hirita (1977) —48.2
Schmidt (1941) —48.2
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—101.3
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1403.1
669.8
466.7
480.4

0.986
0.979

0.997
0.926
0.961
0.948
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by

—84.2
—60.1
—63.0
—51.7
—81.2
—23.8
—54.3
—79.4
—80.1
—93.0
—84.2
—85.9
—29.0
—73.3
—62.9
—57.3

b;

—39.2
—146.9

159
—524.9
—137.6

369.7
1987.6
541.3

2
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0.993
0.986

0.974
0.982
0.975

Co

0.061
0.015
0.015

0.021

0.015
0.015
0.015
0.021

0.029

(&)

0.017
0.09
0.09

0.06

0.09
0.09
0.09
0.068

0.07

A

1.47
1.65
1.65
1.69
1.54
1.80
1.54
1.42
1.47
1.49
1.45
1.60
1.08
1.17
1.18
1.23

C

0.13
0.13
0.13

0.13

0.13
0.13
0.13
0.14

0.15

TaBLE 2. Curve-fitting results for velocity (a,), reduced gravity (b,) and turbulent shear stress (c,) profiles and calculated values of A and C. R,ff
and R; give the linear regression coefficient for best-fit profiles and for Gaussian profiles, respectively.
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FIGURE 1. Evolution of A as function of z* in jets ((J) and plumes (®). Dashed lines give the
best fits and solid lines give the self-consistent fits (see § 3).

3. The route to self-similarity

The evolution of A as a function of z" visible in figure 1 suggests that although
the apparent self-similarity often reported from individual experimental studies can
only at best be local, it is possible that taken altogether the experimental data could
be interpeted in terms of a universal evolution of self-similarity. To test this, the
value of A deduced from the experimental profiles is not the only information we
have. In addition, we can use the direct experimental measurement of spreading
angle of the velocity profile that, for pure jets and plumes, constitutes a measurement
of entrainment constant that can be compared to the theoretical prediction of our
parameterization of entrainment (equation (2.1)) as a function of A.

A first reaction to figure 1 might be to propose a simple log-linear best fit to the
evolution of A as a function of z*:

A, =0.53+0.56log(z") (3.1)
for plumes and
A; =1.12+0.311og(z") (3.2)

for jets, shown as dashed lines. Figure 2 shows however that substituting these best
fits for A into (2.1) does not provide good estimates of «, for both jets and plumes.
It also seems unlikely that A goes on increasing as z* tends to infinity. We therefore
search for an empirical description of all the data taken together that optimizes fits to
the data for A and for «, under the constraint that dA/dz" eventually tends to zero
for large z". We refer to this in figure 1 and subsequent graphs as the self-consistent
model. Exponential laws provide the simplest self-consistent fits, namely,

A, =142 —442exp(—2.188 x 107'7") (3.3)
for plumes and
A; =2.45—1.05exp(—4.65 x 107z") (3.4)

for jets. Figure 1 shows that these predict relatively well the evolution of A except
perhaps for the value proposed by Rouse et al. (1952) (A = 1.60 at z* = 75). This
however is an older measurement with the largest error bar and the alternative recent
value proposed by Wang & Law (2002) (A = 1.45 at the same z*) agrees with the
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FIGURE 2. Measured evolution of «, in jets and plumes. The symbols are the same as in
figure 1. Dashed lines correspond to predictions with the best fits of A and solid lines give the
predictions with the self-consistent fits of A.

self-consistent fit. Figure 2 shows that these exponential laws yield much better
estimates of «, for z* > 10 and account well for the differences between experiments.
We chose in our study to exclude the data for z* lower than 10 for which it is generally
agreed that there is a potential core into which mixing has not fully penetrated. We
thus conclude that the evolution of entrainment in jets and plumes is determined by
the evolution of A. One may note for example the non-monotonic evolution of «, for
plumes at low z* which corresponds to the dominant influence of the dA/dz" term
in (2.1) at lowest z* whereas at large z* the flow goes to complete self-similarity and
dA/dz" tends to 0. To illustrate the self-consistency of these conclusions, we use our
parameterization of entrainment (equation (2.1)) to go back to the rate of change of
A as a function of z*. To do so, one needs the value of C and of the entrainment
constant for the different experiments, given in table 1, and to replace Ri and R/z by
their expressions for pure jets and pure plumes. Our formula gives for plumes

dA, A, [ 8 5C
=r SR , 35
dz* Z" <3Ap 60{e> (3:5)
and for jets
dA; A C
= 1— 3.6
dz* z ( 2ae> ' (36)

The rates of change of A estimated from these relationships are shown in figure 3.
For plumes, it appears that the rate of change of A decreases as a function of
the distance from the source and becomes equal to O within experimental errors
at approximately z* = 50, which shows that universal self-similarity can be defined
beyond these distances. Things are less clear for jets, but when looked at in detail,
dA/dz" decreases by half between z* = 15 (dA/dz" =~ 0.0075) and z* = 65 (dA/dz" =
0.0038). The rate of evolution of A is thus not constant but decreases with z* and
tends to O at large z*. These results provide support for a universal asymptotic regime
with, however, different evolutions for jets and plumes.

4. Conclusions

George (1989) has postulated that differences in entrainment measured in different
jet experiments were due to local self-similarity. A quantitative test of this idea
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FIGURE 3. Rate of evolution of A in jets and plumes. The symbols the same as in figure 1.
Solid lines are the derivatives of the consistent fits.

requires knowledge of the evolution of both the shapes of the profiles of dynamical
variables and entrainment as a function of distance from the source. Most of the
studies, however, have been carried out with ranges of z* that are too small to provide
a definitive test of the hypothesis of self-similarity. A global study of the different
experiments shows however that the description based on local self-similarity proposed
by George (1989) yields a better description of entrainment. Nevertheless, the global
evolution of self-similarity follows a universal route, and complete self-similarity does
eventually occur for both jets and plumes. According to Mi et al. (2001), non-identical
states of self-similarity can be linked to the turbulence structures and in particular
to more or less intermittent large-scale coherent structures. These structures are not
present close to the source where the turbulence is still influenced by the geometry
of the nozzle. At intermediate distances the large-scale structures appear but are
only intermittent (Schefer et al. 1994). At large distances, they eventually become
permanent and the flow is fully self-similar. These structures drive the evolution of
the profiles and contribute to the changes of A.

The evolution of A can be due to the evolution of the shape of the profiles and/or to
the evolution of the relative width of the buoyancy and velocity profiles which reflects
the local turbulent Prandtl number. For example, taking A = 1 one can analytically
write A as a function of the power in the exponential expression for the velocity and
buoyancy profiles, n,

A =24/n3=2n, (4.1)

Using that expression, one obtains that the evolution of the profiles from a ‘top-hat’
(n — o0) to a Gaussian shape (n = 2) increases the value of A from 1 to 1.33. This
variation is significant but cannot account for the full range of observed values of
A (table 2) which also requires a change of the turbulent Prandtl number. Figure 4
shows the values of 4 and the corresponding values of the turbulent Prandtl number
(Pr = 1/%), which decrease from 1.61 to 0.83 in plumes and from 0.83 to 0.64 in jets.
Such an evolution corresponds to the classical description in terms of momentum
transport theory (Pr— 1) close to the nozzle and in terms of vorticity transport theory
(Pr— 0.5) at large distances from the source (Schlichting 1955).

Our study shows that the route to self-similarity is different for jets and plumes.
Not only does self-similarity occur earlier in pure plumes than in pure jets, but the
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FIGURE 4. Evolution of A (i.e. Pr) as a function of z*. The symbols are the same as in figure 1.

effective turbulent Prandtl number is smaller in jets than in plumes. This suggests
that buoyancy plays a role in triggering and organizing the large-scale structures,
probably in relation to the buoyancy gradient between the core and the edges of a
plume. As a result buoyancy has two important effects on entrainment: (i) directly
via the term involving Ri in (2.1) and (ii) indirectly via the evolution of A in the term
dA/dz" in (2.1). This emphasizes that additional care must be taken in experiments
when it is intended to use passive tracers that generate some buoyancy.

The present study is based on the comparison of different studies made on
different fluids, using different set-up and at different downstream distance from
the source. We show that the evolution with downstream distance is the major effect.
A clear understanding of the influence of other experimental parameters will in turn
require the largest range possible of z* in the measurements made in one given set
of experiments and an explicit correction for the evolution of self-similarity. The
quantitative description of a reference route to self-similarity in jets and plumes we
provide may thus open the way to future experimental and theoretical work on the
subject. For example, the more complex question of the transition between jet- and
plume-like behaviour, for both lazy and forced plumes, could be revisited in the light
of our new results.

The authors thank three anonymous referees for their constructive comments.

Appendix

Our approach is based on local measurement of the entrainment coefficient based
on the shape of the velocity profile. An alternative approach is to estimate the
entrainment coefficient from the measurement of the fluxes of mass and momentum.
This approach requires in turn taking into account the finite fluxes of mass and
momentum at the origin, which corresponds to the ‘virtual origin’ correction. This
method has been applied successfully for lazy plumes (Hunt & Kaye 2001) and here
we discuss its consequences for forced plumes.

In an unstratified environment and with the hypothesis of constant entrainment
coefficient, the conservation equations can be written as (Morton et al. 1956;
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dotted line give the local entrainment coefficient based on the profile of velocity in the pure-jet
regime and in the pure-plume regime, respectively.

Linden 2000)

490 _ g m, (A1)
dz

dM  QF

7= A2
== (A2)
dF

where Q = nw,,b*>, M = Lnw’b? and F = ing),w,b*. Equations (A1) and (A2) can

be combined to yield a value of @, (Hunt & Kaye 2001),

_ SR 0°— 0§

= 52
8ml/2 ppsi2 — MO/

(Ad)

(o2
where Oy and M, are fluxes at the source. The change in the entrainment coefficient

corresponding to the source correction is then given as

Aa, o 11— Q(Z)/Q2
a  1— M /M5

(A5)

Using (A 5) equation we found that the correction for the forced plumes considered in
the present study is smaller than 1% and cannot account for the systematic change of
a, as a function of z/D on which we focus. This reflects the fact that measurements are
made at large distances to the source relative to the mass length scale L, = Q%°/F!/?
which quantifies the distance over which the source volume flux is important (Fischer
et al. 1979; Linden 2000).

In Papanicolaou & List (1988), the mass and momentum fluxes are given both
at the origin and as a function of the downstream distance from the source, and
equation (A 4) can be used to obtain a local value of the entrainment coefficient.
Figure 5 shows the resulting evolution of «, as a function of z/L,,, with and without
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the correction of virtual origin. Three conclusions can be drawn from the figure.
First, as noted before, the correction is negligible for z/L,, > 5, i.e. in the pure plume
regime. Second, the entrainment coefficient is not constant but evolves as a function
of z/L, which is at odds with the underpinning hypothesis of the method. Last,
the estimated entrainment coefficient is smaller than the one measured locally from
velocity profiles, both for jets and for plumes. This is due to the fact that this method
reflects the complete entrainment history of the plumes. In the pure-jet regime, the
average entrainment appears reduced because of the stage of a potential core in
which the profiles are not fully developed. In the pure-plume regime, the average
entrainment appears reduced because of the stage of a pure jet in which buoyancy
is not large enough to increase entrainment. One should note however that there is
a systematic increase of the average entrainment towards the local pure-plume value.
We thus conclude that although the method based on the virtual origin still shows an
evolution of the entrainment coefficient, this evolution is biased by the past history of
the plume, i.e. the fact that it started life as a jet. This method thus cannot be used
as directly as the values obtained by measurement of local velocity profiles to study
precisely the evolution of self similarity.
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