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A B S T R A C T

The recent development of a national seismic broadband network in Ecuador enables us to determine a comprehensive catalog of earthquake focal mechanisms at the
country-scale. Using a waveform inversion technique accounting for the spatially variable seismic velocity structure across the country, we provide location, depth,
focal mechanism and seismic moment for 282 earthquakes during the 2009–2015 period. Our results are consistent with source parameter determinations at the
global scale for the largest events, and increase the number of waveform-based focal mechanism solutions by a factor of two. Our new catalog provides additional
constraints on the active deformation processes in Ecuador. Along the Ecuador margin, we find a correlation between the focal mechanisms and the strength of
interseismic locking at the subduction interface derived from GPS measurements: thrust earthquakes predominate in Northern Ecuador where interseismic locking is
high, while the low-to-moderate locking in Central and Southern Ecuador results in variable fault plane orientations. Focal mechanisms for crustal earthquakes are
consistent with the principal axis of strain rate field derived from GPS data and with the location of the main active faults. Our catalog helps to determine the
earthquake type to be expected in each of the seismic zones that have recently been proposed for probabilistic seismic hazard assessment.

1. Introduction

The northern Andes is an area of complex tectonics due to the in-
teraction of the Nazca, South America and Caribbean plates
(Pennington, 1981; Kellogg and Bonini, 1982; Ego et al., 1996). The
oblique convergence of the oceanic Nazca plate below the South
America continent (Fig. 1) is partitioned between westward slip at the
subduction interface and a northeastward escape of the North Andean
Sliver (NAS) relative to South America (e.g., Pennington, 1981; Kellogg
et al., 1985; Freymueller et al., 1993; Audemard and Audemard, 2002;
Trenkamp et al., 2002; Nocquet et al., 2014; Mora-Páez et al., 2018,
Fig. 1). The NAS motion is predominantly accommodated by a large-
scale regional dextral fault-system (Soulas et al., 1991), starting at the
southern boundary of the Caribbean plate in Venezuela, running across
Colombia along the foothills of the Eastern Cordillera (e.g., Taboada
et al., 1998), entering into Ecuador where it crosses the Andean cor-
dillera, before finally reaching the gulf of Guayaquil (e.g., Audemard,
1993; Nocquet et al., 2014; Alvarado et al., 2016; Yepes et al., 2016;
Fig. 1). In Ecuador, this major fault system has been named the Chin-
gual-Cosanga-Pallatanga-Puná (CCPP) fault system, in reference to its
individual segments (Alvarado et al., 2016). Secondary fault systems,
with significant seismic hazard shown by large historical earthquakes
(Beauval et al., 2010, 2013), are also found west of this major fault
system in the inter-andean valley, and east of it in the sub-andean

domain (Alvarado et al., 2014, 2016; Yepes et al., 2016) (Fig. 1).
Along the Ecuadorian margin, elastic strain accumulation is het-

erogeneous. In northern Ecuador, the high interseismic locking imaged
by GPS (Fig. 1) is consistent with the large megathrust earthquakes
observed during the XXth century [1906, Mw 8.4–8.8 (Kelleher, 1972;
Kanamori and McNally, 1982; Ye et al., 2016; Yoshimoto et al., 2017);
1942, Mw 7.8 (Mendoza and Dewey, 1984); 1958, Mw 7.7 (Swenson
and Beck, 1996); 1979, Mw 8.1 (Beck and Ruff, 1984)] and with the
recent Mw 7.8 2016 Pedernales earthquake (Ye et al., 2016; Nocquet
et al., 2017; Yoshimoto et al., 2017).

Between latitudes 0.8S and 1.5S, the average coupling is low and
only a small, shallow area close to La Plata island is found to be locked
(Vallée et al., 2013; Chlieh et al., 2014; Collot et al., 2017). South of this
area, the GPS data do not detect any significant coupling (Nocquet
et al., 2014; Villegas-Lanza et al., 2016).

Aside from the large subduction earthquakes, destructive events
mostly occurred along or close to the CCPP (Beauval et al., 2010, 2013;
Alvarado et al., 2016; Yepes et al., 2016). Large crustal events are ex-
pected to have long recurrence intervals (Baize et al., 2015), and as a
consequence, historical events cannot fully characterize the type and
locations of potential future earthquakes. An approach complementary
to the historical earthquake catalog is to determine the rupture me-
chanism of small and moderate earthquakes. A preliminary attempt to
characterize the seismogenic zones in Ecuador was made by Bonilla
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et al. (1992) who determined the spatial distribution of the active fault
systems, using the earthquake depths and faulting styles provided by
the focal mechanisms solutions. More recently, Yepes et al. (2016)
proposed a new classification for the seismic source zones (SSZs) for
subduction interface, intraslab and crustal events. Their classification
takes into account focal mechanisms from the Global centroid moment
tensor (GCMT) catalog (Dziewonski et al., 1981; Ekström et al., 2012),
geological and geophysical information (tectonic and structural fea-
tures of major faults, geodesy and paleoseismology). In total 19 SSZs
have been characterized corresponding to the shallow subduction in-
terface (3), intraslab (6), crustal (9), and outer rise (1) zones. Each of
the SSZ is assumed to have a homogeneous seismogenic potential
(Yepes et al., 2016). In this study, we use the zonation proposed by
Yepes et al. (2016) and discuss its relations with our newly determined
focal mechanism catalog.

2. Development of the broadband seismic network and new
potential for source parameters determination

For the main part of the XXth century, Ecuador has been seismically
instrumented only by sensors in the vicinity of its capital Quito. In
1904, the Astronomical Observatory installed there the first seismic
instrument (Bosh-Omori), which was then replaced by a Mainka in-
strument in 1928. Later, a set of Sprengnether seismometers (two
horizontal and one vertical components) was deployed in 1954. In
1963, the QUI station (composed of 3 high-gain and 3 long period in-
struments, both with horizontal and vertical components (López,
2005)) was installed in the western part of Quito in the framework of
the World-Wide Standardized Seismographic Network (WWSSN). This

station was moved in 1975 to South-west of Quito and was maintained
until the 1980's by the “Instituto Geofísico de la Escuela Politécnica
Nacional” (IG-EPN).

The local Ecuadorian seismic network started in the 1970's, with
short period seismic stations mostly deployed temporarily in order to
monitor volcanic activity and specific areas of the Inter-Andean-Valley
(Yepes, 1982; Durand et al., 1987). The density of the stations in the
Andes improved after the creation of the IG-EPN in 1983, and the
seismic network was eventually extended to the coastal areas after 1991
(Vaca, 2006). In 2002, the IRIS GSN station OTAV (close to Otavalo
city) was the first permanent broadband station with real time trans-
mission installed in the country. Since 2006, the seismic network has
been regularly improved thanks to the efforts of IG-EPN together with
the support of national government agencies (SENESCYT and SENPL-
ADES), national and international partners (local governments, IRD,
JICA, USAID, see Alvarado et al., 2018). The densification of the broad
band network in the north-western zone of Ecuador started at the end of
2008 with the ADN-project (Nocquet et al., 2010). Since 2011, a
country-scale broadband network is progressively being installed, with
the final objective to cover the most seismically active regions, from the
coastal zone to the eastern foothills with an average ∼50 km inter-
station distance (Fig. 2).

Among other applications, the development of a country-wide
broadband seismic network now allows us to determine the earthquake
source parameters by waveform modeling. Since 2009, most of the
events with moment magnitudes Mw > 3.5 could be analyzed with the
method described in the next section. Even with only a few years of
data, a significant information increase is expected compared to the
GCMT catalog, which has a magnitude threshold of about Mw 5.0. We

Fig. 1. Tectonic map of Ecuador. The Nazca plate con-
verges obliquely with respect to the stable South
American plate (SOAM) at 58mm/yr (Kendrick et al.,
2003), and relatively to the North Andean Sliver (NAS) at
47mm/yr (Nocquet et al., 2014). The interseismic cou-
pling (ISC) model from Chlieh et al. (2014) is shown by
the colored contours. With respect to stable South
America, the NAS moves NNE-ward at ∼9mm/yr along
the Chingual-Cosanga-Pallatanga-Puná (CCPP) fault
system (Nocquet et al., 2014; Alvarado et al., 2016). The
Inca Sliver is moving toward the SSE at ∼5mm/yr
(Nocquet et al., 2014; Villegas-Lanza et al., 2016), indu-
cing shortening in the eastern sub-Andean belt. The Gri-
jalva fracture separates two domains of the Nazca plate
with different ages and densities (Lonsdale, 2005). Faults:
SLL: San Lorenzo lineament; EF: Esmeraldas Fault; EAF:
El Angel Fault; JiF: Jipijapa Fault; Py: Pisayambo zone;
QFS: Quito active Fault System. Cities: E: Esmeraldas; B:
Bahía; M: Manta; G: Guayaquil; Q: Quito; L: Latacunga; C:
Cuenca; R: Riobamba.
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also expect to improve the focal mechanism information previously
provided by IG-EPN, which was based on first arrival polarities. Our
final objective is to contribute to the “Ecuadorian focal mechanism
catalog”, in which we will also provide more reliable information about
source depths and moment magnitudes.

3. Focal mechanism, depth and magnitude determination

Several similar methods exist to analyze the broadband seismic
waveforms in order to retrieve the source parameters [e.g. FMNEAR
(Delouis, 2014); ISOLA (Zahradník et al., 2008)]. Here, we use the
MECAVEL method, already used in several studies of moderate mag-
nitude earthquakes (Mercier de Lépinay et al., 2011; Grandin et al.,
2017). A specificity of the MECAVEL method is its ability to solve for
the velocity model simultaneously with the searched source parameters
(strike, dip, and rake of the focal mechanism, centroid location, source
origin time and duration, and moment magnitude). The method starts
from an initial solution (for origin time, hypocenter, and magnitude),
here determined by IG-EPN. The velocity model is parametrized by a
superficial low-velocity layer above a crustal structure with variable
Moho depth. Crustal velocities are searched over a wide range, between
5.5 km/s and 6.7 km/s, and Moho depth can reach up to 67 km. This
approach is particularly useful when analyzing earthquakes occurring
in different tectonic environments, as it is the case in Ecuador. Modeled
waveforms in the tabular velocity model are computed using the

discrete wave number method from Bouchon (1981), and the inverse
problem is solved through the Neighborhood Algorithm (Sambridge,
1999). Within the MECAVEL method, the three-component displace-
ment waveforms are bandpassed between a low frequency (Fc1) and a
high frequency (Fc2) threshold. Fc1 is typically chosen above the low-
frequency noise that may affect the waveforms for a moderate earth-
quake and Fc2 is mostly controlled by the limited accuracy of the sim-
plified one-dimensional structure model. Fc2 must also not be chosen
above the earthquake corner frequency, because the earthquake time
history is simply modeled by a triangular source time function whose
only inverted parameter is the global duration. In most of the cases
analyzed here, Fc1 on the order of 0.02–0.04 Hz and Fc2 on the order of
0.05–0.07 Hz are found to be suitable values. As a consequence, the
source duration has a real role in the inversion procedure only for large
events (Mw > 6.5), for which it affects frequencies close to Fc2.

We extract all events reported with local magnitude larger than 3.8
from the Ecuadorian national earthquake catalog (IG-EPN) for the
period 2009–2015, and collect all the available broadband seismic data
in Ecuador. We then manually select the most suitable waveforms,
taking into account distance and azimuthal coverage and eliminating
components with a poor signal-to-noise ratio. For the 544 events with
magnitude above 3.8, 326 were recorded with a quality sufficient for
the waveform analysis.

We use a criterion based on the misfit between data and synthetics,
azimuthal coverage, and number of available stations and components,

Fig. 2. Seismic (broadband, green triangles) and GPS networks (orange hexagons, Mothes et al., 2013, 2018; Alvarado et al., 2018) in Ecuador as of December 2015.
The dense arrays of seismic stations in the central-northern part of the country are used for volcano monitoring. Additional GPS stations in northern Peru and
southern Colombia helping to define the regional kinematics are also shown. (For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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in order to ensure that only reliable solutions are kept. 44 events not
meeting these criteria were rejected, resulting in a final catalog of 282
events. This catalog is provided as a public dataset linked to the present
study (Vaca et al., 2019). Rejections are mostly related to earthquakes
with low magnitudes located far away from the seismic network, and/
or to earthquakes with an erroneous initial location preventing the
MECAVEL method to converge. An example of focal mechanism de-
termination for a Mw 3.8 earthquake is shown in Fig. 3.

As a first validation of our method, we compared our results to the
Global CMT solutions for the 34 events found in common during the
2009–2015 period. These earthquakes have a magnitude between Mw
4.8 and Mw 7.1 (Figs. 4–6). The focal mechanisms are very similar in

almost all cases, even when compared to the full GCMT solution which
includes the non-double-couple components. Only one event (2014/10/
20, marked with a black asterisk in Fig. 4) located in the Andes close to
the Ecuador-Colombia border, is significantly different. This event oc-
curred during a seismic crisis related to a magmatic intrusion in the
Chiles-Cerro Negro volcanic complex (IG-EPN, OSVP internal reports,
Ebmeier et al., 2016). In such a context, a complex mechanism re-
flecting the superposition of volumetric changes and shear faulting
(McNutt, 2005; Minson et al., 2007; Shuler and Ekström, 2009) would
explain the strong non-double-couple component of the GCMT-solution
and the difficulty to resolve this event with the double-couple ME-
CAVEL method.

Fig. 3. Example of a solution determined by
the MECAVEL method. The map in (a)
shows the inverted source parameters (focal
mechanism, moment magnitude Mw and
depth Z) and the location of the broadband
seismic stations used. The red line re-
presents the trench. The left-bottom inset
provides the origin time (T0), the epicentral
location and the angles (strike, dip, and
rake) of the two conjugate focal plane so-
lutions. The agreement between observed
(blue) and synthetic (red) waveforms is
shown in b) for each station and compo-
nent. The stations are sorted by increasing
epicentral distance from top to bottom.
Here, data and synthetics are filtered be-
tween 0.04 Hz and 0.06 Hz. We excluded
some components because of their poor
signal-to-noise ratio in the selected fre-
quency range. (For interpretation of the
references to color in this figure legend, the
reader is referred to the Web version of this
article.)

Fig. 4. Comparison between MECAVEL (double couple) with GCMT solutions (full solution) for the common events of the 2009–2015 period. The date of the
earthquake occurrence is shown to the left of the focal mechanisms. Depths (Z) and magnitudes (Mw) are shown to the right of the focal mechanisms.
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Compared with GCMT results, no general bias is observed for the
full depth range, down to 200 km depth, and the average difference is
8 km (Fig. 5). This difference is due to the numerous events with depths
shallower than 50 km, for which GCMT determines deeper values than
MECAVEL. This trend is likely due both to the minimum allowed depth
in the inversion (12 km for GCMT and 3 km for MECAVEL) and to
slower velocity structures found by MECAVEL. The comparison of
magnitudes shows that those determined with the MECAVEL method
are slightly lower than the GCMT ones (average difference of 0.13,
Fig. 6). On the contrary, magnitudes from IG-EPN catalog are system-
atically larger (average difference of 0.38). Such observation should
help to homogenize the magnitudes of the local IG-EPN catalog, a step
required to use a magnitude catalog for seismic hazard estimation (e.g.
Beauval et al., 2013).

As another validation of the MECAVEL method, we show in Fig. 7
that the optimized 1D model is consistent with the large-scale features
of the crustal thickness in Ecuador. In particular, the Moho depth ap-
proaches 50 km beneath the ∼150 km-wide Andes mountain range
(Robalino, 1977; Chambat, 1996); and as expected, the crustal thick-
ness is thinner when entering into the subandean area or into the
coastal domain. Crustal thicknesses obtained from Receiver Functions
show Moho depths of ∼53 km under the Cotopaxi volcano in the
central Andes (Bishop et al., 2017), and of∼50 km below OTAV station

Fig. 5. Depth comparison for the events common to GCMT and MECAVEL (this
study). Dashed lines show the line along which the considered depths are equal.

Fig. 6. Magnitude comparison for the events common to GCMT, MECAVEL (this study) and IG-EPN local catalog. a) Comparison between GCMT and MECAVEL b)
Comparison between MECAVEL and IG-EPN. In b) we show the equation of the linear regression (thick line) between the two magnitude catalogs (and the associated
correlation coefficient R2). This equation can be used to convert the local magnitudes to moment magnitudes in order to homogenize the local catalog. In a) and b)
the dashed lines show the line along which the considered magnitudes are equal. “mg_IGEPN” refers to the preferred magnitude reported by IG-EPN.

Fig. 7. Moho depths inferred from the MECAVEL inversion results. The depth
contours are interpolated from the Moho depths individually determined for
each earthquake (colored points). The subduction area is not considered here,
as the tabular model is not expected to provide meaningful information in a
context of 2D/3D structure complexities. Colored triangles show Moho depths
obtained from Receiver Functions at the two following locations: CTPXI
(Cotopaxi Volcano) and OTAV (IRIS GSN station close to Otavalo).
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(Poveda et al., 2015). We show in Fig. 7 that the latter values are
consistent with the neighboring Moho depths inferred from MECAVEL.
Crustal depths determined in the subduction area (not shown in Fig. 7)
are less consistent from one earthquake to the other, which can be
simply understood by the fact that the one-dimensional parametrization
is too simplistic in a subduction context. This generally illustrates that
in a structurally complex area, the velocity structure determined by the
MECAVEL method has to be considered as an equivalent model, pos-
sibly not directly related to the actual structure.

In Fig. 8, we finally show the 210 solutions reported by GCMT
(Ekström et al., 2012) for the 1976–2015 period together with the 282
solutions determined here in the 2009–2015 period. We observe a
general consistency of the focal mechanisms between the two catalogs,
in all of the seismically active areas of the country. The two catalogs
complement each other, with areas where information about the
earthquake mechanism type is richer in the MECAVEL or, on the con-
trary, in the GCMT catalog. In the next section, we discuss the combined
catalog in the light of the active deformation processes in Ecuador. This
combined catalog uses the MECAVEL solution for the events common
with GCMT, but as shown by the similarities of the 34 common solu-
tions in Fig. 4, this choice does not influence any further interpretation
of the focal mechanisms.

4. Focal mechanisms and deformation processes in Ecuador

For the sake of clarity, we separate the focal mechanism (FMs) ac-
cording to their depths and their locations along the margin or in the
continental domain. Figs. 9 and 10 show events shallower than 35 km
(used to analyze the partitioning features in Fig. 11), and Fig. 12 shows

the events deeper than 35 km. Although this division is somehow ar-
bitrary, it is convenient to first discuss the state of stress at the sub-
duction interface and within the overriding plate. Within the con-
tinental domain, it allows to separate the events related to crustal
tectonics from deep slab-related events.

4.1. Subduction

Overall, the location of the earthquakes studied here is in agreement
with the study from Font et al. (2013), who found that earthquakes
during the interseismic period are spatially organized into several
stripes of seismicity, most of them being perpendicular to the trench
(Fig. 9).

4.1.1. Northern Ecuador
This zone hosted a large megathrust earthquakes sequence during

the XXth century with magnitudes Mw 7.7–8.8 (Kelleher, 1972; Beck
and Ruff, 1984; Mendoza and Dewey, 1984; Swenson and Beck, 1996).
In our catalog, this area is characterized by thrust events at or close to
the subduction interface (Fig. 9). An interesting spatial correlation
shows up with the interseismic locking models. Indeed, from latitude
0.8°N and further north, high locking is found from the trench to a
depth of ∼30 km. Location of the focal mechanisms determined here
appears to outline the area of high locking, with only very few events
located within areas of locking higher than 60% (Fig. 9). Focal me-
chanisms rather correlate with areas of the largest interseismic locking
gradients, either downdip or laterally. This observation is for instance
similar to the Himalaya where the small seismicity appears to delimit
the downdip limit of locking, where shear stress at the interface is the

Fig. 8. Focal mechanisms provided (a) by the MECAVEL method (this study, 2009–2015) and (b) by the GCMT double-couple solutions (1976–2015). In a) and b) the
earthquake depths and the iso-depths (in km) contours of the slab (Hayes et al., 2012) are color-coded with the same color scale (shown at the bottom right). The
thick red line with triangles represents the trench. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this
article.)
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largest during the interseismic period (Avouac et al., 2015). This seis-
micity also appears to occur during seismic swarms related to slow slip
events as found by Vaca et al. (2018) for the Punta-Galera Mompiche
zone area located around lat. 0.8°N. The thrust mechanisms found in
this study are compatible with this interpretation, although a few
shallow strike-slip mechanisms reflect additional deformation within
the overriding plate along the San Lorenzo lineament and the Esmer-
aldas fault (Fig. 1).

4.1.2. The Pedernales segment
The Pedernales segment, between lat. 0.7°N and 0.5°S, possibly

ruptured during the 1906 earthquake, and hosted the 1942 Mw 7.8–7.9
and the recent 2016 Pedernales Mw 7.8 earthquakes (Swenson and
Beck, 1996; Ye et al., 2016; Nocquet et al., 2017). Along this segment,
interseismic locking is confined between 10 and 30 km depth, in
agreement with the location of the 2016 Pedernales earthquake, whose
main rupture propagated below the coast between latitudes 0.4°N and
0.4°S (Nocquet et al., 2017). Our catalog, which ends in 2015, exhibits
interesting spatial relationships with the rupture areas of the forth-
coming Pedernales earthquake. First, our catalog shows that very few
earthquakes occurred within the area of large (> 1m) co-seismic slip of
the Pedernales earthquake (Fig. 9 and Nocquet et al., 2017) during the
years before the event. Secondly, at lat.∼0.2°S, our catalog highlights a
larger density of events. That area did not rupture during the 2016
earthquake but experienced large and rapid localized afterslip im-
mediately after (Rolandone et al., 2018). It also hosted regular seismic
swarms (Segovia, 2016) and repeating earthquakes during the years

before the Pedernales earthquakes, although no associated slow slip
event here has been geodetically found yet (Rolandone et al., 2018).
The focal mechanisms found in this study are also predominantly
thrust, consistent with slip at the interface (Figs. 9 and 10). In that area,
deformation therefore does not appear to be accommodated by in-
frequent large earthquakes, but rather by numerous moderate earth-
quakes, seismic swarms (possibly associated with aseismic slip) and
afterslip.

4.1.3. The Bahía de Caráquez and La Plata Island segments
The Bahía area (Figs. 9 and 10), between latitudes 0.5°S and 1°S,

experienced three M ∼7 earthquakes in 1896, 1956 and 1998 (Mw 7.1)
(Segovia et al., 1999; Yepes et al., 2016). In that area, our study shows
mostly thrust mechanisms, compatible with interface subduction
earthquakes. Although Yepes et al. (2016) consider the Pedernales and
Bahía asperities to behave independently one from each other, the
seismicity distribution does not show clear patterns to support this
view. The Bahía and Pedernales segments are now considered as the
same seismic zone (Beauval et al., 2018).

Between latitudes 1°S and 1.5°S, the central margin in Ecuador in-
cludes a 50× 50 km2 area of high ISC (Figs. 1 and 9), around the “La
Plata Island”, found to correlate with the presence of a subducted
oceanic relief (Collot et al., 2017). This zone marks a transition between
the mostly locked areas to the north and the southern Talara zone
(Fig. 10) which shows weak to negligible interplate locking. Episodic
slow slip events, associated with seismic swarms seem to release part of
the slip deficit there (Vaca et al., 2009; Font et al., 2013; Vallée et al.,
2013; Chlieh et al., 2014; Jarrin, 2015; Segovia et al., 2018). In the
central margin, the mechanisms of the abundant seismicity are more
diverse than in Northern Ecuador (Figs. 9 and 10), varying from reverse
to strike-slip. The presence of Carnegie ridge may be an element ex-
plaining this variability, perhaps through the influence of various sea-
mounts locally perturbing the stress field (Collot et al., 2017). Alter-
natively, strike-slip events might be located within the slab, indicating
internal deformation of the subducting Carnegie ridge.

This area also shows outer-rise seismicity occurring within the
Nazca plate, west of the trench, in the Carnegie ridge domain (Figs. 9
and 10). Part of the seismicity might be related to the slab flexure
(Collot et al., 2009), which is evidenced here by the presence of a few
normal mechanisms. Nevertheless, most of the earthquakes show strike-
slip mechanisms with planes azimuths ranging from N–S to NE-SW, like
the one of 2011/11/17 (Mw 5.9 MECAVEL, Mw 6.0 GCMT; Figs. 4 and
8–10). Such kind of seismicity could be related to two aligned ridges of
∼W-E direction (with a 30 km separation) and to some structures of the
Nazca Plate aligned N55°E, observed in the bathymetry (Michaud et al.,
2006; Collot et al., 2009). Because of the recurrent seismicity and the
reported magnitudes, we suggest that the outer-rise Carnegie ridge
could be added as an additional seismic zone for future PSHA models.

Further inland, an aligned N–S cluster with mostly reverse FMs is
observed between lat. 1.8°S and 1.2°S. Béthoux et al. (2011), observing
a similar pattern of focal mechanisms, suggest that some of them are
not related to the interface but to the N–S oriented Jipijapa fault (Fig. 1)
(Egüez et al., 2003), especially those showing steep dips (∼30°) and
shallow hypocenters (less than 20 km depth).

4.1.4. Southern Ecuador and northern Peru
South of the Grijalva fracture (Fig. 10), very few thrust events are

observed. This can be related to the very low subduction interface
locking in this area (Nocquet et al., 2014; Villegas-Lanza et al., 2016).
The faulting mechanisms are dominantly strike-slip with a few normal
events (Fig. 10), in agreement with the NNE-SSW opening of the Gulf of
Guayaquil (Deniaud et al., 1999; Calahorrano, 2005; Witt et al., 2006)
and the relative motion between the NAS and the Inca Sliver (Nocquet
et al., 2014).

Interestingly, we observe a general correlation between the level of
locking and the diversity of focal mechanisms. For the locked Northern

Fig. 9. Combined GCMT and MECAVEL (1976–2015) shallow FMs solutions
(depth shallower than 35 km) for the central and northern Ecuador margin. The
interseismic locking model from Chlieh et al. (2014) is shown by the colored
contours. The thick red line with triangles represents the trench. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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segments (see Fig. 1), thrust mechanisms consistent with the Nazca-
NAS convergence dominate, suggesting that locking at the plate inter-
face controls the stress field both at the plate interface and within the
overriding margin. Oppositely, south of La Plata Island (∼1.5°S) where

locking is weak or confined to the shallowest part of the subduction
interface, thrust mechanisms show variable orientations of shortening.
Additionally, normal and strike-slip mechanisms, consistent with
known crustal faults (e.g. Béthoux et al., 2011) are frequent. Thus, the

Fig. 10. Joint CGMT and MECAVEL shallow FM solutions
(depth shallower than 35 km). We keep the conventions
chosen by Yepes et al. (2016) for interface (non-colored
polygons) and upper-crustal (colored polygons) seismic
source zones (SSZs). Faults distribution is modified from
Alvarado et al. (2016). The strain rate axes are calculated
from GPS velocities measured within or close from each
SSZ (see Fig. S1 and Table S1). We exclude the strain
tensor of El Angel SSZ, because too few velocities are
available there. The red line represents the trench. (For
interpretation of the references to color in this figure le-
gend, the reader is referred to the Web version of this
article.)

Fig. 11. Partitioning indicated by FMs (GCMT and
MECAVEL) subduction interface events. (a) The
surface-projected slip vector of each focal me-
chanism is shown by blue lines, together with the
Nazca/SOAM convergence direction (green lines).
(b) The histogram shows the angle (in degrees) be-
tween Nazca/SOAM convergence direction and slip
vector direction, by bins of 5°. Values range between
−5° and 15°, resulting in an average and standard
error of 5.4° and 6.2°, respectively. (c) Construction
of the kinematic triangle. Average azimuth of the
trench and its normal (red lines), Nazca/SOAM
convergence direction and amplitude (green vector),
and the mean slip direction deduced from FMs (blue)
are first reported. The additional information on the
NAS/SOAM relative direction (black arrow, ∼50°
azimuth), constrained by the purely strike-slip mo-
tion observed in the Chingual area (zone 1 in
Fig. 10), allows us to determine the kinematic tri-
angle. This kinematic triangle is shown in (d) with
the assumed velocity of Nazca/SOAM (green), and
the computed velocities of Nazca/NAS (blue) and
NAS/SOAM (black). (For interpretation of the refer-
ences to color in this figure legend, the reader is re-
ferred to the Web version of this article.)
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heterogeneous stress field along that segment therefore appears to re-
sult from a combination of crustal stress associated with slow straining
of the overriding plate and reduced compressional stress in the plate
convergence direction.

4.1.5. Strain partitioning in the Ecuadorian subduction regime
In subduction contexts with oblique convergence, the motion ob-

liquity is generally not fully accommodated by slip at the plate interface
(e.g. McCaffrey, 1992). In this case, a forearc sliver is expected to move
in a direction parallel to the trench, resulting in strike-slip faulting
along one or several faults within the overriding plate (e.g., Chemenda
et al., 2000). In addition, the trench perpendicular component of plate
convergence may also be partitioned between slip at the subduction
interface and thrust in the back-arc domain.

We examine here how focal mechanisms observed in Ecuador help
to constrain the degree of partitioning. To do so, we first compute the
angle difference between the surface-projected slip vector of interplate
earthquakes and the Nazca/South America convergence direction. This
approach neglects the small 3D component of the slip vector, and relies
on the assumption that motion at the subduction interface is fully
characterized by earthquakes (even if it can also be accommodated by
aseismic processes). We select the FMs (GCMT and MECAVEL) of events
located at the margin with hypocentral depths less than 35 km, nodal
planes with strikes between 0° and 45°, dip shallower than 25°, and
rakes between 90° and 150°, as these events are expected to have
sources along the interface (Fig. 11a). After averaging over the earth-
quakes (Fig. 11 b), the angle difference between the slip vector and the
Nazca/South America convergence direction is found equal to 5.4°
(± 6.2°), clockwise with respect to the Nazca/SOAM convergence

(Fig. 11c and d). Although marginally significant, the average direction
of subduction slip vector suggests that the subduction obliquity is not
fully accommodated by slip at the subduction interface. Its value is
further consistent with the escape of the NAS with respect to SOAM.

To further quantify the amount of partitioning, we use the seismi-
city observed in the Chingual area (zone 1 in Fig. 10), where most of the
FMs are purely strike-slip with one of their nodal planes directed along
a ∼50° azimuth. Using this additional information together with the
amplitude of the Nazca/SOAM convergence (55.7 mm/yr as reported at
0°N by Kendrick et al. (2003)) allows us to determine the kinematic
triangle (Fig. 11c and d). The relative motion Nazca/NAS is found equal
to 49.2mm/yr, to be compared with the value of 47.5 mm found by
Nocquet et al. (2014). The relative motion NAS/SOAM is found equal to
8.2 mm/y, in agreement with the geological slip rates of
7.3 ± 2.7mm/yr (Ego et al., 1996; Tibaldi et al., 2007) and the values
between 7.5 and 9.5 mm/yr derived from GPS data (Nocquet et al.,
2014). If using an average azimuth of 27° for the trench in Northern
Ecuador, the ratio of partitioning is about 25% for the along-trench
component of the Nazca/South America convergence (Fig. 11c).
Normal trench convergence is also partitioned with 6% of the con-
vergence being transferred to the motion of the NAS.

4.2. Crustal deformation

Using the selection of focal mechanisms shown in Fig. 10, we
compare the style of faulting with recent kinematic models for inland
Ecuador (Alvarado et al., 2016) and the seismic zonation proposed by
Yepes et al. (2016). We further compare the principal axes of the hor-
izontal strain rate tensor against the focal mechanisms. The strain rate

Fig. 12. Joint CGMT and MECAVEL deep focal mechan-
isms (depth larger than 35 km). We follow the denomi-
nation chosen by Yepes et al. (2016) for the name of the
seismic sources zones and related features. The Grijalva
rifted margin (black dashed line) is believed to have a
relevant role because it separates two different slab do-
mains with very different seismic activities (Yepes et al.,
2016). The focal mechanism depths and the iso-depths
contours of the slab (Hayes et al., 2012) are color-coded
with the same scale, shown in the legend. The red thick
line represents the trench. (For interpretation of the re-
ferences to color in this figure legend, the reader is re-
ferred to the Web version of this article.)

S. Vaca, et al. Journal of South American Earth Sciences 93 (2019) 449–461

457



tensors provided in Table S1 (Supplemental Information) are derived
from the GPS velocities shown in Fig. S1, using least-squares and esti-
mating a constant velocity gradient (Aktug et al., 2009) within the in-
dividual areas shown in Fig. 10.

4.2.1. The Chingual-Cosanga-Pallatanga-Puná fault system (CCPP)
The CCPP is the main fault system accommodating the 7.5–9.5 mm/

yr motion of the NAS with respect to the stable part of the South
America plate (Nocquet et al., 2014; Alvarado et al., 2016). Variation in
strike, slip rate and faulting styles have been used to define separated
segments for the seismic zonation presented in Yepes et al. (2016).

The Chingual seismic zone is the northern segment of CCPP (Fig. 1,
marked as zone 1 in Fig. 10), crossing the border with Colombia. It
delimits the boundary between the NAS and the Amazon basin, which is
assumed to be part of the stable part of the South America plate, as
indicated by small GPS velocity residuals (< 2mm/yr) east of the
Andes. As a consequence, the motion is expected to be mostly right-
lateral strike-slip (Ego et al., 1995; Tibaldi et al., 2007). Little seismicity
is observed along this segment. The two focal mechanism solutions (see
zone 1 in Fig. 10) are consistent with dextral strike-slip on the NE-
oriented planes. Nonetheless, the faults located at the feet of the eastern
Andes indicate shallow dipping thrust. The strain rate tensor derived
from GPS is in good agreement with right-lateral shear along N30°
trending faults.

South of the Chingual segment, the Cosanga fault system (zone 2,
Fig. 10) delimits the boundary between the NAS and the Sub-andean
domain. Focal mechanisms show reverse slip with a slight right-lateral
strike-slip component along the NS nodal plane. This seismic source is
described as a transpressive zone (Ego et al., 1996; Alvarado et al.,
2016; Yepes et al., 2016). Two destructive earthquakes (Mw ∼7.0), in
the last 60 years (1955 and 1987) (Hall, 2000; Yepes et al., 2016),
occurred along the northern portion of this segment. Focal mechanism
for the 1987, Mw 7.0 (mainshock) and Mw 5.8 (aftershock) show thrust
and strike-slip respectively (Kawakatsu and Proaño, 1991). The strain
rate tensor is also in agreement with a right-lateral transpressive regime
for this segment.

The Pallatanga seismic source (zone 3) includes the Pallatanga fault
itself and the continuously active Pisayambo seismic nest (Aguilar et al.,
1996; Troncoso, 2008). The fault cuts diagonally the Inter-Andean-
Valley across the Riobamba basin where it seems to divide into several
segments (Baize et al., 2015). In its southwestern part, the Pallatanga
fault is a right-lateral strike-slip fault (Winter et al., 1993), for which a
1300-3000 year-long recurrence time of Mw ∼7.5 earthquakes has
been reported from a paleo-seismology study (Baize et al., 2015). The
last earthquake occurred in 1797 and generated the highest intensities
[magnitude 7.6 derived from intensities, XI MKS] reported in Ecuador
(Egred, 2000; Beauval et al., 2010). Focal mechanisms of small mag-
nitude earthquakes show a combination of right-lateral and thrust
motions. The northern part of the Pallatanga fault system (Pisayambo)
shows highly recurrent seismicity (Segovia and Alvarado, 2009). In this
area, the analysis of an Mw 5.0 earthquake in 2010, combining InSAR,
seismic and field observations, evidences a steeply dipping fault plane
(> 50°) with right lateral displacement (Champenois et al., 2017).
Compressional behavior with right-lateral component is indicated by
the GPS derived strain rate tensor.

The southernmost segment of CCPP, the Puná seismic source (zone
4) is described as a strike-slip structure, based on geomorphic ob-
servations in the Puná Island (Dumont et al., 2005). Dumont et al.
(2005) calculated a Holocene slip rate of 5.8–8mm/yr which is con-
sistent with the relative motion between the NAS and Inca Sliver
(Nocquet et al., 2014). No large historical earthquakes have been re-
ported for this segment. The FMs show dextral mechanisms on NE or-
iented planes, which are consistent with the expected fault direction
and the predominant dextral components derived from the strain rate
(Fig. 10). A small group of events including a Mw 5.0 earthquake at the
foot of the western Andes shows reverse motion with ∼EW shortening.

This area behaves like a restraining bend linked to non-coplanar seg-
ments of the CCPP fault system, similarly to the New Madrid seismic
zone (Marshak et al., 2003). In the Gulf of Guayaquil, the diversity of
FMs solutions are the result of the complex tectonic environment.
Strike-slip motion can be interpreted as a result of activity in a trans-
pressional structures like those observed in Puná Island (Deniaud et al.,
1999; Fig. 10). The normal mechanism solutions are related to the drift
of NAS, which induces a N–S tensional regime (Witt et al., 2006).

4.2.2. The subandean domain
The Quaternary tectonics of the northern sub-Andean is not well

known. The scarce seismicity and the lack of instrumentation, before
2009 (Alvarado et al., 2018), are responsible for the incomplete
knowledge of the active tectonics in that zone. Toward the South,
thanks to specific works carried out after the 1995 Macas earthquake
(Mw 7.1), the tectonics of the Cutucú uplift is better understood.

The subandean domain is dominated by reverse faulting
(Rivadeneira and Baby, 2004). In northern Ecuador, the Napo uplift
(zone 5) is considered to result from a sub-horizontal crustal decolle-
ment steepening close to the surface (Rivadeneira et al., 2004). Reverse
FMs show variable fault plane azimuths (Fig. 10) which can be the
expression of such type of structures. The strain rates are the lowest of
the described zones, probably because most of the deformation is ab-
sorbed by the CCPP system and faults in the NAS. From the strain
tensor, a dominant E-W shortening is expected for this area (Fig. 10).

The southeastern Cutucú seismic zone (zone 6) is the source of the
1995 Macas earthquake (Mw 7.0, GCMT); it is a complex system with
almost parallel thrusts and decollements with a NNE trend (Bes de Berc,
2003). The complexity of the fault system could be an element ex-
plaining the diversity of the observed mechanisms (reverse and strike-
slip, shown by both MECAVEL and GCMT solutions; see Fig. 8). How-
ever, we cannot exclude the possibility that some solutions (e.g. around
latitude ∼2°S and longitude ∼77.6°W) are not accurately determined,
due to the absence of stations east of the earthquakes. The strain rate is
relatively low and shows shortening in a NW-SE direction (Fig. 10),
which is consistent with the existence of the Cutucú Range and its NNE
strike.

4.2.3. Western cordillera
The El Angel fault (zone 8) is the southernmost expression of NNE

trending structures that are clearly recognizable along the western
slopes of the Cordillera Central in Colombia, defined as the Romeral
fault system (París et al., 2000). Geomorphic lineaments have right-
lateral strike-slip motion (Ego et al., 1995). In 1868, a segment attrib-
uted to this system ruptured twice with Mic (magnitude based on in-
tensity observations) of 6.6 and 7.2, respectively (Beauval et al., 2010).
In the recent years analyzed here, seismicity concentrates close to the
Cerro Negro-Chiles volcanic complex, where a magmatic intrusion
likely started in the second semester of 2013 (Ebmeier et al., 2016). The
main Mw 5.6 earthquake, studied using satellite radar data (Ebmeier
et al., 2016), shows a predominantly right-lateral slip with a slight re-
verse component, in agreement with the MECAVEL solution. The other
FMs also show right-lateral strike-slip motion and E-W shortening, but
no comparison can be done here with a GPS-derived strain tensor, due
to the insufficient GPS coverage of the area (Fig. S1).

The Quito and Latacunga seismic sources (zone 9) are composed by
blind reverse faults, folds and flexures at the surface, delimiting a
possible block separated from the NAS (Alvarado et al., 2016). The
Quito portion (N–S direction and ∼60 km long) is a five sub-segments
structure, which can rupture individually or simultaneously with
magnitudes from 5.7 to 7.1 (Alvarado et al., 2014). The FMs in this
section show∼N–S reverse planes which are consistent with the
shortening predicted by the strain rates derived from GPS velocities.
Along the Latacunga segment, we only have one solution with a N–S
nodal plane indicating EW shortening, in agreement with the proposed
kinematic model from Lavenu et al. (1995) and Alvarado et al. (2016).

S. Vaca, et al. Journal of South American Earth Sciences 93 (2019) 449–461

458



4.3. Deep sources

The intermediate and deep seismicity is related to the subduction of
Nazca and Farallon slabs (Fig. 12). The Nazca slab, however, only hosts
a weak and low magnitude seismicity in Ecuador. We could solve for
two intermediate-depth FMs (∼100 km), in the area of La Mana
(Fig. 12), which both show a combination of normal and strike-slip
mechanisms. The small number of events prevents us to properly de-
scribe the rupture characteristics of this seismic source.

The Farallon seismic sources located south of the extension of the
Grijalva margin (Loja, Morona, Loreto and Puyo in Fig. 12) exhibit
recurrent seismicity along the slab, from shallow (∼35 km) to inter-
mediate depths (∼250 km). We generally observe that at least one of
the nodal planes has a strike following the slab contour. At relatively
shallow depths (between 40 and 90 km), from the Peru border to the
Guayaquil area, the seismicity is mostly strike-slip (Fig. 12). The deeper
seismicity is dominated by normal events, in agreement with the old
deep part of the Farallon plate generating strong slab-pull forces (e.g.
Chen et al., 2004). A highly active seismicity cluster is related to the El
Puyo seismic nest, which spans over a wide range of depths from 130 to
250 km. Higher magnitude earthquakes appear to occur in the deeper
portion of the nest, at depths around 200 km, as illustrated by the Mw
7.1 earthquake of August 2010. Another less dense and active normal-
faulting cluster is located in the southeastern part of our study zone
(Fig. 12), and shallower events (∼120–160 km deep) are observed
there.

5. Conclusions

We provide here a new catalog of earthquake focal mechanisms in
Ecuador, obtained by waveform modeling. Our catalog includes 282
reliable solutions of source parameters for the period 2009–2015. This
information includes the nodal plane angles as well as depth and mo-
ment magnitude determinations. Together with the GCMT solutions,
our results provide new constraints on the interpretation of the tectonic
processes at work in Ecuador. Combined with GPS-derived strain rates,
these solutions put a better control on the deformation to be expected
along and around the CCPP (Cosanga-Chingual-Pallatanga-Puná) fault
system, which delimits the eastern boundary of the North Andean
Sliver. In particular, the strike-slip character of the Puná fault, pre-
dicted by GPS strain rates and which was not fully recognized by the
large magnitude GCMT mechanisms, now appears more clearly. At the
Ecuador subduction zone, the focal mechanisms reflect the interseismic
coupling derived from GPS: thrust interface mechanisms characterize
the coupled interface in Northern Ecuador, while the low-to-moderate
coupling in Central and Southern Ecuador results in variable fault plane
orientations. This suggests that in case of low locking at the subduction
interface, the stress field within the surrounding medium is poorly
controlled by the plate motion and rather reflects heterogeneous de-
formation within the slab or the overriding crust.
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