Ubiquitous occurrence of basaltic-derived paleosols in the Late Archean Fortescue Group, Western Australia | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Ubiquitous occurrence of basaltic-derived paleosols in the Late Archean Fortescue Group, Western Australia

Publication Type:

Journal Article

Source:

Precambrian Research, Volume 267, p.1-27 (2015)

ISBN:

0301-9268

Accession Number:

WOS:000359874800001

Keywords:

Archean, atmospheric oxygen, billion years ago, bundelkhand complex, Cosmochimie , astrophysique et géophysique expérimentale, cretaceous laterite, diagenetic mineralogy, Fortescue, ga paleosols, Géobiosphère actuelle et primitive, Geology, Géomicrobiologie, kettleman north dome, Methanotrophy, Paléomagnétisme, Paleosols, Pilbara, pilbara craton, pre-2.2, roe number-2 paleosol, UMR 7154, weathering profiles

Abstract:

The 2.76 Ga old Mount Roe Basalt paleosols (MR#1 and MR#2), recognized near the base of the 2.76-2.69 Ga Fortescue Group in Western Australia, represent some of the oldest definite examples of Archean paleoweathering profiles. The loss of Fe and the absence of pedogenic carbonates in these reference paleosols have been considered as strong evidence for low oxygen and moderate carbon dioxide in the Late Archean atmosphere, respectively. However, the robustness of such interpretations suffers both from the scarcity of paleosol exposures and the superposition of post-weathering alteration over primary soil profiles. Here we report new exposures of the MR#1 paleosol as well as a number of new basalt-derived paleosol occurrences distributed in the Mount Roe Basalt and the 2.73 Ga old Kylena Formations of the Fortescue Group. We show that all these paleosols, including MR#1 and MR#2, were strongly affected by post-weathering reductive alteration. Nevertheless, we discovered early lithologic units, locally preserved within the hydrothermally altered paleosols, which feature distinct chemical and mineralogic compositions. These include: (i) C-13-depleted carbonaceous-rich, diaspore-pyrophyllite boudins likely inherited from the hydrolysis and bauxitization of the parent basalt and (ii) green hard core material, mostly composed of Fe-sericite associated with authigenic sphene and containing early relics of sulfate-bearing iron-rich smectite or berthierine. We argue that smectite relics may constitute a part of the primary pedogenic mineral assemblage, while berthierine and sphene formed during diagenesis through the circulation of reductive fluids. Because the depletion of iron observed in the Fortescue paleosols is not solely due to pedogenesis, but also to post-weathering alteration, particular care has to be taken when bulk chemical profiles of iron in such paleosols are used as atmospheric paleobarometer. Recognition of the regional-scale, syn-depositional alteration of the Fortescue subaerial basalts over the north Pilbara suggests the onset of intense continental weathering associated with the uplift and emergence of the Pilbara craton during continental break-up and rifting. Such a regional onset of continental weathering may have provided large amounts of nutrients to nearby marine and/or lacustrine systems, favoring the development of microbial life in shallow waters. (C) 2015 Elsevier B.V. All rights reserved.

Notes:

ISI Document Delivery No.: CP4TF Times Cited: 0 Cited Reference Count: 86 Cited References: Aidahan A.A., 1988, CHEM GEOL, V70, P249 ALLEN VT, 1952, GEOL SOC AM BULL, V63, P649, DOI 10.1130/0016-7606(1952)63[649:PRISTB]2.0.CO;2 ARNDT NT, 1991, AUST J EARTH SCI, V38, P261, DOI 10.1080/08120099108727971 Awramik SM, 2009, PRECAMBRIAN RES, V174, P215, DOI 10.1016/j.precamres.2009.07.005 Bandopadhyay PC, 2010, PRECAMBRIAN RES, V177, P277, DOI 10.1016/j.precamres.2009.12.009 Beukes NJ, 2002, GEOLOGY, V30, P491, DOI 10.1130/0091-7613(2002)030<0491:TLLOLA>2.0.CO;2 Beyssac O, 2002, J METAMORPH GEOL, V20, P859, DOI 10.1046/j.1525-1314.2002.00408.x BHATTACHARYYA DP, 1983, CLAY CLAY MINER, V31, P173, DOI 10.1346/CCMN.1983.0310302 Blake TS, 2001, PRECAMBRIAN RES, V107, P139, DOI 10.1016/S0301-9268(00)00135-2 Blake TS, 2004, PRECAMBRIAN RES, V133, P143, DOI 10.1016/j.precamres.2004.03.012 BLAKE TS, 1993, PRECAMBRIAN RES, V60, P185, DOI 10.1016/0301-9268(93)90050-C Bolhar R, 2007, PRECAMBRIAN RES, V155, P229, DOI 10.1016/j.precamres.2007.02.002 BRIMHALL GH, 1987, GEOCHIM COSMOCHIM AC, V51, P567, DOI 10.1016/0016-7037(87)90070-6 BRINDLEY GW, 1982, CLAY CLAY MINER, V30, P153, DOI 10.1346/CCMN.1982.0300211 BUICK R, 1992, SCIENCE, V255, P74, DOI 10.1126/science.11536492 Coffey JM, 2013, PRECAMBRIAN RES, V236, P282, DOI 10.1016/j.precamres.2013.07.021 Crowe SA, 2013, NATURE, V501, P535, DOI 10.1038/nature12426 Damyanov Z, 2001, CLAY CLAY MINER, V49, P559, DOI 10.1346/CCMN.2001.0490607 Driese SG, 2011, PRECAMBRIAN RES, V189, P1, DOI 10.1016/j.precamres.2011.04.003 EBERL D, 1978, AM MINERAL, V63, P401 Fedo CM, 1997, PRECAMBRIAN RES, V84, P17, DOI 10.1016/S0301-9268(96)00058-7 Flament N, 2013, PRECAMBRIAN RES, V229, P177, DOI 10.1016/j.precamres.2011.10.009 Frey M., 1987, LOW TEMPERATURE META, P9 Fritz SJ, 1997, CLAY CLAY MINER, V45, P580, DOI 10.1346/CCMN.1997.0450409 Hickman AH, 2012, ISL ARC, V21, P1, DOI 10.1111/j.1440-1738.2011.00783.x Huggett J.M., 2003, GEOLOGY, V31, pe20 HUNT JA, 1977, GEOCHIM COSMOCHIM AC, V41, P279, DOI 10.1016/0016-7037(77)90236-8 Kato Y, 2009, EARTH PLANET SC LETT, V278, P40, DOI 10.1016/j.epsl.2008.11.021 KELLER WD, 1978, AM MINERAL, V63, P326 Knittel K, 2009, ANNU REV MICROBIOL, V63, P311, DOI 10.1146/annurev.micro.61.080706.093130 Kojan C. J., 1998, GEOLOGICAL SURVEY W, V1997-1998, P43 Koster HM, 1999, CLAY MINER, V34, P579, DOI 10.1180/000985599546460 Lepot K, 2008, NAT GEOSCI, V1, P118, DOI 10.1038/ngeo107 MACFARLANE AW, 1991, CAN MINERAL, V29, P1043 MACFARLANE AW, 1994, GEOCHIM COSMOCHIM AC, V58, P1777, DOI 10.1016/0016-7037(94)90536-3 MACFARLANE AW, 1994, PRECAMBRIAN RES, V65, P297, DOI 10.1016/0301-9268(94)90110-4 Math S. K. N., 1994, Applied Clay Science, V9, P303, DOI 10.1016/0169-1317(94)90007-8 MAYNARD JB, 1986, ECON GEOL, V81, P1473 MERINO E, 1975, J SEDIMENT PETROL, V45, P320 MERINO E, 1975, GEOCHIM COSMOCHIM AC, V39, P1629, DOI 10.1016/0016-7037(75)90085-X Mizota C, 1998, CLAY CLAY MINER, V46, P178, DOI 10.1346/CCMN.1998.0460208 Moore DM, 2000, CLAY CLAY MINER, V48, P145, DOI 10.1346/CCMN.2000.0480118 Mordberg LE, 1999, J GEOCHEM EXPLOR, V66, P353, DOI 10.1016/S0375-6742(99)00021-7 NADEAU PH, 1985, MINERAL MAG, V49, P393, DOI 10.1180/minmag.1985.049.352.10 Newman ACD, 1987, MINERALOGICAL SOC MO, V6, P1 Ohmoto H, 1997, GEOLOGY, V25, P858 Ohmoto H, 1996, GEOLOGY, V24, P1135, DOI 10.1130/0091-7613(1996)024<1135:EIPGPF>2.3.CO;2 Pandit MK, 2008, J EARTH SYST SCI, V117, P201, DOI 10.1007/s12040-008-0024-z Pusch R., 1988, GEOLOGICAL EVIDENCE RAINBIRD RH, 1990, J GEOL, V98, P801 Rasmussen B, 2009, GEOLOGY, V37, P423, DOI 10.1130/G25300A.1 Retallack G.J., 2012, SOC EC PALEONTOLOGIS, V101, P136 RETALLACK GJ, 1993, PRECAMBRIAN RES, V63, P27, DOI 10.1016/0301-9268(93)90003-K Retallack G.J., 2001, SOILS OF THE PAST Retallack GJ, 2010, ECON GEOL, V105, P655 Rosing MT, 2010, NATURE, V464, P744, DOI 10.1038/nature08955 Ross C.S., 1945, GEOL SURV PROF PAP B, V2058, P23 Rye R, 1998, AM J SCI, V298, P621 RYE R, 1995, NATURE, V378, P603, DOI 10.1038/378603a0 Rye R, 2000, GEOLOGY, V28, P483, DOI 10.1130/0091-7613(2000)28<483:LAWAGE>2.0.CO;2 Sachsenhofer RF, 1998, CLAY MINER, V33, P523 SHARMA RP, 1980, P INDIAN AS-EARTH, V89, P1 Sharma R.P., 1979, P INDIAN NATL ACAD S, V45, P10 SHARMA RP, 1979, MINER DEPOSITA, V14, P343 Sheldon ND, 2002, GEOLOGY, V30, P919, DOI 10.1130/0091-7613(2002)030<0919:LOLIET>2.0.CO;2 Sheldon ND, 2006, PRECAMBRIAN RES, V147, P148, DOI 10.1016/j.precamres.2006.02.004 SHERMAN G. DONALD, 1962, PACIFIC SCI, V16, P57 SMITH RE, 1982, J PETROL, V23, P75 Sreenivas B, 2001, P INDIAN AS-EARTH, V110, P39 Strik G, 2003, J GEOPHYS RES-SOL EA, V108, DOI 10.1029/2003JB002475 Stueken EE, 2012, NAT GEOSCI, V5, P722, DOI [10.1038/ngeo1585, 10.1038/NGEO1585] SUTTON SJ, 1992, CAN J EARTH SCI, V29, P432, DOI 10.1139/e92-038 SWINDALE LD, 1968, NEW ZEAL J GEOL GEOP, V11, P1163 Tardy Y., 1987, STABILITY FIELDS SME TAYLOR KG, 1990, CLAY MINER, V25, P391, DOI 10.1180/claymin.1990.025.3.13 TAYLOR KG, 1995, J SEDIMENT RES A, V65, P358 Thompson J. B., 1970, AM J SCI, V268, P454 Thorne H. M., 2001, GEOLOGY FORTESCUE GR, P144 Toth TA, 1997, CLAY CLAY MINER, V45, P564, DOI 10.1346/CCMN.1997.0450408 VANPANHUYSSIGLER M, 1990, SCOT J GEOL, V26, P139 Valeton I., 1972, DEV SOIL SCI, V1 Watanabe Y, 2000, NATURE, V408, P574, DOI 10.1038/35046052 Watanabe Y, 2004, GEOCHIM COSMOCHIM AC, V68, P2129, DOI 10.1016/j.gca.2003.10.036 Williams I.R., 2007, 1 100 000 GEOLOGICAL Yang WB, 2002, GEOCHIM COSMOCHIM AC, V66, P3707, DOI 10.1016/S0016-7037(01)00673-1 Yang WB, 2003, AM J SCI, V303, P187, DOI 10.2475/ajs.303.3.187 Teitler, Yoram Philippot, Pascal Gerard, Martine Le Hir, Guillaume Fluteau, Frederic Ader, Magali Agence Nationale de la Recherche (eLIFE2) [ANR-10-BLAN-0602]; Labex UnivEarths (IPGP) We thank Martin Van Kranendonk (UNSW) for discussions and key informations on the area. This work was supported by grants from the Agence Nationale de la Recherche (eLIFE2) to P. Philippot (Grant ANR-10-BLAN-0602) and the Labex UnivEarths (IPGP). This is Institut de Physique du Globe de Paris contribution number 3645. 0 Elsevier science bv Amsterdam 1872-7433