Non-chondritic sulphur isotope composition of the terrestrial mantle | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Non-chondritic sulphur isotope composition of the terrestrial mantle

Publication Type:

Journal Article

Source:

Nature, Volume 501, Issue 7466, p.208-+ (2013)

ISBN:

0028-0836

URL:

http://www.nature.com/nature/journal/v501/n7466/full/nature12490.html

Keywords:

UMR 7154 ; Géochimie et cosmochimie ; Physico-chimie des fluides géologiques ; Geochemistry

Abstract:

Core–mantle differentiation is the largest event experienced by a growing planet during its early history. Terrestrial core segregation imprinted the residual mantle composition by scavenging siderophile (iron-loving) elements such as tungsten, cobalt and sulphur. Cosmochemical constraints suggest that about 97% of Earth’s sulphur should at present reside in the core1, which implies that the residual silicate mantle should exhibit fractionated 34S/32S ratios according to the relevant metal–silicate partition coefficients2, together with fractionated siderophile element abundances. However, Earth’s mantle has long been thought to be both homogeneous and chondritic for 34S/32S, similar to Canyon Diablo troilite3, 4, 5, 6, as it is for most siderophile elements. This belief was consistent with a mantle sulphur budget dominated by late-accreted chondritic components. Here we show that the mantle, as sampled by mid-ocean ridge basalts from the south Atlantic ridge, displays heterogeneous 34S/32S ratios, directly correlated to the strontium and neodymium isotope ratios 87Sr/86Sr and 143Nd/144Nd. These isotope trends are compatible with binary mixing between a low-34S/32S ambient mantle and a high-34S/32S recycled component that we infer to be subducted sediments. The depleted end-member is characterized by a significantly negative δ34S of −1.28 ± 0.33‰ that cannot reach a chondritic value even when surface sulphur (from continents, altered oceanic crust, sediments and oceans) is added. Such a non-chondritic 34S/32S ratio for the silicate Earth could be accounted for by a core–mantle differentiation record in which the core has a 34S/32S ratio slightly higher than that of chondrites (δ34S = +0.07‰). Despite evidence for late-veneer addition of siderophile elements (and therefore sulphur) after core formation, our results imply that the mantle sulphur budget retains fingerprints of core–mantle differentiation.

Notes:

Times Cited: 1 1