Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle

Publication Type:

Journal Article

Source:

Geochimica Et Cosmochimica Acta, Volume 73, Issue 6, p.1779-1794 (2009)

ISBN:

0016-7037

Accession Number:

WOS:000264258600017

URL:

http://www.sciencedirect.com/science/article/pii/S0016703709000179

Keywords:

UMR 7154 ; Physico-chimie des Fluides Géologiques

Abstract:

In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios (He-3/He-4 = 4-6 Ra, Ar-40/Ar-36 = 20,000-30,000, delta C-13 = -4.5 parts per thousand to -6.9 parts per thousand. and delta N-15 = -1.2 parts per thousand to -8.8 parts per thousand) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high Ar-36 content of the diamonds (>1 X 10(-9) cm(3)/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at similar to 0.6 x 10(-12) cm(3)/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid. (C) 2009 Elsevier Ltd. All rights reserved.