A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup

Publication Type:

Journal Article

Source:

Geochemistry Geophysics Geosystems, Volume 7 (2006)

ISBN:

1525-2027

URL:

http://www.agu.org/

Keywords:

EVOLUTION; CALCIUM-CARBONATE; TEMPERATURE; SEAWATER

Abstract:

[1] Large fluctuations in continental configuration occur throughout the Mesozoic. While it has long been recognized that paleogeography may potentially influence atmospheric CO2 via the continental silicate weathering feedback, no numerical simulations have been done, because of the lack of a spatially resolved climate-carbon model. GEOCLIM, a coupled numerical model of the climate and global biogeochemical cycles, is used to investigate the consequences of the Pangea breakup. The climate module of the GEOCLIM model is the FOAM atmospheric general circulation model, allowing the calculation of the consumption of atmospheric CO2 through continental silicate weathering with a spatial resolution of 7.5 degrees long x 4.5 degrees lat. Seven time slices have been simulated. We show that the breakup of the Pangea supercontinent triggers an increase in continental runoff, resulting in enhanced atmospheric CO2 consumption through silicate weathering. As a result, atmospheric CO2 falls from values above 3000 ppmv during the Triassic down to rather low levels during the Cretaceous ( around 400 ppmv), resulting in a decrease in global mean annual continental temperatures from about 20 degrees C to 10 degrees C. Silicate weathering feedback and paleogeography both act to force the Earth system toward a dry and hot world reaching its optimum over the last 260 Myr during the Middle-Late Triassic. In the super continent case, given the persistent aridity, the model generates high CO2 values to produce very warm continental temperatures. Conversely, in the fragmented case, the runoff becomes the most important contributor to the silicate weathering rate, hence producing a CO2 drawdown and a fall in continental temperatures. Finally, another unexpected outcome is the pronounced fluctuation in carbonate accumulation simulated by the model in response to the Pangea breakup. These fluctuations are driven by changes in continental carbonate weathering flux. Accounting for the fluctuations in area available for carbonate platforms, the simulated ratio of carbonate deposition between neritic and deep sea environments is in better agreement with available data.

Notes:

Geochem. Geophys. Geosyst.ISI Document Delivery No.: 110GYTimes Cited: 0Cited Reference Count: 69Cited References:BERGMAN NM, 2004, AM J SCI, V304, P397BERNER RA, 1991, AM J SCI, V291, P339BERNER RA, 1994, AM J SCI, V294, P59BERNER RA, 2001, AM J SCI, V301, P182BESSE J, 2002, J GEOPHYS RES-SOL EA, V107BOWN PR, 1988, NEWSL STRATIGR, V20, P91BRADY PV, 1991, J GEOPHYS RES-SOL EA, V96, P18101BRADY PV, 1994, GEOCHIM COSMOCHIM AC, V58, P1853CATUBIG NR, 1998, PALEOCEANOGRAPHY, V13, P298COGNE JP, 2004, EARTH PLANET SC LETT, V227, P427CROWLEY TJ, 2001, SCIENCE, V292, P870DERCOURT J, 1993, ATLAS TETHYS PALEOENDESSERT C, 2001, EARTH PLANET SC LETT, V188, P459DESSERT C, 2003, CHEM GEOL, V202, P257DONNADIEU Y, 2004, GEOPH MONOG SERIES, V146, P79DONNADIEU Y, 2004, NATURE, V428, P303DONNADIEU Y, 2006, EARTH PLANET SC LETT, V248, P426ENGEBRETSON DC, 1992, GSA TODAY, V2, P93FRANCOIS LM, 1992, AM J SCI, V292, P81FRANCOIS LM, 1993, GEOPH MONOG SERIES, V74, P143FRANCOIS LM, 1998, CHEM GEOL, V145, P177GAFFIN S, 1987, AM J SCI, V287, P596GAILLARDET J, 1999, CHEM GEOL, V159, P3GIBBS MT, 1999, AM J SCI, V299, P611GODDERIS Y, 2001, EARTH PLANET SC LETT, V190, P181GODDERIS Y, 2004, PALAEOGEOGR PALAEOCL, V202, P309GODDERIS Y, 2005, IN PRESS C R GEOSCIGOUGH DO, 1981, SOL PHYS, V74, P21GUIDRY MW, 2000, GEOLOGY, V28, P631GUIDRY MW, 2003, GEOCHIM COSMOCHIM AC, V67, P2949GWIAZDA RH, 1994, GLOBAL BIOGEOCHEM CY, V8, P141HARDIE LA, 1996, GEOLOGY, V24, P279HORITA J, 2002, GEOCHIM COSMOCHIM AC, V66, P3733JACOB R, 1997, THESIS U WISCONSIN MKUZNETSOVA KI, 2003, PALEONTOLOG J, V37, P472LABAT D, 2004, ADV WATER RESOUR, V27, P631LEMOINE M, 1986, MAR PETROL GEOL, V3, P179LIETH H, 1984, OPT MED 1984 WORKSH, P7MILLIMAN JD, 1993, GLOBAL BIOGEOCHEM CY, V7, P927MILLOT R, 2002, EARTH PLANET SC LETT, V196, P83OLIVA P, 2003, CHEM GEOL, V202, P225OPDYKE BN, 1993, AM J SCI, V293, P217PETOUKHOV V, 2000, CLIM DYNAM, V16, P1PETSCH ST, 1998, AM J SCI, V298, P246POULSEN CJ, 1999, SPEC PAP GEOL SOC AM, V332, P73POULSEN CJ, 2001, GEOPHYS RES LETT, V28, P1575POULSEN CJ, 2002, GEOPHYS RES LETT, V29POULSEN CJ, 2003, GEOLOGY, V31, P115RIDGWELL A, 2005, MAR GEOL, V217, P339RIDGWELL AJ, 2003, SCIENCE, V302, P859RONOV AB, 1982, INT GEOL REV, V24, P1313ROTH PH, 1986, GEOL SOC LOND SPEC P, V21, P299ROTHMAN DH, 2002, P NATL ACAD SCI USA, V99, P4167ROWLEY DB, 2002, GEOL SOC AM BULL, V114, P927ROYER DL, 2001, EARTH-SCI REV, V54, P349ROYER DL, 2003, SPEC PAP GEOL SOC AM, V369, P23ROYER DL, 2004, GSA TODAY, V14, P4SANDBERG PA, 1983, NATURE, V305, P19STOLL HM, 2000, GEOL SOC AM BULL, V112, P308TYRRELL T, 2004, GEOCHIM COSMOCHIM AC, V68, P3521USDOWSKI E, 1980, GEOCHIMIE INTERACTIO, P49VANANDEL TH, 1975, EARTH PLANET SC LETT, V26, P187VEIZER J, 1999, CHEM GEOL, V161, P59VONBLANCKENBURG F, 2005, EARTH PLANET SC LETT, V237, P462WALKER JCG, 1981, J GEOPHYS RES, V86, P9776WALKER LJ, 2002, J GEOL, V110, P75WALLMANN K, 2001, GEOCHIM COSMOCHIM AC, V65, P3005WILKINSON BH, 1989, AM J SCI, V289, P1158WILKINSON BH, 1989, AM J SCI, V289, P525Q11019