The rheology and thermal history of Mars revealed by the orbital evolution of Phobos | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  The rheology and thermal history of Mars revealed by the orbital evolution of Phobos

The present-day surface of Mars is relatively well characterized, but the details of its evolution and internal structure remain, in comparison, poorly known. Evidence for recent volcanic activity suggests that Mars’ deep interior remains hot and convectively cooling. Mars’ cooling rate is related to its early thermal state, and to its rheology that determines its ability to deform and to dynamically evolve. Therefore, the study of Mars’ thermal evolution combined with observations allows its dynamic history and present-day structure to be reconstructed. However, such an approach is limited by the interplay between several poorly constrained key quantities (e.g., temperature, composition, rheology).

 

Closest satellite to Mars, Phobos, captured by the space probe Mars Reconnaissance Orbiter (MRO) in 2008 (© NASA).

A team of researchers from IPGP and Jet Propulsion Laboratory reveals, in an article published in Nature, that strong insights into Mars’ thermal history and rheology can be gained by considering Mars’ closest satellite, Phobos, whose orbital evolution is governed by Mars’ thermo-chemical history, through tidal interactions. By exploiting this relationship we find that Mars was initially moderately (100-200 K) hotter than today, and its mantle sluggishly deforms in the dislocation creep regime. This corresponds to a reference viscosity of 1022.2 ±0.5Pa s, and moderate to relatively weak intrinsic sensitivity of viscosity to temperature (activation energy of 280 ± 80 kJ/mol), and to pressure (activation volume <14 cm3/mol). Our approach predicts a present-day average crustal thickness of 40±25 km, and surface heat flow of 20±1 mW/m2. We show that the comparison of these predictions with upcoming data could further reduce uncertainties in Mars’ thermal and rheological histories.

 

More informations :

H. Samuel, P. Lognonné, M. Panning & V. Lainey, The rheology and thermal history of Mars revealed by the orbital evolution of Phobos, Nature 569, 523–527 (2019), doi: 10.1038/s41586-019-1202-7

 

Date de publication : 
23 May 2019