Analytical solutions of Love numbers for an ellipsoidal incompressible homogeneous Earth | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Analytical solutions of Love numbers for an ellipsoidal incompressible homogeneous Earth

Type de publication:

Journal Article

Source:

Celest. mech. dyn. astron., Volume 93, p.113-146 (2005)

ISBN:

0923-2958

Numéro d'appel:

PUB

Mots-clés:

Géodésie et gravimétrie ; Géomagnétisme ; N° Contribution : 2061, UMR 7154

Résumé:

Tidal forces acting on the Earth cause deformations and mass redistribution inside the planet involving surface motions and variation in the gravity field, which may be observed in geodetic experiments. Because for space geodesy it is now necessary to achieve the mm level in tidal displacements, we take into account the hydrostatic flattening of the Earth in the computation of the elasto-gravitational deformations. Analytical solutions are derived for the semi-diurnal tides on a slightly elliptical homogeneous incompressible elastic model. That simple analytical Earth’s model is not a realistic representation of any real planet, but it is useful to understand the physics of the problem and also to check numerical procedures. We rediscover and discuss the Love’s solutions and obtain new analytical solutions for the tangential displacement. We extend these analytical results to some geodetic responses of the Earth to tidal forces such as the perturbation of the surface gravity field, the tilt and the deviation of the vertical with reference to the Earth’s axis.

Notes:

Celestial mechanics & dynamical astronomy