Decomposition of the elastic tensor and geophysical applications | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Decomposition of the elastic tensor and geophysical applications

Type de publication:

Journal Article

Source:

Geophysical Journal International, Volume 159, Ticket 2, p.667-678 (2004)

ISBN:

0956-540X

URL:

http://www.blackwell-synergy.com

Mots-clés:

RECRYSTALLIZATION; DEFORMATION; TOMOGRAPHY; EVOLUTION; TEXTURE

Résumé:

Elasticity is described in general by a fourth-order tensor with 21 independent coefficients, which corresponds to the triclinic symmetry class. However seismological observations are usually explained with a higher order of symmetry using fewer parameters. We propose an analytical method to decompose the elastic tensor into a sum of orthogonal tensors belonging to the different symmetry classes. The method relies on a vectorial description of the elastic tensor. Any symmetry class constitutes a subspace of a class of lower symmetry and an orthogonal projection on this subspace removes the lower symmetry part. Orthogonal projectors on each higher symmetry class are given explicitly. In addition, the method provides optimal higher symmetry approximations, which allow us to decrease the number of independent parameters. Consequences of the symmetry approximation of the elastic tensor on shear wave splitting (SWS) are investigated for upper-mantle minerals (olivine and enstatite), natural samples and numerically deformed olivine aggregates. The orthorhombic part of the elastic tensor as well as the presence of enstatite are important second-order effects.

Notes:

Geophys. J. Int.ISI Document Delivery No.: 864LHTimes Cited: 5Cited Reference Count: 35Cited References:ANDERSON DL, 1989, THEORY EARTHANDERSON OL, 1995, MINERAL PHYS CRYSTALARTS RJ, 1991, 61 ANN INT M SOC EXP, P1534ARTS RJ, 1993, THESIS U P M CURIE PBACKUS GE, 1970, REV GEOPHYS SPACE PH, V8, P633BASS JD, 1995, MINERAL PHYS CRYSTALBENNETT HF, 1972, J GEOPHYS RES, V77, P3078BLACKMAN DK, 2002, GEOCHEM GEOPHY GEOSY, V3BLACKMAN DK, 2002, GEOCHEM GEOPHY GEOSY, V3BOULLIER AM, 1975, PHYS CHEM EARTH, V9, P467BYSTRICKY M, 2000, SCIENCE, V290, P1564COWIN SC, 1987, Q J MECH APPL MATH, V40, P451DZIEWONSKI AM, 1981, PHYS EARTH PLANET IN, V25, P297ESTEY LH, 1986, J GEOPHYS RES, V91, P11393FAVIER N, 2003, GEOPHYS J INT, V153, P213FEDOROV FI, 1968, THEORY ELASTIC WAVESHELBIG K, 1994, HDB GEOPHYSICAL EXPL, V22HELBIG K, 1995, 6 INT WORKSH SEISM A, P37KAMINSKI E, 2001, EARTH PLANET SC LETT, V189, P253KAMINSKI E, 2002, G CUBED, V3KAMINSKI E, 2002, GEOCHEM GEOPHY GEOSY, V3KELVIN WT, 1856, PHILOS T ROY SOC LON, V166, P481MAINPRICE D, 1993, PHYS EARTH PLANET IN, V78, P257MONTAGNER JP, 1986, J GEOPHYS RES-SOLID, V91, P511MONTAGNER JP, 1988, GEOPHYS J ROY ASTRON, V94, P295MONTAGNER JP, 1991, J GEOPHYS RES-SOL EA, V96, P20337NICOLAS A, 1987, GEODYN SER, V16, P111RIBE NM, 1991, J GEOPHYS RES-SOLID, V96, P8325RIBE NM, 1992, J GEOPHYS RES-SOL EA, V97, P8737SILVER PG, 1991, J GEOPHYS RES-SOL EA, V96, P16429SMITH ML, 1973, J GEOPHYS RES, V78, P3321STACEY FD, 1977, PHYS EARTH PLANET IN, V15, P341TRAMPERT J, 1995, GEOPHYS J INT, V122, P675WENK HR, 1999, J GEOPHYS RES-SOL EA, V104, P25513ZHANG SQ, 1995, NATURE, V375, P774