Classification of seismic patterns in a hierarchical model of rupture: a new phase diagram for seismicity | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Classification of seismic patterns in a hierarchical model of rupture: a new phase diagram for seismicity

Type de publication:

Journal Article

Source:

Geophysical Journal International, Volume 168, Ticket 2, p.710-722 (2007)

ISBN:

0956-540X

URL:

http://www.blackwell-synergy.com/

Mots-clés:

SCALING ORGANIZATION; BEHAVIOR; PREDICTION; FAULTS

Résumé:

<p>I present a detailed description of the temporal properties of seismicity in a hierarchical model of rupture incorporating healing and faulting. At the microscopic scale, a stochastic process controls transitions between a solid and a broken state with respect to the local stress. From the distribution of broken elements, geometric rules of interaction determine the state of fracturing of domains of larger dimensions and the shape of the stress redistribution. Then, any point in space evolves with respect to its state of stress and its state of fracturing measured at different length scales. Applied to a single fault zone under a constant loading rate, this model of seismicity reproduces the main characteristics of the seismic catalogues: Gutenberg-Richter law for the magnitude-frequency relationship, Omori law for the aftershock decay rate, clustering of major events, swarms of earthquakes, seismicity of creeping segment and seismic noise. I infer that the control parameter is the dimensionless parameter A, the ratio between a characteristic time of healing and a characteristic time of loading. Following the magnitude of A, different seismic scenarios emerge: if A approximate to 1, the system is in a critical state and largest events can occur over a wide range of timescales (e.g. clustering of major events); if A &lt; 1, the system is in subcritical states controlled by faulting and seismic precursor are frequently observed; if A &gt; 1, the system is in subcritical states controlled by healing and the fault zone may be creeping. One particular feature is that the amplitude of the stress stored in the fault zone decreases and the frequency of large events increases as the critical state is approached. This can be interpreted as a weakening process. I propose a new phase diagram of seismicity to illustrate an alternative to the classical seismic cycle picture.</p>

Notes:

Geophys. J. Int.ISI Document Delivery No.: 129UBTimes Cited: 1Cited Reference Count: 38Cited References:ALLEGRE CJ, 1982, NATURE, V297, P47ALLEGRE CJ, 1995, PHYS EARTH PLANET IN, V92, P215BENZION Y, 2001, J MECH PHYS SOLIDS, V49, P2209BLANTER EM, 1997, PHYS REV E A, V55, P6397BOWMAN DD, 1998, J GEOPHYS RES-SOL EA, V103, P24359BUFE CG, 1993, J GEOPHYS RES-SOLID, V98, P9871GABRIELOV A, 2000, GEOPHYS J INT, V143, P427KADANOFF LP, 1966, PHYSICS, V2, P263KANAMORI H, 1986, EARTHQUAKE SOURCE ME, P227KOLMOGOROV AN, 1941, DOKL AKAD NAUK SSSR, V30, P9KOLMOGOROV AN, 1941, DOKL AKAD NAUK SSSR, V32, P16KRAICHNAN RH, 1967, PHYS FLUIDS, V10, P1417LI YG, 1998, SCIENCE, V279, P217MAIN I, 1996, REV GEOPHYS, V34, P433MAIN IG, 1999, GEOPHYS J INT, V139, F1MURRAY JR, 2005, J GEOPHYS RESNARTEAU C, J GEOPHYS RES, V107NARTEAU C, 1997, EOS AGU FALL M, V78, P464NARTEAU C, 2000, GEOPHYS J INT, V141, P115NARTEAU C, 2003, GEOPHYS RES LETT, V30NARTEAU C, 2005, GEOPHYS RES LETT, V32NARTEAU C, 2007, GEOPHYS J INT, V168, P723REYNOLDS P, 1977, PHYSICA C, V10, P167REYNOLDS P, 1978, PHYSICA A, V11, P199ROTWAIN I, 1997, PHYS EARTH PLANET IN, V101, P61SAMMIS SG, 2002, P NATL ACAD SCI USA, V99, P2501SCHOLZ CH, 1986, B SEISMOL SOC AM, V76, P65SCHOLZ CH, 1990, MECHANISM EARTHQUAKESCHWARTZ DP, 1984, J GEOPHYS RES, V89, P5681SHIMAZAKI K, 1980, GEOPHYS RES LETT, V7, P279SMITH WD, 1986, GEOPHYS J ROY ASTRON, V86, P815SYKES LR, 1990, NATURE, V348, P595TRIFU CI, 1991, J GEOPHYS RES-SOLID, V96, P4301TURCOTTE DL, 1999, PHYS EARTH PLANET IN, V111, P275TURCOTTE DL, 2000, GEOPHYS MONOGR SER, V120, P83VARNES D, 1989, PURE APPL GEOPHYS, V130, P4407WILSON KG, 1983, REV MOD PHYS, V55, P583ZOLLER G, 2001, J GEOPHYS RES-SOL EA, V106, P2167