Numerical simulation of wave propagation in 2-D fractured media: scattering attenuation at different stages of the growth of a fracture population | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Numerical simulation of wave propagation in 2-D fractured media: scattering attenuation at different stages of the growth of a fracture population

Type de publication:

Journal Article

Source:

Geophysical Journal International, Volume 171, Ticket 2, p.865-880 (2007)

ISBN:

0956-540X

URL:

http://www.blackwell-synergy.com/

Mots-clés:

CRACKS

Résumé:

<p>In this paper, we systematically examine the multiple scattering process of seismic waves at consecutive stages of the evolution of 2-D fracture population. Synthetic seismograms are computed using the pseudo-spectral method for elastic wave propagation, where spatial derivations are computed using fast Fourier transforms and time derivatives are computed using second-order finite differences. The grid sizes are 2560 x 2560 with 1 m interval and a Ricker wavelet with a peak frequency of 30 Hz is used (or equivalently a wavelength of 10 m for the P-wave velocity of 3000 m s(-1) used in our modelling). Fracture patterns are generated using a 2-D cellular automaton model of rupture with healing to account for clustering and anisotropy in the fracture growth process. The cellular automation model takes into account the discontinuous and segmented nature of a fracture population, and reproduces in the statistical sense the intermediate stages of fracture growths. To estimate the frequency-dependence of scattering attenuation (quantified by the inverse quality factor Q(-1)) at different stages of the fracture evolution, we use the spectral ratio method. Variations of Q(-1) with frequency are then fitted to a polynomial of order up to 8 for each state of the fracture evolution as we do not want to make an assumption about how Q(-1) should depend on frequency or scales. This allows us to determine the nature of the frequency-dependence of scattering attenuation as a function of fracture evolution. Our results confirm, as expected, the dependence of scattering attenuation on frequency, and the fifth-order polynomial seems to fit the measured attenuation from synthetic seismograms better. In addition, the inverse quality factor Q(-1) is shown to be linearly dependent on fracture density, reaching a maximum when fracture density is the highest. In summary, our numerical results confirm that scattering attenuation has a complex dependence on frequency, and measurements of attenuations may be potentially used to characterize spatial distributions of fracture networks in particular, the scale distributions.</p>

Notes:

Geophys. J. Int.ISI Document Delivery No.: 220GRTimes Cited: 0Cited Reference Count: 47Cited References:AKAIKE H, 1978, ANN I STAT MATH, V30, P9AKI K, 2002, QUANTITATIVE SEISMOLBARTON N, 1980, INT J ROCK MECH MIN, V17, P69BARTON N, 2007, ROCK QUALITY SEISMICBONNET E, 2001, REV GEOPHYS, V39, P347CHAPMAN M, 2003, GEOPHYS PROSPECT, V51, P369COATES RT, 1995, GEOPHYSICS, V60, P1514CRAMPIN S, 1978, GEOPHYS J ROY ASTRON, V53, P467CRAMPIN S, 1984, GEOPHYS J ROY ASTRON, V76, P135GRET A, 2006, GEOPHYS J INT, V165, P485HUDSON JA, 1981, GEOPHYS J ROY ASTRON, V64, P133HUDSON JA, 1986, GEOPHYS J ROY ASTRON, V87, P265HUDSON JA, 1996, GEOPHYS J INT, V125, P559HUDSON JA, 1997, GEOPHYS J INT, V129, P720JIN A, 1986, J GEOPHYS RES-SOLID, V91, P665KOEHLER AB, 1988, APPL STATIST, V37, P187LEARY PC, 1995, GEOPHYS J INT, V122, P143LEONARD T, 1999, BAYESIAN METHODSLERCHE I, 1985, PURE APPL GEOPHYS, V123, P503LERCHE I, 1986, PURE APPL GEOPHYS, V124, P975LIU E, 1995, MECH JOINTED FAULTED, P659LIU ER, 2000, J GEOPHYS RES-SOL EA, V105, P2981LIU ER, 2001, J COMPUT ACOUST, V9, P1039LIU ER, 2005, J GEOPHYS ENG, V2, P38, DOI 10.1088/1742-2132/2/1/006LIU ER, 2006, WAVE MOTION, V44, P44, DOI 10.1016/j.wavemoti.2006.06.006LIU K, 2001, SCI CHINA SER D, V47, P569LUBBE R, 2006, GEOPHYS PROSPECT, V54, P319MAIN IG, 1990, PURE APPL GEOPHYS, V133, P283MAULTZSCH S, 2007, GEOPHYS PROSPECT, V55, P627MINSLEY B, 2004, 74 ANN INT M SOC EXP, P248NARTEAU C, 2007, GEOPHYS J INT, V168, P723PEACOCK S, 1990, GEOPHYS J INT, V102, P472POINTER T, 2000, GEOPHYS J INT, V142, P199PYRAKNOLTE LJ, 1990, J GEOPHYS RES-SOLID, V95, P11345PYRAKNOLTE LJ, 1990, J GEOPHYS RES-SOLID, V95, P8617PYRAKNOLTE LJ, 1992, GEOPHYS RES LETT, V19, P325SCHOENBERG M, 1980, J ACOUST SOC AM, V68, P1516SNIEDER R, 2002, SCIENCE, V295, P2253SORNETTE D, 1994, PURE APPL GEOPHYS, V142, P491VLASTOS S, 2003, GEOPHYS J INT, V152, P649VLASTOS S, 2006, GEOPHYS J INT, V166, P825, DOI10.1111/j.1365-246X.2006.03060.xWILLIS M, 2004, 74 ANN INT M SOC EXP, P1535WU RS, 1982, GEOPHYS RES LETT, V9, P9WU RS, 1985, PURE APPL GEOPHYS, V123, P805YANG DH, 2002, WAVE MOTION, V35, P223YANG DH, 2007, INT J SOLIDS STRUCT, V44, P4784, DOI10.1016/j.ijsolstr.2006.12.001YUE JH, 2007, J SEISM EXPLOR, V15, P367