On the use of Saint Venant equations to simulate the spreading of a granular mass | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  On the use of Saint Venant equations to simulate the spreading of a granular mass

Type de publication:

Journal Article

Source:

Journal of Geophysical Research-Solid Earth, Volume 110, Ticket B9, p.doi:10.1029/2004JB003161 (2005)

ISBN:

0148-0227

URL:

http://www.agu.org/pubs/agu_jourtect.html

Mots-clés:

COMPLEX; SCHEME; MOTION; PLANE

Résumé:

<p>Cliff collapse is an active geomorphological process acting at the surface of the Earth and telluric planets. Recent laboratory studies have investigated the collapse of an initially cylindrical granular mass along a rough horizontal plane for different initial aspect ratios a = H-i/R-i, where H-i and R-i are the initial height and radius, respectively. A numerical simulation of these experiments is performed using a minimal depth-integrated model based on a long-wave approximation. A dimensional analysis of the equations shows that such a model exhibits the scaling laws observed experimentally. Generic solutions are independent of gravity and depend only on the initial aspect ratio a and an effective friction angle. In terms of dynamics, the numerical simulations are consistent with the experiments for a &lt;= 1. The experimentally observed saturation of the final height of the deposit, when normalized with respect to the initial radius of the cylinder, is accurately reproduced numerically. Analysis of the results sheds light on the correlation between the area overrun by the granular mass and its initial potential energy. The extent of the deposit, the final height, and the arrest time of the front can be directly estimated from the "generic solution'' of the model for terrestrial and extraterrestrial avalanches. The effective friction, a parameter classically used to describe the mobility of gravitational flows, is shown to depend on the initial aspect ratio a. This dependence should be taken into account when interpreting the high mobility of large volume events.</p>

Notes:

J. Geophys. Res.-Solid EarthISI Document Delivery No.: 967SRTimes Cited: 2Cited Reference Count: 38Cited References:ARANSON IS, 2002, PHYS REV E 1, V65AUDUSSE E, 2004, SIAM J SCI COMPUT, V25, P2050BOUCHUT F, 2004, FRONTIERS MATH SER, V8DADE WB, 1998, GEOLOGY, V26, P803DAERR A, 1999, EUROPHYS LETT, V47, P324DENLINGER RP, 2001, J GEOPHYS RES-SOL EA, V106, P553DENLINGER RP, 2004, J GEOPHYS RES-EARTH, V109DOUADY S, 1999, EUR PHYS J B, V11, P131ERTAS D, 2001, EUROPHYS LETT, V56, P214FELIX G, 2004, EARTH PLANET SC LETT, V221, P197GRAY JMNT, 1999, P ROY SOC LOND A MAT, V455, P1841HUTTER K, 1995, ACTA MECH, V109, P127IVERSON RM, 1997, REV GEOPHYS, V35, P245IVERSON RM, 2001, J GEOPHYS RES-SOL EA, V106, P537IVERSON RM, 2004, J GEOPHYS RES-EARTH, V109KERSWELL RR, 2005, PHYS FLUIDS, V17LAJEUNESSE E, 2004, PHYS FLUIDS, V16, P2371LEGROS F, 2002, ENG GEOL, V63, P301LUBE G, 2003, GEOPH GRAN PART LADLUBE G, 2004, J FLUID MECH, V508, P175MANGENEY A, 1998, J GEOPHYS RES-SOL EA, V103, P691MANGENEY A, 2000, PURE APPL GEOPHYS, V157, P1081MANGENEYCASTELNAU A, 2003, J GEOPHYS RES-SOL EA, V108MCEWEN AS, 1989, GEOLOGY, V17, P1111MULLER D, 1995, THESIS ECOLE POLYTECNAAIM M, 1997, SAINT VEN S EC NAT PPASTOR M, 2002, GEOTECHNIQUE, V52, P579PITMAN EB, 2003, PHYS FLUIDS, V15, P3638POULIQUEN O, 1999, PHYS FLUIDS, V11, P542POULIQUEN O, 2002, J FLUID MECH, V453, P133SAVAGE SB, 1989, J FLUID MECH, V199, P177SHERIDAN MF, 2005, J VOLCANOL GEOTH RES, V139, P89SIEBERT L, 1987, B VOLCANOL, V49, P435STARON L, 2002, PHYS REV LETT, V89, P204STARON L, 2004, EOS T AGU S, V85STOOPES GR, 1992, GEOLOGY, V20, P299VOLFSON D, 2003, PHYS REV E 1, V68WIELAND M, 1999, J FLUID MECH, V392, P73B09103