The magnetic structure of convection-driven numerical dynamos | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS


Aller au compte twitter

  The magnetic structure of convection-driven numerical dynamos

Type de publication:

Journal Article


Geophysical Journal International, Volume 172, Ticket 3, p.945-956 (2008)



Numéro d'accès:



Dynamique des Fluides géologiques ; N° Contribution : 2315, UMR 7154


<p>The generation of a magnetic field in numerical simulations of the geodynamo is an intrinsically 3-D and time-dependent phenomenon. The concept of magnetic field lines and the frozen-flux approximation can provide insight into such systems, but a suitable visualization method is required. This paper presents results obtained using the Dynamical Magnetic Field line Imaging (DMFI) technique, which is a representation of magnetic field lines accounting for their local magnetic energy, together with an algorithm for the time evolution of their anchor points. The DMFI illustrations are consistent with previously published dynamo mechanisms, and allow further investigation of spatially and temporally complex systems. We highlight three types of magnetic structures: (i) magnetic cyclones and (ii) magnetic anticyclones are expelled by, but corotate with axial flow vortices; (iii) magnetic upwellings are amplified by stretching and advection within flow upwellings, and show structural similarity with helical plumes found in rotating hydrodynamic experiments. While magnetic anticyclones are responsible for the regeneration of a stable axial dipole, here we show that excursions and reversals of the dipole axis are caused by the emergence of magnetic upwellings, which amplify and transport a generally multipolar magnetic field from the inner to the outer boundary of the models. Geomagnetic observations suggest the presence of magnetic structures similar to those found in our models; thus, we discuss how our results may pertain to Earth's core dynamo processes. In order to make DMFI a standard tool for numerical dynamo studies, a public software package is available upon request to the authors (supplementary material is available at: to aubert/DMFI.html).</p>