Transient geotherms in Archean continental lithosphere: New constraints on thickness and heat production of the subcontinental lithospheric mantle | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS


Aller au compte twitter

  Transient geotherms in Archean continental lithosphere: New constraints on thickness and heat production of the subcontinental lithospheric mantle

Type de publication:

Journal Article


Journal of Geophysical Research-Solid Earth, Volume 112, Ticket B4, p.17 (2007)







<p>[1] Because of its large thickness and thermal relaxation time, Archean lithosphere cannot be in thermal equilibrium with the instantaneous rate of heat production in the lithospheric mantle and heat supplied to its base. Comparison of xenolith ( P, T) data with time-dependent thermal models allows constraints on lithosphere thickness, in situ heat production in the lithospheric mantle and time changes of basal heat flux. In this paper, the lithosphere is defined as the rigid part of the thermal boundary layer where heat transport occurs by conduction only. A Monte Carlo procedure is used to determine the full range of thermal models consistent with xenolith ( P, T) arrays from Newlands and Finsch orangeites, Kaapvaal craton, South Africa. These xenolith suites from an early phase of kimberlite magmatism in the Kaapvaal record thermal conditions in unperturbed lithosphere. Together with constraints on surface heat flow and crustal heat production, these data require the lithosphere thickness to be between 200 and 270 km, with most values between 210 and 250 km. Additional constraints, including the condition that lithospheric temperatures have remained below the solidus, estimates of the cooling rate in mantle xenoliths, and the depth extent of seismic anomalies beneath cratons tighten the solution range. Present-day values of basal heat flow and heat production in the Kaapvaal lithospheric mantle lie between 12 - 16 mW m(-2) and 0 - 0.02 mu W m(-3) respectively. At 240-km depth, lithospheric material undergoes secular cooling at a rate of 40 to 110 K/Ga due solely to in situ radioactive decay. Changes of basal heat flow must be less than 5% per Ga, suggesting that thermal conditions in the underlying mantle have not changed much since the Archean.</p>


J. Geophys. Res.-Solid EarthISI Document Delivery No.: 163FWTimes Cited: 0Cited Reference Count: 61Cited References:BEDINI RM, 2004, EARTH PLANET SC LETT, V223, P99, DOI10.1016/j.epsl.2004.04.012BELL DR, 2003, LITHOS, V71, P273, DOI 10.1016/S0024-4937(03)00117-8BELL DR, 2004, S AFR J GEOL, V107, P59BELL R, 2002, EOS T AGU S, V83BOYD FR, 1976, GEOPHYS RES LETT, V3, P509BOYD FR, 1985, NATURE, V315, P387BOYD FR, 1986, SCIENCE, V232, P472BREY GP, 1990, J PETROL, V31, P156CANIL D, 1996, J PETROL, V37, P609CARSWELL DA, 1991, MINERAL MAG, V55, P19CHRISTENSEN UR, 1985, J GEOPHYS RES-SOLID, V90, P2995DEWIT MJ, 1992, NATURE, V357, P553GIRNIS AV, 1999, P 7 INT KIMB C CAP T, P247GREGOIRE M, 2003, J PETROL, V44, P629GRIFFIN WL, 2003, LITHOS, V71, P215, DOI 10.1016/j.lithos.2003.07.006GUILLOU L, 1995, J GEOPHYS RES-SOL EA, V100, P24217GUNG YC, 2003, NATURE, V422, P707, DOI 10.1038/nature01559GURNEY JJ, 1980, PHIL T R SOC LOND A, V297, P273HERZBERG CT, 1983, PHYS EARTH PLANET IN, V32, P193HOFMEISTER AM, 1999, SCIENCE, V283, P1699HOPS JJ, 1989, GEOLOGICAL SOC AUSTR, V14, P759JAMES DE, 2001, GEOPHYS RES LETT, V28, P2485JAUPART C, 1998, J GEOPHYS RES-SOL EA, V103, P15269JAUPART C, 1999, LITHOS, V48, P93JONES MQW, 1988, J GEOPHYS RES, V93, P3243JONES MQW, 1992, GEOPHYS RES LETT, V19, P2031JONES MQW, 1998, S AFR GEOPHYS REV, V2, P115JORDAN TH, 1975, REV GEOPHYS SPACE PH, V13, P1JORDAN TH, 1988, J PETROL, P11KAMINSKI E, 2000, EARTH PLANET SC LETT, V178, P139KATSURA T, 1995, GEOPHYS J INT, V122, P63KORENAGA J, 2006, ARCHEAN GEODYNAMICS, V164, P7LENARDIC A, 2005, EARTH PLANET SC LETT, V234, P317, DOI10.1016/j.epsl.2005.01.038LENARDIC A, 2006, GEOPH MONOG SERIES, V164, P33, DOI 10.1029/164GM04MARESCHAL JC, 2004, EARTH PLANET SC LETT, V223, P65, DOI10.1016/j.epsl.2004.04.002MARESCHAL JC, 2004, GEOPHYS RES, V31MCLENNAN SM, 1996, J GEOL, V104, P377MICHAUT C, 2004, GEOPHYS RES LETT, V31, ARTN L24602NICOLAYSEN LO, 1981, J GEOPHYS RES, V86, P10653NIU FL, 2004, EARTH PLANET SC LETT, V224, P337, DOI10.1016/j.epsl.2004.05.011NYBLADE AA, 1990, J GEOPHYS RES-SOLID, V95, P17371PEARSON DG, 1999, LITHOS, V48, P171PHILLIPS D, 2004, LITHOS, V77, P155, DOI 10.1016/j.lithos.2004.04.005PINET C, 1987, GEOPHYS RES LETT, V14, P260PRIESTLEY K, 1999, LITHOS, V48, P45RICHARDSON SH, 1984, NATURE, V310, P707ROY RF, 1981, PHYSICAL PROPERTIES, V2, P409RUDNICK RL, 1998, CHEM GEOL, V145, P395RUDNICK RL, 1999, MANTLE PETROLOGY FIE, P3RUSSELL JK, 1999, J GEOPHYS RES-SOL EA, V104, P7089SCHARMELI JF, 1979, P 6 AIRAPT C, P60SCHATZ JF, 1972, J GEOPHYS RES, V77, P6966SCHMITZ MD, 2003, CONTRIB MINERAL PETR, V144, P592, DOI10.1007/s00410-002-0419-9SCHUBERT G, 1980, J GEOPHYS RES, V85, P2531SILVER PG, 2004, S AFR J GEOL, V107, P45SKINNER CP, 1989, S AFR J GEOL, V92, P197SMITH D, 1999, MANTLE PETROLOGY FIE, V6, P171SUDO A, 1990, GEOPHYS RES LETT, V17, P29TAYLOR WR, 1998, NEUES JB MINER ABH, V172, P381THOMPSON PH, 1995, CURRENT RES 1995 E, P125XU YS, 2004, PHYS EARTH PLANET IN, V143, P321, DOI10.1016/j.pepi.2004.03.005