Geophysically consistent values of the perovskite to post-perovskite transition Clapeyron slope | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Geophysically consistent values of the perovskite to post-perovskite transition Clapeyron slope

Type de publication:

Journal Article

Source:

Geophysical Research Letters, Volume 34, Ticket 5, p.4 (2007)

ISBN:

0094-8276

URL:

http://www.agu.org/

Mots-clés:

INNER-CORE; IRON; TEMPERATURE; MGSIO3; D''; BOUNDARY

Résumé:

The double-crossing hypothesis posits that post-perovskite bearing rock in Earth's D '' layer exists as a layer above the core-mantle boundary bounded above and below by intersections between a curved thermal boundary layer geotherm and a relatively steep phase boundary. Increasing seismic evidence for the existence of pairs of discontinuities predicted to occur at the top and bottom of this layer motivates an examination of the consistency of this model with mineral physics constraints for the Clapeyron slope of this phase transition. Using independent constraints for a lower bound on temperature in Earth's deep mantle and the temperature of Earth's inner core boundary, we show that a post-perovskite double-crossing is inconsistent with plausible core temperatures for a Clapeyron slope less than about 7 MPa/K, with the higher range of experimental values yielding better agreement with recent estimates of the melting temperature of Earth's core.

Notes:

Geophys. Res. Lett.ISI Document Delivery No.: 147PYTimes Cited: 1Cited Reference Count: 36Cited References:ALFE D, 2002, EARTH PLANET SC LETT, V195, P91ALFE D, 2004, J PHYS CHEM SOLIDS, V65, P1573, DOI10.1016/j.jpcs.2003.12.014ANDERSON OL, 1997, J GEOPHYS RES-SOL EA, V102, P22659ANDERSON OL, 2003, J PHYS CHEM SOLIDS, V64, P2125, DOI10.1016/S0022-3697(03)00112-4BADRO J, 2004, SCIENCE, V305, P383BOEHLER R, 1993, NATURE, V363, P534CONRAD CP, 2001, GEOPHYS J INT, V144, P271DAVIES JH, 1999, GEOPHYS J INT, V139, P823DZIEWONSKI AM, 1981, PHYS EARTH PLANET IN, V25, P297FEI Y, 2004, J GEOPHYS RES-SOL EA, V109, ARTN B02305FLORES C, 2005, GEOPHYS RES LETT, V32, ARTN L24305HERNLUND JW, 2005, NATURE, V434, P882, DOI 10.1038/nature03472HIROSE K, 2006, GEOPHYS RES LETT, V33, ARTN L01310HIROSE K, 2006, REV GEOPHYS, V44, ARTN RG3001HUTKO AR, 2006, NATURE, V441, P333, DOI 10.1038/nature04757KENDALL JM, 1994, J GEOPHYS RES-SOLID, V99, P11575LABROSSE S, 2002, EARTH PLANET SC LETT, V199, P147LAY T, 1983, GEOPHYS RES LETT, V10, P63LAY T, 2006, SCIENCE, V314, P1272, DOI 10.1126/science.1133280MURAKAMI M, 2004, SCIENCE, V304, P855, DOI 10.1126/science.1095932OGANOV AR, 2004, NATURE, V430, P445, DOI 10.1038/nature02701ONO S, 2005, EARTH PLANET SC LETT, V236, P914, DOI10.1016/j.epsl.2005.06.001POIRIER JP, 1986, GEOPHYS J ROY ASTRON, V85, P315POIRIER JP, 1993, GEOPHYS J INT, V115, P147SPERA FJ, 2006, PHYS EARTH PLANET IN, V159, P234, DOI10.1016/j.pepi.2006.07.007SPEZIALE S, 2001, J GEOPHYS RES-SOL EA, V106, P515STEINLENEUMANN G, 2001, NATURE, V413, P57SUN DY, 2006, GEOPHYS RES LETT, V33, ARTN L12S07THOMAS C, 2004, EARTH PLANET SC LETT, V225, P105, DOI10.1016/j.espl.2004.05.038THOMAS C, 2004, J GEOPHYS RES-SOL EA, V109, ARTN B08307TSUCHIYA T, 2003, J GEOPHYS RES-SOL EA, V108, ARTN 2462TSUCHIYA T, 2004, EARTH PLANET SC LETT, V224, P241VOCADLO L, 2003, PHYS EARTH PLANET IN, V140, P101, DOI10.1016/j.pepi.2003.08.001WILLIAMS Q, 1998, GEODYNAMICS, V28, P73WYSESSION ME, 1998, CORE MANTLE BOUNDARY, V28, P273YAMAZAKI D, 2001, AM MINERAL, V86, P385