Kinematic dynamos using constrained transport with high order Godunov schemes and adaptive mesh refinement | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Kinematic dynamos using constrained transport with high order Godunov schemes and adaptive mesh refinement

Type de publication:

Journal Article

Source:

Journal of Computational Physics, Volume 218, Ticket 1, p.44-67 (2006)

ISBN:

0021-9991

Numéro d'accès:

0002415653-0003

URL:

http://www.sciencedirect.com/science/journal/00219991

Mots-clés:

Ideal-magnetohydrodynamics; simulations-; mhd-; equations-; code-; tree-; hydrodynamics-; convection-; benchmark-; unsplit-

Résumé:

We propose to extend the well-known MUSCL-Hancock scheme for Euler equations to the induction equation modeling the magnetic field evolution in kinematic dynamo problems. The scheme is based on an integral form of the underlying conservation law which, in our formulation, results in a "finite-surface" scheme for the induction equation. This naturally leads to the well-known "constrained transport" method, with additional continuity requirement on the magnetic field representation. The second ingredient in the MUSCL scheme is the predictor step that ensures second order accuracy both in space and time. We explore specific constraints that the mathematical properties of the induction equations place on this predictor step, showing that three possible variants can be considered. We show that the most aggressive formulations (referred to as C-MUSCL and U-MUSCL) reach the same level of accuracy as the other one (referred to as Runge-Kutta), at a lower computational cost. More interestingly, these two schemes are compatible with the adaptive mesh refinement (AMR) framework. It has been implemented in the AMR code RAMSES. It offers a novel and efficient implementation of a second order scheme for the induction equation. We have tested it by solving two kinematic dynamo problems in the low diffusion limit. The construction of this scheme for the induction equation constitutes a step towards solving the full MHD set of equations using an extension of our current methodology. (c) 2006 Elsevier Inc. All rights reserved.

Notes:

ENS, Lab Phys Stat, F-75231 Paris 05, France; CNRS, IPGP, Dept Geomagnetisme, F-75252 Paris, France; CEA, DSM, DAPNIA, Serv Astrophys, F-91191 Gif Sur Yvette, France; Inst Astrophys, F-75014 Paris, France; Univ London, Astron Unit, London E1 4NS, EnglandArticleEnglish