Melting of Peridotite to 140 Gigapascals | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS


Aller au compte twitter

  Melting of Peridotite to 140 Gigapascals

Type de publication:

Journal Article


Science, Volume 329, Ticket 5998, p.1516-1518 (2010)



Numéro d'accès:




UMR 7154 ; Minéralogie


Interrogating physical processes that occur within the lowermost mantle is a key to understanding Earth's evolution and present-day inner composition. Among such processes, partial melting has been proposed to explain mantle regions with ultralow seismic velocities near the core-mantle boundary, but experimental validation at the appropriate temperature and pressure regimes remains challenging. Using laser-heated diamond anvil cells, we constructed the solidus curve of a natural fertile peridotite between 36 and 140 gigapascals. Melting at core-mantle boundary pressures occurs at 4180 +/- 150 kelvin, which is a value that matches estimated mantle geotherms. Molten regions may therefore exist at the base of the present-day mantle. Melting phase relations and element partitioning data also show that these liquids could host many incompatible elements at the base of the mantle.


Fiquet, G. Auzende, A. L. Siebert, J. Corgne, A. Bureau, H. Ozawa, H. Garbarino, G.