Numerical modeling of self-channeling granular flows and of their levee-channel deposits | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS


Aller au compte twitter

  Numerical modeling of self-channeling granular flows and of their levee-channel deposits

Type de publication:

Journal Article


Journal of Geophysical Research-Earth Surface, Volume 112, Ticket F2, p.21 (2007)






[1] When not laterally confined in valleys, pyroclastic flows create their own channel along the slope by selecting a given flowing width. Furthermore, the lobe-shaped deposits display a very specific morphology with high parallel lateral levees. A numerical model based on Saint Venant equations and the empirical variable friction coefficient proposed by Pouliquen and Forterre ( 2002) is used to simulate unconfined granular flow over an inclined plane with a constant supply. Numerical simulations successfully reproduce the self-channeling of the granular lobe and the levee-channel morphology in the deposits without having to take into account mixture concepts or polydispersity. Numerical simulations suggest that the quasi-static shoulders bordering the flow are created behind the front of the granular material by the rotation of the velocity field due to the balance between gravity, the two-dimensional pressure gradient, and friction. For a simplified hydrostatic model, competition between the decreasing friction coefficient and increasing surface gradient as the thickness decreases seems to play a key role in the dynamics of unconfined flows. The description of the other disregarded components of the stress tensor would be expected to change the balance of forces. The front's shape appears to be constant during propagation. The width of the flowing channel and the velocity of the material within it are almost steady and uniform. Numerical results suggest that measurement of the width and thickness of the central channel morphology in deposits in the field provides an estimate of the velocity and thickness during emplacement.</p>


J. Geophys. Res.-Earth Surf.Mangeney, A. Bouchut, F. Thomas, N. Vilotte, J. P. Bristeau, M. O. 56 AMER GEOPHYSICAL UNION