On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth

Type de publication:

Journal Article

Source:

Tectonophysics, Volume 394, Ticket 1-2, p.111-124 (2004)

ISBN:

0040-1951

URL:

http://www.sciencedirect.com

Mots-clés:

CRUST FORMATION; ARCHEAN MANTLE; VENUS; GROWTH; SUBDUCTION; ECLOGITE

Résumé:

Important constituents of Archean cratons, formed in the early and hot history of the Earth, are Tonalite-Trondhjemite-Granodiorite (TTG) plutons and greenstone belts. The formation of these granite-green stone terrains is often ascribed to plate-tectonic processes. Buoyancy considerations, however, do not allow plate tectonics to take place in a significantly hotter Earth. We therefore propose an alternative mechanism for the coeval and proximate production of TTG plutons and greenstone-like crustal successions. That is, when a locally anomalously thick basaltic crust has been produced by continued addition of extrusive or intrusive basalts due to partial melting of the underlying convecting mantle, the transition of a sufficient amount of basalt in the lower crust to eclogite may trigger a resurfacing event, in which a complete crustal section of over 1000 km long sinks into the mantle in less than 2 million years. Pressure release partial melting in the complementary upwelling mantle produces large volumes of basaltic material replacing the original crust. Partial melting at the base of this newly produced crust may generate felsic melts which are added as intrusives and/or extrusives to the generally mafic crustal succession, adding to what resembles a greenstone belt. Partial melting of metabasalt in the sinking crustal section produces a significant volume of TTG melt which is added to the crust directly above the location of 'subduction', presumably in the form of a pluton. This scenario is self-consistently produced by numerical thermochemical mantle convection models, presented in this paper, including partial melting of mantle peridotite and crustal (meta)basalt. The metamorphic p, T conditions under which partial melting of metabasalt takes place in this scenario are consistent with geochemical trace element data for TTGs, which indicate melting under amphibolite rather than eclogite facies. Other geodynamical settings which we have also investigated, including partial melting in small scale delaminations of the lower crust, at the base of a anomalously thick crust and due to the influx of a lower mantle diapir fail to reproduce this behavior unequivocally and mostly show melting of metabasalt in the eclogite stability field instead. (C) 2004 Elsevier B.V. All rights reserved.

Notes:

TectonophysicsISI Document Delivery No.: 876XDTimes Cited: 4Cited Reference Count: 61Cited References:ANHAEUSSER CR, 1999, J AFR EARTH SCI, V28, P289ATHERTON MP, 1993, NATURE, V362, P144BARTH MG, 2001, GEOCHIM COSMOCHIM AC, V65, P1499CAMPBELL IH, 1983, GEOPHYS RES LETT, V10, P1061CAMPBELL IH, 1988, EARTH PLANET SC LETT, V90, P11CONDIE KC, 1994, ARCHEAN CRUSTAL EVOL, P35DESMET JH, 1998, TECTONOPHYSICS, V296, P15DESMET JH, 1999, THESIS UTRECHT U NETDEWIT MJ, 1998, PRECAMBRIAN RES, V91, P181FOLEY S, 2002, NATURE, V417, P837FOLEY SF, 2003, NATURE, V421, P249FOWLER AC, 1996, J GEOPHYS RES-PLANET, V101, P4755GOODWIN AM, 1991, PRECAMBRAIN GEOLOGYGREEN DH, 1967, GEOCHIM COSMOCHIM AC, V31, P767GREEN HT, 1982, ANDESITESHACKER BR, 2003, J GEOPHYS RES, V107HASHIMOTO GL, 2003, J GEOPHYS RES, V108HERZBERG C, 1996, J GEOPHYS RES-SOL EA, V101, P8271HIRTH G, 1996, EARTH PLANET SC LETT, V144, P93HUPPERT HE, 1988, J PETROL, V29, P599JAQUES AL, 1980, CONTRIB MINERAL PETR, V73, P287JOHNSON K, 1997, J PETROL, V38, P1585KARGEL JS, 1993, ICARUS, V103, P253KERRICH R, 1999, LITHOS, V46, P163KIMURA G, 1993, LITHOS, V30, P337MARTIN H, 1999, LITHOS, V46, P411MCCULLOCH MT, 1994, GEOCHIM COSMOCHIM AC, V58, P4717MCKENZIE D, 1992, J GEOPHYS RES-PLANET, V97, P15967MCKENZIE DP, 1988, J PETROL, V29, P625NIJMAN W, 1998, PRECAMBRIAN RES, V88, P25NIMMO F, 1998, ANNU REV EARTH PL SC, V26, P23NISBET EG, 1982, KOMATIITES, P501NISBET EG, 1993, LITHOS, V30, P291PECK WH, 2001, GEOCHIM COSMOCHIM AC, V65, P4215PETFORD N, 2001, EARTH PLANET SC LETT, V193, P483PHILPOTTS AR, 1990, PRINCIPLES IGNEOUS MPOLAT A, 1998, TECTONOPHYSICS, V289, P295RAPP RP, 1991, PRECAMBRIAN RES, V51, P1RAPP RP, 2003, NATURE, V425, P605ROLLINSON H, 1997, NATURE, V389, P173RUDNICK RL, 1995, NATURE, V378, P571RUDNICK RL, 2000, SCIENCE, V287, P278SCHABER GG, 1992, J GEOPHYS RES, V97, P13257SCHULZE DJ, 2003, NATURE, V423, P68SCOTT DR, 1984, GEOPHYS RES LETT, V11, P1161SMITH JB, 2003, CHEM GEOL, V194, P275SMITHIES RH, 2000, EARTH PLANET SC LETT, V182, P115SOLOMATOV VS, 1996, J GEOPHYS RES-PLANET, V101, P4737STEINBACH V, 1989, GEOPHYS RES LETT, V16, P633TAYLOR SR, 1985, CONTINENTAL CRUST ITTHURSTON PC, 1994, ARCHEAN CRUSTAL EVOL, P45TURCOTTE DL, 1995, J GEOPHYS RES-PLANET, V100, P16931VANHUNEN J, 2001, THESIS UTRECHT U NETVANTHIENEN P, 2003, GEOCHEM GEOPHYS GEOS, V4VANTHIENEN P, 2004, PHYS EARTH PLANET IN, V142, P61VANTHIENEN P, 2004, TECTONOPHYSICS, V386, P41VLAAR NJ, 1986, GEOL MIJNBOUW, V65, P91VLAAR NJ, 1991, GLACIAL ISOSTASY SEAWINTHER KT, 1996, CHEM GEOL, V127, P43ZEGERS TE, 1999, TECTONOPHYSICS, V311, P45ZEGERS TE, 2001, GEOLOGY, V29, P1083