Rapid post-mortem incorporation of aluminum in diatom frustules: Evidence from chemical and structural analyses | INSTITUT DE PHYSIQUE DU GLOBE DE PARIS

Twitter

Aller au compte twitter

  Rapid post-mortem incorporation of aluminum in diatom frustules: Evidence from chemical and structural analyses

Type de publication:

Journal Article

Source:

Marine Chemistry, Volume 106, Ticket 1-2, p.208-222 (2007)

ISBN:

0304-4203

Mots-clés:

SEAWATER

Résumé:

We studied the aluminum-induced early alteration of cultured diatom frustules in a series of laboratory experiments. Ashed frustules of the diatom Thalassiosira punctigera were exposed to natural seawater at varying dissolved aluminum (Al) concentrations (without addition, 100 nM and 500 nM Al) for periods of up to 6 months both in batch incubations and in flowthrough chambers. These Al concentrations are representative of levels commonly found in pore waters in the marine environment. In general, the aluminum content of the frustules increased with time of exposure. A maximum increase of the aluminum to silicon mole ratio from 1.23 x 10(-3) (day 0) to 3.14 x 10(-3) Was observed after 14 days of incubation at 500 nM Al. Time series with incubation times from I to 21 days at 100 nM Al confirm that the aluminum is rapidly associated with the diatom frustule. The uptake of Al during incubation goes along with a shift in pore structure towards smaller pores. The structural association of aluminum and silicon in biogenic silica was investigated using X-ray absorption spectroscopy at the Al-K-edge. Al-K-edge X-ray adsorbtion near edge spectra (XANES) of incubated diatom frustules demonstrate that most aluminum is present in tetrahedral coordination regardless of the Al concentration of the seawater and the duration of exposure. Al-K-edge EXAFS spectroscopy indicates the structural incorporation of aluminum into the Si framework. The results from X-ray absorption spectroscopy at the Al-K-edge, the textural changes of diatom frustules during incubation and wet chemical data are all consistent with the formation of an aluminosilicate phase on the surface of the diatom frustules. The precipitation this surface phase occurred under experimental conditions mimicking those prevailing at the sediment-water interface. We propose that the documented reaction pathway contributes to the rapid post-mortem aluminum enrichment of diatom frustules at the sediment-water interface. (C) 2006 Elsevier B.V. All rights reserved.

Notes:

Mar. Chem.ISI Document Delivery No.: 213CQTimes Cited: 0Cited Reference Count: 65Cited References:BARRETT EP, 1951, J AM CHEM SOC, V73, P373BIDLE KD, 1999, NATURE, V397, P508BISH DL, 1989, CLAY CLAY MINER, V37, P289BRUNAUER S, 1938, J AM CHEM SOC, V60, P309CASCHETTO S, 1979, GEOCHIM COSMOCHIM AC, V43, P425DIXIT S, 2001, MAR CHEM, V73, P333DIXIT S, 2002, GEOCHIM COSMOCHIM AC, V66, P2559FANNING KA, 1974, J GEOPHYS RES, V79, P1293GEHLEN M, 2002, GEOCHIM COSMOCHIM AC, V66, P1601GEHLEN M, 2003, GLOB BIOGEOCHEM CYLC, V17GRASHOFF K, 1983, METHODS SEAWATER ANAGREENWOOD JE, 2001, PROG OCEANOGR, V48, P1HASLE GR, 1983, NORD J BOT, V3, P593HURD DC, 1972, EARTH PLANET SC LETT, V15, P411HURD DC, 1973, GEOCHIM COSMOCHIM AC, V37, P2257HURD DC, 1975, J GEOPHYS RES, V80, P4975HURD DC, 1979, SCIENCE, V203, P1340HURD DC, 1981, AM J SCI, V281, P833HURD DC, 1983, AM J SCI, V283, P1HYDES DJ, 1976, ANALYST, V101, P922HYDES DJ, 1979, SCIENCE, V205, P1260ILDEFONSE P, 1994, CLAY CLAY MINER, V42, P276ILER RK, 1973, J COLLOID INTERF SCI, V43, P399ILER RK, 1979, CHEM SILICAKAMATANI A, 1979, MAR BIOL, V55, P29KAMATANI A, 1980, J OCEANOGR SOC JPN, V36, P201KAMATANI A, 1982, MAR BIOL, V68, P91KONING E, 1997, DEEP-SEA RES PT II, V44, P1341KONING E, 2001, DEEP-SEA RES PT I, V48, P2473KONING E, 2002, AQUAT GEOCHEM, V8, P39KROLL H, 1983, FELDSPAR MINERALOGY, V2, P57LARTIGES BS, 1997, LANGMUIR, V13, P147LEWIN JC, 1961, GEOCHIM COSMOCHIM AC, V21, P182LI YH, 1991, GEOCHIM COSMOCHIM AC, V55, P3223MACKIN JE, 1984, GEOCHIM COSMOCHIM AC, V48, P281MACKIN JE, 1984, GEOCHIM COSMOCHIM AC, V48, P299MACKIN JE, 1986, CONT SHELF RES, V6, P245MACKIN JE, 1986, GEOCHIM COSMOCHIM AC, V50, P207MCMANUS J, 1995, DEEP-SEA RES PT II, V42, P871MICHALOPOULOS P, 1995, SCIENCE, V270, P614MICHALOPOULOS P, 2000, GEOLOGY, V28, P1095MICHALOPOULOS P, 2004, GEOCHIM COSMOCHIM AC, V68, P1061MORAN SB, 1988, NATURE, V335, P706MORAN SB, 1992, GEOCHIM COSMOCHIM AC, V56, P3365MULLER PJ, 1993, DEEP-SEA RES PT I, V40, P425RABOUILLE C, 1997, DEEP-SEA RES PT II, V44, P1151ROTHBAUER VR, 1971, N JB MINERAL MH, P143SAYLES FL, 1996, DEEP-SEA RES PT I, V43, P383SHEMESH A, 1989, QUATERNARY RES, V31, P288STOFFYN M, 1979, SCIENCE, V203, P651STONE WEE, 1993, J PHYS CHEM-US, V97, P10127TOMAS CR, 1997, IDENTIFYING MARINE PVANBENNEKOM AJ, 1976, GEOCHIM COSMOCHIM AC, V40, P1149VANBENNEKOM AJ, 1978, NETH J SEA RES, V12, P358VANBENNEKOM AJ, 1989, DEEP-SEA RES, V36, P173VANBENNEKOM AJ, 1991, MAR CHEM, V35, P423VANBEUSEKOM JEE, 1989, THESIS HAMBURG UVANBEUSEKOM JEE, 1992, MARINE EUTROPHICATIO, P121VANBEUSEKOM JEE, 1995, GER J HYDROG S, V5, P213VANBEUSEKOM JEE, 1997, DEEP-SEA RES PT II, V44, P987VANCAPPELLEN P, 1997, DEEP-SEA RES PT II, V44, P1129VANCAPPELLEN P, 2002, GLOBAL BIOGEOCHEM CY, V16, ARTN 1075VANCAPPELLEN P, 2002, OCEANIS, V28, P417VELDHUIS MJW, 1987, MAR BIOL, V95, P47VRIELING EG, 1999, EUR J PHYCOL, V34, P307