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S U M M A R Y
The construction of geomagnetic, archaeomagnetic or palaeomagnetic field models requires
some prior knowledge about the actual field, which can be gathered from the statistical proper-
ties of the field over a variety of length-scales and timescales. However, available geomagnetic
data on centennial to millennial periods are too sparse to infer directly these statistical prop-
erties. We thus use high-resolution numerical simulations of the geodynamo to test a method
for estimating the temporal power spectra (or equivalently the autocovariance functions) of
the individual Gauss coefficients that describe the geomagnetic field outside the Earth’s fluid
outer core. Based on the spectral analysis of our simulations, we argue that a prior for the
observational geomagnetic field over decennial to millennial periods can be constructed from
the statistics of the field during the short satellite era. The method rests on the assumption that
time-series of spherical harmonic coefficients can be considered as realizations of stationary
and differentiable stochastic processes, namely order 2 autoregressive (AR2) processes. In the
framework of these processes, the statistics of Gauss coefficients are well constrained by their
variance and one or two timescales. We find that the time spectra in the dynamo simulations
of all Gauss coefficients but the axial dipole are well approximated by the spectra of AR2
processes characterized by only one timescale. The process parameters can simply be deduced
from instantaneous estimates of the spatial power spectra of the magnetic field and of its first
time derivative. Some deviations of the Gauss coefficients statistics from this minimal model
are also discussed. Characterizing the axial dipole clearly requires a more sophisticated AR2
process, with a second distinct timescale.

Key words: Time-series analysis; Inverse theory; Probability distributions; Dynamo: theories
and simulations; Magnetic field; Rapid time variations.

1 I N T RO D U C T I O N

The construction of global field models or of regional master-curves
from geomagnetic records has required the use of spatial and tem-
poral regularizations (e.g. Jackson et al. 2000; Korte et al. 2009;
Thébault & Gallet 2010). Searching for models as smooth as possi-
ble (e.g. Constable & Parker 1988a) allows to retrieve the features
that are reliably constrained by the data, but does not give access
to uncertainties on model coefficients. To address this issue, geo-
magnetic models have been produced using prior information in the
form of covariance matrices for the model parameters. These ma-
trices have been built using either some knowledge of the temporal
variability of the present geomagnetic field, which we will further
discuss here, or spatial cross-covariances deduced from geodynamo
simulations (e.g. Fournier et al. 2013, 2015). Such prior information
is particularly useful when modelling the Earth’s magnetic field on
historical and archaeological timescales, for which the data distri-

bution is sparse in both space and time, and is characterized by
large measurements (and sometimes dating) errors. Finally, prior
information in the form of covariance matrices is a prerequisite for
data assimilation. For instance, knowledge of the analysis covari-
ance matrix in sequential assimilation is necessary to forecast future
trajectories of the geomagnetic field (e.g. Aubert 2015; Gillet et al.
2015).

In the probabilistic framework of assimilation algorithms, geo-
magnetic spherical harmonic coefficients are assumed to result from
Gaussian processes. These are stationary stochastic processes fully
specified by their means and autocovariance functions (MacKay
1998). As a matter of fact, the autocovariance function of any sta-
tionary stochastic process can be deduced from its frequency spec-
trum. Analyses of geomagnetic records suggest that their power
spectrum P behaves as P(f ) ∝ f −s in some ranges of frequency f,
with s the spectral index (e.g. Constable & Johnson 2005; Panovska
et al. 2013). This defines scale invariance. The index value is related
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to the underlying physical processes and to the statistical properties
of the time-series.

Studies of the Earth dipole moment (Constable & Johnson 2005)
suggest a flat energy density spectrum (s = 0) for the longest
timescales (1 Myr or more). This spectrum steepens towards higher
frequencies, with a spectral index s � 2 at millennial to centen-
nial timescales (Panovska et al. 2013) and s � 4 from centennial
to inter-annual timescales (De Santis et al. 2003). Considering the
unsigned dipole moment for the past 2 Myr, Brendel et al. (2007)
and Buffett et al. (2013) found that its spectrum, over millennial
periods, has also a spectral index of 2, and made the analogy with
spectra from realizations of autoregressive stochastic processes of
order one (AR1). These processes have continuous but non dif-
ferentiable samples. They are also known as Ornstein-Uhlenbeck
processes and are solutions of a Langevin-type equation (Gardiner
1985). Buffett et al. (2013) argued that the characteristic timescale
of the deterministic part of the stochastic process that they con-
structed from dipole series is set by the dipole decay time td. In
this framework, this time is related to the escape time for bistable
systems that they also connect to the rate of magnetic reversals.
Buffett (2015) also studied the relation of this time to the duration
of polarity transitions.

Although the axial dipole field has been the focus of many stud-
ies, the non-dipolar field is much less documented. On timescales
shorter than a few centuries, order 2 autoregressive (AR2) stochastic
processes, whose samples are differentiable, have been introduced
to define prior information about the autocovariance function of
the Gauss coefficients when building global magnetic field models
over the observatory era (Gillet et al. 2013) and regional models
over archaeological periods (Hellio et al. 2014). They are indeed
consistent with a spectral index s = 4 at decadal periods. Gillet
et al. (2013) characterized the appropriate AR2 stochastic process
from the variance and the secular variation times of the spherical
harmonic coefficients. They calculated these two quantities from
the geomagnetic spatial power spectrum of the geomagnetic field
(Lowes 1974) and of its time-derivative (the secular variation) ob-
tained from a field model of the well documented satellite era.
Considering geomagnetic series as sample functions of stochastic
processes with power spectrum P(f ) ∝ f −4 gives an explanation to
the occurrence of geomagnetic jerks, which are defined as abrupt
changes in the geomagnetic field second time derivative (Mandea
et al. 2010).

Constructing field models from realizations of AR2 processes
yields time-series very similar to observatory series (Brown 2015).
However, the hypothesis that Gauss coefficients can be described in
terms of AR2 stochastic processes is not easily tested using geomag-
netic observations because we lack highly accurate, dense coverage
data over a long enough time window. In particular, the satellite era
is too short in comparison with the decadal to centennial correlation
times involved in the evolution of the geomagnetic field. For this
reason, it may be helpful to investigate the statistics of individual
coefficient series from numerical simulations of the geodynamo.
Although calculated for dimensionless numbers far from Earth-like
parameters, numerical simulations provide us with time-series of
Gauss coefficients that may be used to test assumptions about the
statistics of the field coefficients (Kuipers et al. 2009; Tanriverdi &
Tilgner 2011; Meduri & Wicht 2016). A major issue is the rescaling
of the time axis (Lhuillier et al. 2011b; Christensen et al. 2012).
Buffett et al. (2014) and Buffett & Matsui (2015) have just achieved
a comparison between the frequency spectrum of the dipole term
obtained from a numerical simulation and the theoretical spectrum
expected for a stochastic process. In both numerical and theoretical

spectra, they distinguished three domains of increasing frequencies
for which the spectral index is, as described above for the observed
field, s = 0, s = 2 and s = 4. Then, they documented the transitions
between the three frequency ranges, and proposed a phenomeno-
logical interpretation of the two cut-off times: they suggest that
they are related to the dipole decay time td and to the lifetime of
convective eddies in the fluid core. Attributing the different times
to specific underlying mechanisms in the geodynamo models may
help to compare simulations and observations and to overcome the
limitations of the numerical models.

Instead of focusing our analysis on the dipole field, we apply here
stochastic modelling to spherical harmonics of higher degree. We
use high-resolution numerical simulations to test a simple recipe for
the autocovariance function of the geomagnetic coefficients based
on instantaneous models of the field and its time variation. We find
that the AR2 stochastic processes recently used as prior by Gillet
et al. (2013) and Hellio et al. (2014) do provide an approximation of
the temporal power spectra for individual Gauss coefficients in the
numerical simulations. Based on these results, we argue that up to
millennial periods the autocovariance function of Gauss coefficients
of the actual geomagnetic field can be described with only two
parameters (or three for the axial dipole).

The manuscript is organized as follows. In Section 2, we give
an overview of stochastic processes that we consider in this study
to model the time evolution of geomagnetic Gauss coefficients. In
Section 3, we first give the main characteristics of the three differ-
ent numerical dynamo simulations analysed throughout this study,
before we describe the statistics (variance, correlation time and
spectra) of the generated Gauss coefficients. Next, we compare the
frequency spectra of non-dipole Gauss coefficients in our dynamo
simulations with spectra predicted from the assumption that they are
realizations of order 2 stochastic processes with a single character-
istic timescale. Finally in Section 4 we describe possible deviations
from spherical symmetry, and discuss the specific behaviour of
the axial dipole at millennial and longer periods. Those considera-
tions lead us to speculate about the possible mechanisms underlying
the timescales of the stochastic processes that we have considered.
We finally discuss consequences for uncertainty estimates in field
modelling.

2 S T O C H A S T I C M O D E L S F O R T H E
T I M E E V O LU T I O N O F G AU S S
C O E F F I C I E N T S

As stated by the Wiener–Khinchin theorem (Van Kampen 2007), a
stationary stochastic process x of time t can be characterized either
by its power spectrum P(f ) or by its autocovariance function C(τ ) =
E(x(t)x(t + τ )), where E(. . . ) stands for the statistical expectation.
Those two quantities are related through

P( f ) =
∫ ∞

−∞
C(τ )e−i2π f τ dτ . (1)

We make below a connection between the stochastic processes that
we use in this study and the processes that have been previously
employed to model the evolution of the geocentric axial dipole.

2.1 A three-parameter AR2 process for the axial dipole

Transition between power laws P(f ) ∝ f −4, f −2 and f 0 at respec-
tively high, intermediate and low frequencies have been documented
for the Earth magnetic field (e.g. Constable & Johnson 2005; Ziegler
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et al. 2011) as well as for dynamo numerical simulations (Olson
et al. 2012; Davies & Constable 2014; Buffett & Matsui 2015).
Based on these observations, Hellio (2015) and Buffett & Matsui
(2015) introduced specific stochastic processes for modelling the
time changes of the axial dipole. Their two approaches are compared
below.

In the following, we assume that the axial dipole coefficient sam-
ples a stochastic process x(t), of non-zero average x̄ = E(x), that
is, we consider a period of constant (normal or inverse) polarity. We
discuss the fluctuations y(t) = x(t) − x̄ about this average. Hellio
et al. (2014) proposed that y is a realization of an AR2 stochastic
process, namely is solution of a differential equation of the form

d2 y

dt2
+ 2χ

dy

dt
+ ω2 y = ζ (t) , (2)

where ζ (t) is a white noise process, and the frequencies ω and
χ are positive. The latter two conditions ensure that the process
is stationary. For χ > ω, the frequency spectrum exhibits f −4,
f −2 and f 0 dependence at respectively high, intermediate and low
frequencies. It can be expressed as (e.g. Yaglom 2004)

P( f ) = 4χω2σ 2(
ω2 − (2π f )2)2 + (4πχ f )2

, (3)

where σ 2 = E(y2). It is thus constrained by three quantities: the pro-
cess variance σ 2, and the parameters χ and ω. The autocovariance
function is given by

C(τ ) = σ 2

2ξ

(
(χ + ξ )e−(χ−ξ )|τ | − (χ − ξ )e−(χ+ξ )|τ |) , (4)

with ξ 2 = χ 2 − ω2. The time ω−1 can be obtained as the square
root of the ratio between the variance of y and of its time derivative
(Hellio 2015, p. 50). Indeed, the autocovariance function C is twice
differentiable at τ = 0, with

C ′′(0) = d2

dτ 2
C(τ )

∣∣∣∣
τ=0

= −σ 2ω2 , (5)

and we have also (Hulot & Le Mouël 1994)

C ′′(0) = −E

[(
dy

dt
(t)

)2
]

. (6)

Buffett & Matsui (2015) model instead the evolution of x(t) using
the stochastic equation

dx

dt
= v(x) +

√
D(x)	(t) , (7)

where 	(t) is a red noise characterized by a Laplacian autocovari-
ance function, v(x) is a drift term describing the slow evolution of
the axial dipole moment, and D(x) defines the amplitude of ran-
dom fluctuations. Following Buffett et al. (2013, 2014) and Buffett
& Matsui (2015), the latter two terms may be approximated by
v(x) � −(x − x̄)/τs = −y/τs and D(x) � D, yielding a stochastic
equation of the form

dy

dt
+ y

τs
= ε(t) , (8)

with ε(t) = √
D	(t). Since ε(t) is a Laplacian correlated noise, its

evolution can be modelled by an order one stochastic equation of
the form (e.g. Jazwinski 2007)

dε

dt
+ ε

τ f
= ζ (t) , (9)

with ζ (t) a white noise process.

Combining eqs (8) and (9) leads to an equation of the form

d2 y

dt2
+

(
1

τs
+ 1

τ f

)
dy

dt
+ y

τsτ f
= ζ (t) . (10)

With 2χ = 1/τ s + 1/τ f and ω2 = 1/(τ sτ f), eq. (10) defines an AR2
stochastic process similar to that defined through eq. (2). Adopting
τ f < τ s, we obtain⎧⎪⎪⎨
⎪⎪⎩

τs = χ + ξ

ω2

τ f = χ − ξ

ω2

. (11)

For τ f � τ s, we deduce from eqs (3) and (11) that the transition
period between domains of the power spectrum presenting 2 and 4
(resp. 0 and 2) spectral indices is 2πτ f (resp. 2πτ s).

Hellio (2015) and Buffett et al. (2013) are therefore using similar
stochastic models for the axial dipole. Note however that the latter
implicitly states the condition ξ real and χ ≥ ω – see eq. (11). Eq.
(2) is thus more general, and allows a wider range of behaviours.

2.2 A two-parameter AR2 process for non-dipole
coefficients

For an AR2 process with χ = ω (i.e. τ f = τ s), the frequency
spectrum of the process defined from (2) is given by

P( f ) = 4ω3σ 2[
ω2 + (2π f )2

]2
. (12)

This power spectrum is flat (spectral index s = 0) at low frequencies
and behaves as f −4 for f 
 ω/(2π ). It does not display a power law
f −2 at intermediate frequencies. The autocovariance function of the
process is given by

C(τ ) = σ 2 (1 + ω|τ |) e−ω|τ | . (13)

This particular autoregressive process of order 2 depends only on
two parameters, the variance σ 2 and the characteristic timescale
ω−1. It was used by Gillet et al. (2013), Hellio et al. (2014) and
Hellio (2015) to define prior information on Gauss coefficients for
the computation of global archaeomagnetic and geomagnetic field
models.

3 M E T H O D F O R C H A R A C T E R I Z I N G
T H E T I M E - S P E C T R A O F G AU S S
C O E F F I C I E N T S

Assuming that all Gauss coefficients but the axial dipole sample
stochastic Gaussian processes of autocovariance function (13), we
use numerical geodynamo simulations to discuss how to estimate
the two parameters σ and ω that characterize the processes. Then,
we compare the theoretical power spectrum of these processes to
the actual spectrum of the Gauss coefficients in our numerical sim-
ulations.

3.1 Simulations used in the study

We rely on three dynamo numerical simulations named Step 0 (S0),
Step 1 (S1) and Coupled Earth (CE). All three solve the momentum,
codensity and induction equations under the Boussinesq approxi-
mation, for an electrically conducting fluid within a spherical shell
of aspect ratio 0.35 between the inner core and the outer core of
radius c. S0 and S1 were computed using the free XSHELLS code
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Table 1. Non-dimensional numbers and timescales for numerical simulations and the Earth’s core. All times are given in years. D is the shell thickness, c is
the outer core radius, B and U the root mean square of the magnetic field intensity and of the velocity in the fluid shell, � the rotation rate, η the magnetic
diffusivity, ν the kinematic viscosity, κ the thermal diffusivity, μ0 the magnetic permeability of free space, F the mass anomaly flux at the Inner-Core boundary
(chemical convection, see Aubert et al. 2013). C-600 and C-1400 stand for the Calypso simulations of Buffett & Matsui (2015), after translating their timescale
into the τ SV-based scaling used throughout this paper, with τ SV = 14 td/Rm (Lhuillier et al. 2011a). See (Backus et al. 1996, pp. 200–204) for the calculation of
the dipole decay time td. †We refer to Christensen & Tilgner (2004) for the definition of the magnetic dissipation time τ

mag
diss , ratio of magnetic energy to Ohmic

dissipation. ‡The relative dipole field strength at the core surface fdip is defined as in Christensen & Aubert (2006). We have adopted ν = 1.5 × 10−6 m2s−1,
η = 0.75 m2s−1, ρ = 1.1 × 104 kg m−3, τ SV = 415 yr and B = 4 × 10−3 T to give values for the Earth’s core. The turn-over time deduced from τ SV and
Lhuillier et al. (2011a), tU = D/U � 0.3 τ SV � 125 yr, is consistent with U ∼ 20 km yr−1 in the Earth’s core and is within a factor of two of our estimates
from simulations.

Name Definition S0 S1 CE C-600 C-1400 Earth’s core

Ekman E = ν/(�D2) 10−5 10−6 3 × 10−5 5 × 10−5 5 × 10−5 4 × 10−15

Flux Rayleigh RaF = FD2/(4πρκ2ν) 4.4 × 1010 8.9 × 1011 1.0 × 109 3.1 × 107 1.5 × 108 ?
Magnetic Reynolds Rm = UD/η 710 660 940 42 90 1700
Prandtl Pr = ν/κ 1 1 1 1 1 0.1–10
Magnetic Prandtl Pm = ν/η 0.4 0.2 2.5 0.5 0.5 2 × 10−6

Alfvén time tA = D
√

μ0ρ/B 100 47 110 83 2
Dipole decay time td = c2/(π2η) 1.2 × 104 1.2 × 104 3.2 × 104 1.2 × 103 2.7 × 103 5 × 104

Turn-over time tU = D/U 69 76 140 120 120 120
Dissipation time† τ

mag
diss 12 14.5 41

Dipole field strength‡ fdip 0.73 0.68 0.75 0.68
Simulation duration 85 × 103 7.6 × 103 84 × 103 91 × 103

Sampling interval 38 0.25 5.3 11

(Schaeffer 2015), assuming no-slip and fixed homogeneous heat
flux conditions at both the inner and outer boundaries. CE (Aubert
et al. 2013) was run using the PARODY-JA code (Aubert et al. 2008),
assuming no-slip conditions at the inner boundary, free-slip condi-
tions at the outer core boundary, and heterogeneous mass-anomaly
flux both at the inner and at the outer boundaries. This simulation
also includes a gravitational coupling between the inner core and
the mantle. Both codes use finite differences in radius and spherical
harmonic expansion (Schaeffer 2013), together with a semi-implicit
Crank–Nicolson–Adams–Bashforth time scheme of order 2.

Non-dimensional parameters and times characterizing these sim-
ulations are given in Table 1. Dimensionless times are transformed
into years following Lhuillier et al. (2011b)—see also Sections 3.2
and 4.3. The field intensity is also rescaled to dimensional units
using a proportionality constant such that the averaged root mean
square (r.m.s.) field in the shell is equal to 4 mT, a value comparable
to that estimated for the Earth’s core by Gillet et al. (2010).

The longest simulations S0 and CE allow to investigate long
timescales, whereas the high sampling rate and the small Ekman
number in S1 give access to shorter timescales. All three simulations
are dipole-dominated at the core–mantle boundary (CMB); see the
relative dipole field strength fdip in Table 1. They also display non-
dipolar structures and significant secular variation (but no polarity
reversal). The field in CE has the particularity to show prominent
equatorial structures that undergo a westward drift, as observed
for the Earth’s magnetic field over the past four centuries (Finlay
& Jackson 2003). It is also important to notice that the magnetic
Reynolds number Rm (defined as the ratio of magnetic diffusion
time over advection time) in our three simulations is close to the
Earth’s core value (see Table 1).

Statistics over periods much longer than a few 10 000 yr (e.g. in-
volving reversals) would require much longer simulations. There is
thus a trade-off between capturing the long term evolution of dipole
moment changes and reproducing rapid field variations (Meduri &
Wicht 2016). Robust estimates of the mean dipole field strength
require simulations over many diffusion times that are presently
achievable only for large Ekman number (e.g. Olson et al. 2012;
Davies & Constable 2014). Because we are particularly interested

here into decadal to millennial timescales, we use parameters closer
to (yet still far away from) the geophysical ones. Our simulations
thus cover a wide range of periods shorter than the turn-over time
tU.

We show in Figs 1 and 2 examples of the time-series that we
analyse in the rest of the paper. The axial dipole has a non-zero
mean value and displays large long-period fluctuations. We observe
a decrease of both the amplitude and the timescale of fluctuations
of the other coefficients with degree. While temporal fluctuations
of all coefficients seem rather stationary in simulations S0 and CE
(Fig. 1), non-stationarity is observed in the shorter simulation S1
for the largest degrees (Fig. 2, right). Note that periodic oscillations
are observed for coefficient G1

2 in CE. These oscillations will be
discussed in Section 4.2.

3.2 Variance and correlation time of Gauss coefficients

The magnetic field B outside the core is described through a scalar
potential V such that B = −∇V . In this work, Gauss coefficients
Gm

n and Hm
n are defined at the core surface (and not at the Earth’s

surface) with n and m the spherical harmonics degree and order, N
the truncation degree, hence V is decomposed as

V (r, θ, φ, t) = c
N∑

n=1

( c

r

)n+1 n∑
m=0

(Gm
n (t) cos mφ

+ Hm
n (t) sin mφ

)
Pm

n (cos θ ), (14)

where r is the distance to the Earth centre, θ the colatitude, φ

the longitude and Pm
n are the Schmidt quasi-normalized Legendre

functions. We define the spatial power spectra for the geomagnetic
field and its secular variation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rn = (n + 1)
n∑

m=0

[
E

(Gm
n

2) + E
(Hm

n
2)]

Sn = (n + 1)
n∑

m=0

[
E

(
∂tGm

n
2) + E

(
∂tHm

n
2)] (15)
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Figure 1. Time-series of coefficients G0
1 , G1

2 and G1
5 from simulations S0 (left) and CE (right). The top scale gives the dimensionless time (based on τ SV).

Figure 2. 5 kyr time-series of coefficients G1
2 , G1

5 and G1
12 from simulations CE (left) and S1 (right). The top scale gives the dimensionless time (based on τ SV).

as functions of degree n, from which a correlation time τn =√
Rn/Sn can be derived (Hulot & Le Mouël 1994).
The two quantities Rn and τ n are now assumed to follow simple

laws as a function of the degree n (for n ≥ 2):

Rn � αβn, τn � δn−γ . (16)

Constable & Parker (1988b) found that geomagnetic field models
(1 ≤ n ≤ 12) are consistent with β = 1, whereas Roberts et al.
(2003) inferred β � 0.90 from observations for n ≥ 3. Holme &
Olsen (2006) and Lesur et al. (2008) examined their satellite field
models and estimated γ � 1.45 and γ � 1.375 respectively whereas
Christensen & Tilgner (2004) and Lhuillier et al. (2011b) argued
instead for γ = 1 in joint analyses of geodynamo simulations and
geomagnetic field models. The latter authors also scaled time in
simulations so that τ SV = δ|γ=1 matches the geophysical value and
estimated τ SV = 415 yr from a fit of τ n for degrees n ∈ [2 − 13].

Building on these works, we shall assume β = γ = 1 hence
a flat spatial power spectrum Rn at the CMB for the observable
length-scales. This simplification allows to easily convert numeri-
cal times into years. The remaining parameters (α, δ) entering eq.
(16) can be derived from the average of Rn and a least-squares fit of
log (τ n) versus log (n). Since these two quantities are not normally
distributed, a more accurate estimate may be obtained using a max-
imum likelihood approach, as developed by Lhuillier et al. (2011b)
for τ n (see Appendix A). We discuss in Appendix B the estimation

of the parameters of the regression model (16) as the conditions
β = γ = 1 are relaxed.

For each simulation, we have computed different estimates of
the spatial power spectrum Rn and of the time τ n: an ensemble of
instantaneous values (R̂n, τ̂n) averaged over m (0 ≤ m ≤ n) only,
an estimate (Rn, τ n) averaged over m and the total duration of the
simulations, and the similarly averaged (R∗

n , τ
∗
n ) once subtracted the

mean values of the coefficients. Time-averaged estimates (Rn, τ n ×
n) and (R∗

n , τ
∗
n × n) are shown in Fig. 3 for the three simulations.

We also represent the fits Rn = α and τ n × n = δ calculated either
with the least-square method or the maximum likelihood one. In
addition, we plot two-sigma intervals for α and δ deduced from
an ensemble of ten snapshots. Overall, the different time-averaged
estimates of α and δ yield rather similar results given the large
variability within the ensemble of snapshot estimates. Removing or
not the average appears therefore as a secondary issue.

Spectra Rn for CE and S0 simulations are almost flat, validat-
ing the hypothesis β = 1, while that for the most extreme (lowest
viscosity, strongest forcing) simulation S1 presents a slightly de-
creasing trend with n, closer to current estimates from geomagnetic
field models, as further discussed in Appendix B.

Times τ n reflect slightly different behaviours in all three simu-
lations. If the hypothesis γ = 1 agrees well with the outputs from
CE, S1 (resp. S0) favours instead a slightly larger (resp. lower)
exponent. In simulation S1, we obtain a γ value closer to 1 after
removing the time-average value of the coefficients, which mainly
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Frequency spectrum of the geomagnetic field 1147

Figure 3. Spatial power spectrum Rn (left) and n × τ n (right) as a function of the spherical harmonic degree n for simulations S0 (top), CE (middle) and
S1 (bottom) from the expected variances as in eq. (15), either removing (blue dots) or keeping (red dots) the time-average of the coefficients. Dashed (resp.
solid) coloured lines stand for estimates of α and δ using least-squares (resp. maximum likelihood) regressions (16) with β = γ = 1. Grey lines represent the
two-sigma intervals around the average of 10 estimates of α and δ from independent snapshots R̂n and τ̂n , which are not represented. The right scale on the
n × τ n plots gives the dimensionless time in τ SV units.

affects τ n estimates at low degrees. Furthermore, we note a wide
time variability in the instantaneous estimates τ̂n , suggesting that
a snapshot estimate alone, as available from modern geophysical
observations (see e.g. Holme et al. 2011) for which the long-term
average of coefficients is not available, is insufficient to determine
precisely γ . All in all, we conclude that the simple hypothesis
γ = 1 is consistent with our three simulations (see Appendix B for
more details). An error of the order of 50 per cent may occur when

measuring the magnitudes of α and δ from instantaneous values, as
shown by the two-sigma interval in Fig. 3 (right) and in Table B2.
This translates into a variability in τ SV significantly larger than that
observed by Lhuillier et al. (2011b) from a dynamo simulation at
larger viscosity and lower forcing.

Note that the time-series of non-dipole coefficients represented
on Fig. 2 appear uncorrelated when sampled over periods longer
than 2πτ n = 2πτ SV/n (i.e. for periods longer than about 1300, 500
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Figure 4. Comparison of power spectra for random time-series, estimated
using the multitaper approach applied before (blue) and after (red) removing
the averaged value of the series, and superimposed on the theoretical power
spectrum (black). The series parameters are chosen to mimic a plausible
behaviour for the axial dipole coefficient (at the Earth’s surface): it is a
Gaussian random series with an averaged value of −35 µT, a standard
deviation of 5 µT, with a two-parameters AR2 autocovariance function as
defined in eq. (13), with ω−1 = 500 yr. The theoretical power spectra of this
series are given in eq. (12). The series contains N = 2000 data sampled every
�t = 50 yr. The vertical black line indicates the value of the concentration
half-bandwidth W = 4/(N�t) of the Slepian tapers. These spectra were
obtained using the subroutine pmtm from Matlab and then further smoothed
using running averages.

and 200 yr for degrees 2, 5 and 12 respectively). This suggests a
flat power spectrum at lower frequencies, as expected for the two-
parameter AR2 processes described in Section 2.2.

3.3 Frequency spectra of Gauss coefficients

In order to avoid frequency leakage when estimating the power
spectrum for the finite-length time-series of Gauss coefficients, we
adopt a multitaper approach (e.g. Percival & Walden 1993). The
advantage of this approach is that the power spectrum variance is
reduced by averaging independent estimates of the power spectrum
obtained after multiplying the series by various orthogonal tapers.
Several variants of the multitaper approach have been used before
to assess the power spectrum of the dipole moment. Constable &
Johnson (2005) relied on sine tapers (Riedel & Sidorenko 1995).
Olson et al. (2012) chose instead to break the series into overlapping
segments tapered using a Hanning window (Welch 1967). As Buffett
& Matsui (2015), we adopt in this study an approach based on
Slepian functions (Thomson 1982). We use seven Slepian tapers
characterized by a power spectrum with energy concentrated in a
bandwidth [−W, W], where W = 4/(N�t), N is the number of
data, and �t is the sampling interval. As a consequence, the power
spectrum estimated at a given frequency f is controlled by values of
the power spectrum within [f − W, f + W], with W the resolution of
the power spectrum.

We test the multitaper approach of Thomson (1982) on a real-
ization of a stochastic process. The obtained spectra are further
smoothed by running averages over a length that linearly increases
with the frequency (from 1 point at minimum frequency to 201
points at maximum frequency). We show the spectra obtained for
this realization both before and after removing its averaged value
(Fig. 4). Although these power spectra include a certain amount
of noise, they reproduce well both the amplitude and the spectral

indices of the true power spectrum, except at frequencies lower than
the resolution W. At frequencies f < W, the average value of the se-
ries influences the power spectra, which strongly differ whether the
average is removed or not: the spectrum obtained without removing
the average shows a step at low frequencies, which is an artefact.
The above method for calculating spectra is used below for all our
results. Note that we do not remove linear trends in the time-series
before computing the spectra. Nevertheless, we checked that the
shape of the spectra computed here with the multitaper approach
is not significantly different whether the trend has been removed or
not.

Fig. 5 displays power spectra for degree 5 Gauss coefficient time-
series at the CMB, from the three simulations. For the two longest
simulations (S0 and CE), we observe that spectra for all coefficients
are flat (or white) at low frequencies, and show a constant spectral
index at high frequencies, hinting to a scale invariance. The change
of spectral index occurs within a narrow band of frequencies, and
the cut-off frequency between the two regions of the spectra in-
creases with the spherical harmonic degree, as illustrated in Fig. 6
for the CE dynamo. Whereas the spectral index at large frequen-
cies appears independent of the spherical harmonic order in S0, it
significantly increases with m in the CE and S1 simulations. Power
spectra obtained from S1 do not show a flat plateau at low frequen-
cies as a consequence of the short duration of the simulation: we do
not have access to long enough periods to reach the domain where
P ∝ f 0. Spectra for this simulation show a steep decrease with f at
high frequency, which is absent in the S0 and CE spectra.

3.4 Comparison with the spectrum of a two-parameter
AR2 process

Expression (13) corresponds to a particular autoregressive process
of order 2 that only depends on two parameters, a variance σ 2 and
a characteristic timescale ω−1. As in Gillet et al. (2013), we further
assume that these two parameters only depend on the spherical
harmonic degree n, which amounts to posit that the statistics of the
field are independent of longitude and latitude (Hulot & Bouligand
2005). Then, for each degree n, one deduces from (15) that σ 2

n =
Rn/(n + 1)(2n + 1), and from eqs (5) and (6) the relation ω−1

n = τn ;
these two parameters define the autocovariance functions Cn(τ ).

Since long enough geophysical series to produce statistical aver-
ages are not available, Gillet et al. (2013) approximated (Rn, τ n) by
the quantity (R̂n, τ̂n) estimated from a snapshot of the well docu-
mented (and supposedly representative) satellite era. This approx-
imation relies on the assumption that main field and secular vari-
ation series are unbiased, that is, E(Gm

n ) = E(Hm
n ) = E(∂tGm

n ) =
E(∂tHm

n ) = 0. This assumption is certainly not valid for the ax-
ial dipole between two polarity reversals. For this reason, Hellio
et al. (2014) considered instead dipole deviations in the expression
(15) for n = 1. We test here the validity of using snapshot esti-
mate (R̂n, τ̂n) to define the autocovariance function of non-dipole
coefficients.

For each simulation, we estimate parameters α and δ entering (16)
(with β = γ = 1) using both averaged and instantaneous estimates
of the spatial power spectrum and correlation times (i.e. (R̄n, τ̄n),
(R∗

n , τ
∗
n ) and (R̂n, τ̂n)) and a maximum likelihood approach. α and

δ are then used to determine variances σ 2
n and correlation times

ω−1
n , and to predict the theoretical spectrum (12) for all degrees

n. We then estimate a two-sigma interval from 10 spectra (12) de-
duced from snapshots. These curves are superimposed in Fig. 5 (for
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Figure 5. Power spectra computed using the multitaper approach of Thom-
son (1982) for coefficients of degree n = 5, from simulations S0 (top),
CE (middle) and S1 (bottom). All coefficients Gm

n and Hm
n of order

m ∈ [0, n] are represented with gradually varying colours (from red for
m = 0 to blue for m = n). The black solid (dashed) curves display the power
spectra (12) with parameters τ n and σ n estimated using the maximum like-
lihood method and using time averaged Gauss coefficients variances in eq.
(15), once removed (or not) their averaged value. The grey lines represent
the two-sigma interval around the average of 10 power spectra with para-
meters ω−1

n and σ n deduced from independent snapshot R̂n and τ̂n . The thin
vertical black line indicates the resolution half-bandwidth. The top scale
gives the dimensionless frequency (based on τ−1

SV ).

Figure 6. Power spectra for Gauss coefficients series of spherical harmonic
degrees 2, 5 and 12, from the CE simulation. Same colours and line types
as in Fig. 5.

n = 5) and Fig. 6 (CE simulation for n = 2, 5, 12) on spectra of the
Gauss coefficients.

For all three simulations and all degrees, we observe overall a
good agreement between the different theoretical spectra, with some
discrepancies that we detail in the next paragraph. The theoretical
spectra obtained from averaged estimates, once removed or not
the coefficient averaged value, are very close, suggesting that the
assumption of unbiased series is valid. The two-sigma intervals
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Figure 7. Power spectra (red) for the axial dipole series from simulations S0 (left) and CE (right). In black are superimposed the three parameters AR2 spectra
(3) fitted to the series spectra for f > W – range covered by the blue fit. The parameter W denotes the resolution half-bandwidth. The axial dipole variance is
obtained directly from the series (removing the average). The frequency ω is estimated from the square root of the ratio of the variances of G0

1 and ∂G0
1/∂t . The

remaining parameter χ is obtained by minimizing the L2 norm of the difference between the logarithms of G0
1 series spectrum and of eq. (3). The top scale

gives the dimensionless frequency (based on τ−1
SV ). The thin vertical line indicates f = W. Black segments indicate spectral indices of 2 and 4.

are relatively narrow compared to the noise level in the individual
spectra and to the variability among spectra of same degree, showing
that the use of snapshot estimates is appropriate.

For simulation S0, the power-spectra calculated from (12) re-
produce very well the power spectra of the field coefficients at all
frequencies. For simulation CE, the spectrum (12) approximates
relatively well the power spectra of low order Gauss coefficients for
all degrees n. On the other hand, the power spectra for the largest
order coefficients (m ∼ n) decreases more rapidly than f −4 at its
high frequency end. Simulation S1 also presents, at periods shorter
than 10 yr, Gauss coefficient power spectra steeper than f −4. Buffett
& Matsui (2015) conjecture that the occurrence of a period range
presenting a s = 6 spectral index, as observed from numerical com-
putations (Olson et al. 2012; Davies & Constable 2014), could be
related with a mechanism involving magnetic diffusion below the
CMB. However, the identification of a spectral index s requires a
power-law behaviour P(f ) ∝ f −s over a significant frequency range.
Instead, a power spectrum P(f ) ∝ exp (−f ), which is reminiscent of
a dissipation range (see e.g. Frisch 1995), may arguably be observed
at high frequencies in simulation S1. Hence, the narrow range of
frequencies that displays a spectral index of 4 may result from too
important diffusive processes in simulations (see Section 4.3).

4 D I S C U S S I O N

4.1 Model for dipole fluctuations

The minimal model (12), which appears appropriate for all Gauss
coefficients but the axial dipole in our simulations, involves only
one timescale ω−1. It can be presented (see Section 2.1) as a special
case (ω = χ , i.e. τ s = τ f) within a more general family of models (3)
having two distinct timescales ω−1 and χ−1 – or equivalently τ s and
τ f, see eq. (11). For ω < χ , the associated power spectra (3) show a
power law in f −2 at intermediate frequencies – between frequencies
1/(2πτ s) and 1/(2πτ f). For this reason, they were employed by
Buffett & Matsui (2015) to account for the spectrum of the axial
dipole as inferred from numerical simulations and from geomag-
netic models. We concur with these results. In the two simulations

S0 and CE that are long enough to address long-lived dipole fluctu-
ations, the power spectrum for the axial dipole coefficient G0

1 does
not present a sharp transition from 0 to 4 spectral index (see Fig. 7).
Contrary to the equatorial dipole coefficients G1

1 and H1
1, whose

spectra are well fitted by a two parameters AR2 spectrum (12), the
spectrum for G0

1 shows an intermediate spectral index over about
one decade, which is well fitted by the three parameter function (3).

The calculation of τ s and τ f by Buffett & Matsui hinges on the
determination of the two transition frequencies between domains of
spectral index 4, 2 and 0, respectively (see Section 2.1). Fig. 7 il-
lustrates our fit between the spectra for S0 and CE and the function
(3) where we have entered our estimations for ω and χ (directly
related to τ s and τ f). Table 2 gives a comparison between our re-
sults and the values of τ s and τ f calculated by Buffett & Matsui
but scaled in units of τ SV. In S0 and CE, the transition frequency
between domains of spectral index s � 2 and s � 4 (Fig. 7) leads to
τ f � 65 and 125 yrs respectively, values about two to three times
larger than the estimates by Buffett & Matsui. Switching to long
periods, they made the analogy between the times τ s and td found
in their simulations. Although this analogy cannot be ruled out by
our results, simulations S0 and CE show values of the ratio td/τ s

significantly different from 1 (see Tables 1 and 2).
Unfortunately, the frequency range with a flat power spectrum

is clear neither in the simulations investigated here, nor in those
of Buffett & Matsui. In both studies, this part of the power spec-
trum is within the concentration bandwidth of the taper (see their
fig. 4 and our Fig. 7); we thus cannot determine if this is to be
associated with a real feature of the axial dipole power spectrum,
or with an artefact due to tapering. As a result, the estimates of τ s

obtained from numerical simulations and given in Table 2 are not
very accurate. Nevertheless, all estimates for ω−1 = (τ sτ f)1/2 ob-
tained from numerical series of the axial dipole are within a factor
of 2 of the value that we would obtain by extrapolating the relation
ω−1

n = τn = τSV /n (used for non-dipole coefficients) to the degree
n = 1 (i.e. ω−1 = 415 yr) .

The time ω−1 inferred from palaeo- and archaeomagnetic models
appears significantly longer than estimates deduced from numerical
simulations. In our opinion, the spectra of archaeomagnetic field
models, in the high frequency range where the spectral index is s � 4,
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Table 2. Timescales τ s and τ f involved to reproduce the power spectrum of the axial dipole deduced from archaeo- and palaeomagnetic observations
and from dynamo numerical simulations [see the definitions of τ s and τ f in eqs (8) and (9), respectively]. The time ω−1 is obtained as (τ sτ f)1/2. The
different times of the Calypso simulations have been converted into the τ SV-based scaling adopted throughout the paper, using td = Rm × τ SV/14
(Lhuillier et al. 2011a). †1 Ziegler et al. (2011), †2 Korte & Constable (2011).

Model/Simulation τ s (yr) τ f (yr) ω−1 (yr) Reference

PADM2M†1 - CALS10k.1b†2 29 000 100–200 1700–2400 Buffett et al. (2013); Buffett & Matsui (2015)
Calypso (Rm=90) 1050 37 200 Buffett et al. (2014); Buffett & Matsui (2015)
Calypso (Rm=42) 1100 35 200 Buffett & Matsui (2015)
S0 3610 65 480
CE 3490 125 660

Figure 8. Full resolution snapshot of the radial magnetic field at the CMB for the S1 simulation, shown using an Aitoff projection. In this snapshot, the
maximum intensity of the magnetic field at the CMB is about 7 mT.

are much influenced by the regularization used in their construction.
This explains why these models do not resolve geomagnetic jerks.

4.2 Deviations from spherical symmetry

Whereas temporal spectra from simulation S0 are fairly indepen-
dent of the order m for all degrees but n = 1 (Fig. 5), suggesting
that fluctuations of the non-dipole field are spherically symmetric
at the CMB, we detect some significant dependence on the order
from computations CE and S1. In CE, the spectra for coefficients of
large order (m � n) present a larger spectral index at high frequen-
cies. As a consequence, more energy is contained in coefficients
of small order at high frequencies and in coefficients of large or-
der at intermediate frequencies (for periods typically from 100 to
1000 yr). Because spherical harmonics of low and large orders have
their largest contributions at respectively high and low latitudes,
this suggests fluctuations at intermediate periods are stronger at
low latitude (equatorial features primarily project into sectorial co-
efficients). This likely reflects the westward drift of low latitude
structures observed in the CE simulation (see Aubert et al. 2013).

The power spectra for coefficients G1
2 and H1

2 in simulation CE
(and to a lesser extent for order 1, degrees 4 and 6 coefficients, not
shown) display a significant peak at periods around 2500 yr (see
Fig. 6), which translates into quasi-periodic oscillations in the time-

series (see Fig. 1, right). This particular period corresponds to the
time needed to circumnavigate the outer core at the average speed
of the westward drift (Aubert et al. 2013). These periodic variations
mainly affect m = 1 coefficients of the magnetic field through the
advection of the eccentric gyre resulting, in the CE scenario, from
the heterogeneous heat fluxes.

The topology of field patches at the CMB is influenced by the
underlying dynamics. Indeed, the predominant Coriolis force in
geodynamo simulations favours columnar structures aligned with
the rotation axis, and together with magnetic forces it textures the
vorticity field in the equatorial plane (e.g. Kageyama et al. 2008).
As a result of field concentration by the vortices, the magnetic
field at the CMB (outside the polar caps above and below the inner
core) shows thin filaments primarily aligned along meridians (e.g.
Takahashi & Shimizu 2012). This is illustrated in Fig. 8 for our
lowest viscosity case, the strongly forced computation S1. We have
thus some evidence that the Gauss coefficients at the core surface
cannot be treated as independent variables.

We deduce the following consequences for the inversion of geo-
magnetic data. First, using an AR2 autocorrelation function that
is independent of the coefficient order as prior information for
the inversion of geomagnetic models may penalize actual features
of the geomagnetic field such as the westward drift of equatorial
flux patches (Finlay & Jackson 2003) or periodic signals. Second,
accounting for spatial cross-covariances (as performed with twin
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Figure 9. Schematic view of the power spectrum for the axial dipole (left) and non-dipole (right) coefficients. We associate the cut-off frequencies between
domains of different spectral indices to several typical timescales. Note that there is a factor of 2π between the cut-off periods in the power spectra and the
timescales τ s and τ f of eq. (11).

experiments on geodynamo simulations by Fournier et al. 2013)
may improve the construction of prior information in field mod-
elling studies.

4.3 Mechanisms underlying the different timescales

Our approximation for the spectra of all coefficients but the axial
dipole involves only one timescale ω−1

n (=τ SV/n). Lhuillier et al.
(2011a) argued that τ SV is related to the advection time tU, τ SV � 3tU

� 14td/Rm (see Table 1 for definitions) and this relationship holds
within a factor of 2 in our simulations. This link between τ SV and
tU suggests that the advection time, or eddy turnover time, controls
the times ω−1

n .
Our observation, from simulations S0 and CE, of a sharp transi-

tion between 0 and 4 spectral index ranges suggests that fluctuations
of non-dipole coefficients are controlled by a single timescale, or by
two timescales that are not significantly different. In our simulations,
the axial dipole is the only coefficient for which we found necessary
to consider AR2 processes defined with two distinct timescales in
order to account for the existence of a frequency range displaying
a spectral index of 2. One could wonder as Buffett et al. (2013)
whether this is to be related to the specificity of the axial dipole to
show a non-zero average value. However, in this regard, our simula-
tions may not be representative of the Earth magnetic field. Indeed,
differences between timescales are smaller in simulations than they
are for the Earth’s core (see Table 1). In particular the ratio between
the Alfvén time and the vortex turn-over time is about unity in
simulations, instead of 10−2 in the Earth’s core, which potentially
shrinks the dynamics at periods between a few years and a few
centuries in numerical computations. Therefore, if two timescales
were involved in the fluctuations of the Earth non dipole coefficients,
these timescales may be too close in simulations to be clearly distin-
guished. Relatively larger magnetic energy (and thus shorter Alfvén
time) can be achieved in computations at Pm larger than unity (see
e.g. Dormy 2016). Such computations unfortunately tend, at low
Ekman numbers, to produce dynamos with Rm significantly lower
than that of the Earth.

The simulation S1 covers a higher frequency range than S0 and
CE. In this simulation, we observe that the spectrum becomes
steeper than f −4 at periods shorter than a cut-off period 2πτ ∼
3 yr (see Fig. 5 bottom). From the inspection of other spectra
(n �= 5, not shown), we find no evidence of the dependence of
this cut-off time on the degree. Olson et al. (2012) also suggested,
from dynamo simulations, a transition at high frequency towards a
f −6 dependence in the axial dipole spectrum. They attributed this
transition to the damping effect of the viscous layer beneath the
outer boundary. Following these authors and interpreting the time
τ as a magnetic dissipation time through a surface layer of thick-
ness ε, that is, τ = ε2/η = π 2tdε

2/c2, we find ε ∼ 2 × 10−3c.
As a result, the thickness of the dissipative layer ε is found to be
about three times the Ekman layer thickness, E1/2D (e.g. Greenspan
1968). Simulations differ from the geophysical situation inasmuch
they are controlled by viscosity (Soderlund et al. 2012; King &
Buffett 2013; Cheng & Aurnou 2016), with length-scales for vis-
cous and magnetic dissipation being comparable. In a more Earth-
like regime where viscosity is negligible, we can expect a dissipation
cut-off at higher frequency associated to a thinner dissipative layer.
We have indeed no evidence of a cut-off period from geomagnetic
observations (Finlay et al. 2013).

4.4 Concluding remarks

The two sketches presented in Fig. 9 summarize our interpreta-
tion of the coefficients power spectra, relating the cut-off periods
between domains with different spectral indices to several charac-
teristic timescales.

The analysis of our simulations indicates that the spectra of sim-
ple two-parameters AR2 processes, calibrated by instantaneous val-
ues of Rn and τ n, provide a good approximation of the spectra of
all individual Gauss coefficients but the axial dipole. Although the
axial dipole requires a more sophisticated AR2 process to account
for the spectral index of 2 observed at millennial and longer peri-
ods, the use of a two-parameter process may still be sufficient for
the construction of geomagnetic models. Indeed, prior information
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is mainly needed to quantify the high frequency variability of the
coefficients (Hellio et al. 2014). In particular, the axial dipole being
well constrained by measurements, the behaviour of its prior at low
frequency does not matter much.

Previous to this work, it was already known that there is a good
agreement for the spectrum of the axial dipole between simulations
and observations (Buffett & Matsui 2015). Assuming that this cor-
respondence holds for the other field coefficients, we end up with a
prescription for the prior needed to model the observed field, namely
the covariance function (13) in the non-dipolar case.
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A P P E N D I X A : M A X I M U M L I K E L I H O O D
E S T I M AT I O N O F L AW PA R A M E T E R S
F O R τ n A N D R n

Within the maximum likelihood approach developed by Lhuillier
et al. (2011b), the Gauss coefficients are assumed to be the result
of a random Gaussian stationary process with a zero mean and a
variance that depends only on the degree n. Given these assump-
tions, Lhuillier et al. (2011b) showed that the quantity (τn/τ̄n)2

follows an F-distribution (also known as a Fisher–Snedecor distri-
bution) with ((2n + 1)Nn, (2n + 1)Nn) degrees of freedom, noted
F (2n+1)Nn ,(2n+1)Nn , with τ̄n the expectation of the timescale τ n and
Nn the number of independent values in the Gauss coefficient time-
series. Nn is equal to 1 when τ n is estimated from an instantaneous
model or a model covering a time-period shorter than 3τ n. Nn equals
T/(3τ̄n) for time-series of duration T longer than 3τ n. Following
Lhuillier et al. (2011b), the probability of a law (δ, γ ) given the
observed timescale τ obs

n for degrees N0 to N is

f (δ, γ ) =
N∏

n=N0

F (2n+1)Nn ,(2n+1)Nn

[(
τ obs

n

δn−γ

)2
]

. (A1)

Because the likeliest value of the probability density function f K, K

is (K − 2)/(K + 2) for K > 2, the maximum likelihood estimate of
(δ, γ ) are the parameters that provide the maximum value of

f (δ, γ ) =
N∏

n=N0

F (2n+1)Nn ,(2n+1)Nn

[
(2n + 1)Nn − 2

(2n + 1)Nn + 2

(
τ obs

n

δn−γ

)2
]

.

(A2)

The parameters (α, β) of eq. (16) can be estimated using a similar
approach. Within the assumptions of Lhuillier et al. (2011b), the
quantity (2n + 1)R/R̄n follows a χ 2-distribution with (2n + 1)Nn

degrees of freedom, noted G(2n+1)Nn . The likeliest value of the χ 2

probability density function GK is K − 2 for K > 2. Therefore,
the maximum likelihood estimate of (α, β) are the parameters that
provide the maximum value of

f (α, β) =
N∏

n=N0

G(2n+1)Nn

[
((2n + 1)Nn − 2)

Robs

αβn

]
. (A3)

The probability density functions defined in eqs (A3) and (A2)
and shown in Figs A1 and A2 for simulation S0 display a sin-
gle maximum showing that this method provides a unique result.
Note however that the parameter spaces delimited by the contour
lines of the probability density functions deduced from the different
estimates may not overlap. This is the case for the two averaged
estimates of τ n (Fig. A1) suggesting that the assumption of zero
mean for the Gauss coefficients is not correct. The contour lines are
elongated in an oblique direction showing that errors on parame-
ters are correlated (errors on one parameter can be compensated by
errors on the other parameters). As expected, the parameter space
delimited by the contour lines is larger when using the instantaneous
estimates of R̂n and τ̂n , which emphasizes that the estimated law is
in this case less accurate.
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Figure A1. Probability density functions (normalized by their maximum
value) for values of α and β (see eq. 16) for the S0 simulation deduced
from R∗

n estimated using Gauss coefficients after subtracting their averaged
value (top), from R̄n using original Gauss coefficients (middle), and from
an instantaneous R̂n (bottom). Crosses indicate the maximum likelihood
parameters.

A P P E N D I X B : R E L A X I N G T H E
H Y P O T H E S E S β = 1 A N D γ = 1

Fits of Rn and τ n in Section 3.2 have been obtained assuming the
restricting hypothesis β = γ = 1 in eq. (16). Here, we discuss how
those regressions are modified once relaxing these constraints. This
test is motivated by the derivation, from current geomagnetic field
models, of larger (resp. lower) values for γ (resp. β). In particular,
regression of τ n from recent geomagnetic field models for degrees
n ≥ 3 gives γ � 1.45 (Holme & Olsen 2006). A slightly lower value
is obtained when including degree 2 in the regression.

For all estimates of Rn and τ n and each simulation, we searched
for the parameters (α, β) and (δ, γ ) from eq. (16) for n ∈ [2, 13]. We
used both the least-squares and the maximum likelihood methods.
Results of the parameter search are summarized in Tables B1 and
B2 and Fig. B1. As already observed by Lhuillier et al. (2011b), the
results from the least-squares inversion and the maximum likelihood
approach do not differ much.

Figure A2. Probability density functions (normalized by their maximum
value) for values of δ and γ (see eq. 16) for the S0 simulation deduced
from averaged τ ∗

n estimated using Gauss coefficients after subtracting their
averaged value (top), from τ̄n using original Gauss coefficients (middle), and
from an instantaneous τ̂n (bottom). Crosses indicate the maximum likelihood
parameters.

The three simulations, run for different dimensionless parame-
ters, provide different values of (α, β) and (δ, γ ). Both S0 and
CE show almost flat CMB spectra (β � 1), whereas Rn is slightly
decreasing with n (β � 0.9) for S1. The values of γ for our simula-
tions range from 0.75 to 1.3 (from average spectra), encompassing
the value γ = 1 favoured by Lhuillier et al. (2011b) and found for
the CE simulation. The most extreme (lowest viscosity, strongest
forcing) simulation S1 shows the steepest decrease of τ n with n
(larger value of γ ). S1 thus gives the closest value of γ to the in-
stantaneous estimate from geomagnetic observations. For CE and
S1, γ is decreased by about 5 per cent when removing the time-
average Gauss coefficients in the estimations of Rn and τ n. Despite
its relatively modest forcing and viscosity and its specific torque
and heat flux conditions, the simulation CE nevertheless presents a
correlation time τ n more sensitive to n than S0. Estimated values
for δ encompass τ SV = 415 yr (τ SV is defined as δ for γ = 1). This
time differs from τ SV in the simulations S0 and S1, for which γ
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Table B1. Parameters (α, β) for simulations S0, CE and S1, estimated from the least-squares (LSQ) and maximum likelihood (ML)
approaches. α is expressed in 109 nT2 and β is dimensionless. (a) Estimated from snapshot values R̂n (average value ± standard
deviation, for 10 independent epochs); and from the expected variances as in eq. (15), either removing (c) or keeping (b) the average
value of the coefficients.

α β

LSQ ML LSQ ML

(a) 147.0 ± 107.5 156.1 ± 86.3 1.05 ± 0.07 1.03 ± 0.05
S0 (b) 152.6 156.5 1.02 1.02

(c) 143.1 148.4 1.02 1.01

(a) 10.2 ± 5.9 11.0 ± 5.3 1.00 ± 0.05 0.99 ± 0.04
CE (b) 10.3 11.2 0.99 0.99

(c) 8.6 9.7 1.01 1.00

(a) 33.2 ± 16.6 42.5 ± 20.1 0.93 ± 0.04 0.91 ± 0.03
S1 (b) 37.5 37.7 0.91 0.91

(c) 27.7 27.3 0.93 0.93

Table B2. Parameters (δ, γ ) for simulations S0, CE and S1, estimated from the least-squares (LSQ) and maximum likelihood (ML)
approaches. δ is expressed in years (and in terms of τ SV in parentheses) and γ is dimensionless. (a) Estimated from snapshot values
τ̂n (average value ± standard deviation, for 10 independent epochs); and from the expected variances as in eq. (15), either removing
(c) or keeping (b) the average value of the coefficients.

δ γ

LSQ ML LSQ ML

(a) 313 ± 154(0.75 ± 0.37) 278 ± 128(0.67 ± 0.31) 0.81 ± 0.18 0.75 ± 0.15
S0 (b) 294(0.71) 253(0.61) 0.86 0.78

(c) 284(0.68) 248(0.60) 0.85 0.79

(a) 500 ± 153(1.20 ± 0.37) 460 ± 135(1.11 ± 0.33) 1.07 ± 0.16 1.02 ± 0.16
CE (b) 461(0.97) 415(1.00) 1.05 1.00

(c) 401(0.97) 375(0.90) 0.99 0.96

(a) 835 ± 426(2.01 ± 1.03) 939 ± 409(2.26 ± 0.99) 1.22 ± 0.27 1.29 ± 0.22
S1 (b) 704(1.70) 748(1.80) 1.23 1.26

(c) 585(1.41) 592(1.43) 1.17 1.18

Figure B1. Curves of constant probability density (corresponding to 20 per cent of the maximum probability) and maximum probability in the plane (δ, γ )
obtained with the maximum likelihood method for one snapshot of each simulation S0 (black thick line and cross), CE (black thin line and filled circle) and
S1 (black dashed line and triangle). For comparison, we also show the maximum probabilities from time-averages obtained while keeping (red) or not (blue)
the average. Note that the probability functions obtained from time-averages are also represented but are restricted to too small parameter space to be visible
on this figure.
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deviates significantly from 1, and it is close to τ SV in the simulation
CE for which γ � 1.

If in average, parameters obtained from snapshot estimates
R̂n and τ̂n are mostly similar to those obtained using time-
averaged, a r.m.s. mismatch of about 20 per cent (resp. 5 per cent)
may be found between instantaneous and time-integrated esti-
mates of the parameter γ (resp. β) defining the dependence

of τ n (resp. Rn) with the degree n. From Table B2, the two-
sigma intervals found for γ in simulations S0, CE and S1 are
respectively [0.45, 1.05], [0.70, 1.3] and [0.85, 1.7] using the
maximum likelihood method of Appendix A. Similar ranges of
values are obtained by computing the probability density func-
tion obtained from a single snapshot of τ n, as illustrated in
Fig. B1.

 by guest on O
ctober 5, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/

