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Abstract

We present several numerical simulations of a self-consistent dynamo model in a rotating spherical shell. The
solutions have two different field configurations. Besides magnetic fields dominated by the axial dipole component, we
also find configurations where a dipole in the equatorial plane is the dominating component. Both types are stable in
a parameter regime of intermediate shell thickness and Rayleigh numbers close to onset of convection. Axial dipole
solutions are subcritical in all the simulations explored while the equatorial dipole cases are supercritical at low
Rayleigh numbers but become metastable at higher Rayleigh numbers. The magnetic field strength saturates at a
much lower amplitude for the equatorial dipole dynamos, and the Elsasser number is significantly smaller than in the
axial configuration. The reason is that the mainly horizontal field in the equatorial dipole solution is incompatible
with the motion of convective cyclones and anticyclones. The axial dipole field, on the other hand, is predominantly
aligned with the axis of anticyclones, only cyclones are disrupted by horizontal field lines passing through. This
configuration can therefore accomodate stronger convective flows and, consequently, is the only one remaining stable
at higher Rayleigh numbers. These arguments should pertain in all planetary dynamos that are governed by strong
rotational constraints. They offer an explanation why the Elsasser numbers inferred for Uranus and Neptune are
much lower than the Elsasser numbers of Jupiter, Saturn, and Earth.
/ 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Before the spacecraft Voyager II visited Uranus
and Neptune it was consensus that planetary
magnetic ¢elds are dominated by a dipole aligned
with the planetary rotation axis. The magnetic

¢elds of the Earth, Saturn, Jupiter, and probably
also Mercury, fall into this category. But the mag-
netic ¢elds of Uranus and Neptune are di¡erent.
Their dipole axes are tilted at 50‡ and 47‡, respec-
tively, to the planetary spin axis. Global ¢eld
models also show that both planetary magnetic
¢elds have signi¢cant quadrupole and octupole
contributions [1], much larger than, for example,
in the geomagnetic ¢eld.

Kinematic dynamo calculations have demon-
strated that axial dipole con¢gurations are more
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frequent. Some of the tested £ows nevertheless
favor equatorial dipole solutions [1,2]. Likewise,
the magnetic ¢eld measured in the Karlsruhe dy-
namo experiment [3] is equivalent to a dipole ly-
ing in the equatorial plane. Most of the self-con-
sistent dynamo simulations, on the other hand,
are geared to model the geodynamo and feature
solutions dominated by an axial dipole [4^6]. The
equatorial dipole contribution may only dominate
in a transient state during a reversal. An excep-
tion is the self-consistent simulation by Ishihara
and Kida [7]. They ¢nd a persisting equatorial
dipole solution at a critical Rayleigh number close
to onset of convection. However, when they dou-
ble the Rayleigh number the solution switches to
an axial dipole dominated con¢guration.

Here, we present a region of the parameter
space where dynamos of both con¢gurations can
coexist. We highlight important di¡erences in the
respective dynamo mechanisms and discuss our
results within the scope of planetary applications.
For simplicity we will refer to axial and equatorial
dipole solutions for magnetic ¢elds which are
dominated by the respective dipole component.
All solutions presented here also contain higher
¢eld harmonics in addition to the dipole. Axial
and equatorial dipoles are representatives of two
di¡erent symmetry classes. The axial dipole ¢eld
is antisymmetric with respect to the equator while
the equatorial dipole ¢eld is symmetric. Confus-
ingly, these two classes are sometimes referred to
as dipole and quadrupole dynamos, because axi-
symmetric ¢elds are thought to be the dominant
contributions in both symmetry classes. Grote et
al. [8] have explored the parameter space for the
existence of dipolar and quadrupolar dynamos.
Contrary to the results presented here, their solu-
tions are always dominated by axisymmetric com-
ponents.

2. Numerical model

We study the dynamo action in an electrically
conducting, thermally convecting Boussinesq £u-
id. The £uid is contained in a spherical shell that
rotates about the z-axis with rotation rate 6. We
formulate a dimensionless model and use the shell

thickness, i.e. the di¡erence between inner and
outer shell radii ri and re, as a length scale. The
magnetic di¡usion time D2/R serves as the time
scale, and the Elsasser number (bWR6)1=2 scales
magnetic induction B. Here, R is the magnetic
di¡usivity of the £uid, b is the £uid density, and
W the magnetic permeability.

The boundaries are isothermal and the di¡er-
ence between inner and outer boundary temper-
ature, Ti and To, respectively, is used as the tem-
perature scale. The dimensionless equation system
includes the Navier^Stokes equation, the dynamo
equation, the heat equation, the simpli¢ed con-
tinuity equation, and the condition that magnetic
induction is divergence free:

E
qPr

D u
D t

þ uW9u
� �

þ 2ezUu ¼

392þ Ra q Pr
r
re
erT þ ð9UBÞUBþ E92u ð1Þ

dB
dt

¼ 9UðuUBÞ þ 92B ð2Þ
DT
D t

þ uW9T ¼ q92T ð3Þ

9Wu ¼ 0: ð4Þ

9WB ¼ 0 ð5Þ
The non-dimensional control parameters are

the Rayleigh number Ra, the Ekman number E,
the Prandtl number Pr, the Roberts number q,
and the radius ratio Q :

Ra ¼ KgovTD
X6

ð6Þ

E ¼ X

6D2 ð7Þ

Pr ¼ X

U
ð8Þ

q ¼ U

R

ð9Þ

Q ¼ ri
re

ð10Þ

The additional material parameters used here are
the kinematic viscosity X, the thermal di¡usivity U,
the thermal expansion coe⁄cient K, and gravity go
at outer radius ro.

Rigid conditions are used for the velocity at
both boundaries. The inner core is electrically
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conducting and rotates under the in£uence of
Lorentz and viscous torques. An inner core dyna-
mo equation and the inner core angular momen-
tum budget are solved simultaneously with the
system of Eqs. 1^5. The outer boundary is treated
as an electrical insulator. Pseudospectral methods
are employed with spherical harmonics up to de-
gree 53 for the horizontal representation and Che-
byshev polynomials up to degree 30 in radius. The
equation system is time-stepped with a mixed im-
plicit/explicit algorithm. For more details on the
numerical model we refer to [6,9].

3. Results

3.1. Stability of axial and equatorial dynamos

Fig. 1 presents a sequence of computations for
the parameter set E=1033, Pr=1, q=14.3,
Q=0.5. We start with a Rayleigh number of
Ra=62 and initialize a small magnetic seed ¢eld
that contains an equatorial as well as an axial
dipole component. The convective £ow ampli¢es
the equatorial ¢eld while the axial ¢eld decays. At
t=54.33 the Rayleigh number is increased to
Ra=70 (in red) and the dynamo changes to a
reversing state that switches between normal and
reversed axial dipole solutions. At t=56 the Ray-
leigh number is decreased back to Ra=62 (in
blue). The dynamo remains dominated by an ax-
ial dipole but stops reversing. (The dependence of
the reversal rate on the Rayleigh number is ex-
plored by Kutzner and Christensen [10].)

We can switch back to the equatorial solution
by adding an equatorial dipole component to the
axial magnetic ¢eld solution and restart the calcu-
lation with the so modi¢ed ¢eld (at t=61 in Fig.
1). Convection practically ceases and the system
recovers to an equatorial dipole con¢guration.
The added equatorial component has to be strong
enough with an energy of at least 25% of the total
magnetic energy.

These calculations demonstrate that stable
equatorial as well as axial solutions can be found
at identical parameters. The axial solution is sub-
critical at Ra=62 while the equatorial solution is
supercritical. We have also started calculations

with a seed ¢eld of axial and equatorial dipole
components at Ra=70. Once more, only the
equatorial contribution is ampli¢ed at ¢rst, but
the equatorial solution is metastable. Lorentz
forces change the £ow ¢eld in a way that enables
axial solutions to grow. These replace the equato-
rial solution after roughly one magnetic di¡usion
time. We therefore also regard the axial solution
at Ra=70 as subcritical.

The di¡erences that are responsible for the axial
dipole contributions growing and destabilizing the
equatorial ones are quite subtle and could not be
pinned down. Kinematic dynamo calculations [2]
have shown that minor changes in the £ow can
select very di¡erent eigenvectors. As we will show,
the axial dynamo con¢guration is more compat-
ible with the convective £ow than the equatorial
case. It thus seems likely that the stronger £ows at
higher Rayleigh numbers will destabilize the equa-
torial solution but will allow for the axial con¢g-
uration.

Fig. 2 shows a stability diagram of axial and
equatorial dynamo solutions in the Rayleigh num-
ber^radius ratio space for E=1033, q=14.3, and
Pr=1. The solutions described above are in-
cluded. Equatorial dipole solutions are stable
and supercritical in the white shaded region but
are metastable in the dark shaded region. All
tested axial dynamo solutions are subcritical in
the sense explained above.

Fig. 1 compares kinetic energies for the equa-
torial dynamo, the axial dynamo, and the convec-
tive solution at Ra=62. The kinetic energy in
both dynamo con¢gurations is only about 50%
of the kinetic energy in the convective case. How-
ever, the energy associated with zonal £ows (axial
toroidal kinetic energy) amounts to only 0.5% of
the total kinetic energy in the equatorial dynamo,
while it is an order of magnitude larger in the
axial dynamo and in the convective case. More-
over, the axial dynamo is much more e⁄cient
than the equatorial case, the ratios of magnetic
to kinetic energies are qe =Em/EkW65 in the axial
con¢guration and qeW3 for the equatorial case.

Fig. 3 compares the z-vorticity in an azimuthal
cut at 5‡ below the equatorial plane for the con-
vective solution (A), the equatorial dynamo (B),
and the axial dynamo (C). Though the amplitudes
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Fig. 1. (a) magnetic dipole tilt (degrees), (b) magnetic energy, (c) non-axisymmetric kinetic energy, and (d) axisymmetric toroidal
(or zonal) kinetic energy for several runs at Rayleigh numbers Ra=62 and Ra=70. Other parameters are Q=0.5, E=1033,
Pr=1, and q=14.3. Dynamo with equatorial and axial dipole geometry are both stable at Ra=62.
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di¡er, the vorticity pattern in the convective case
and the equatorial dynamo are quite similar. Cy-
clones and anticyclones are of comparable size in
both cases. The di¡erences in relative zonal £ow
strength can probably by attributed to minor dif-
ferences in the shape of the vortices that are re-
sponsible for di¡erences in Reynolds stress. The
axial dynamo solution, however, is dominated by
anticylcones. We will see below that the cyclones

are suppressed by magnetic back reaction in this
case. The disparity between positive and negative
vorticity accounts for a mean zonal £ow that is
about a factor 5 larger than in the equatorial di-
pole solution.

Note that the £ow has an azimuthal symmetry
of wave number m=5 in the axial dynamo solu-
tion but is of wave number m=6 in the purely
convective and the equatorial dynamo cases. In
addition, the equatorial cuts through the anticy-
clones have a more rounded shape in the axial
dipole solution (see Fig. 3). Both properties ac-
count for less viscous di¡usion. To some degree,
this can also be translated to magnetic di¡usion
since the magnetic ¢eld is produced locally by the
action of cyclones and anticyclones (see below).
We speculate that the larger di¡usion in the equa-
torial dynamo case is responsible for the fact that
no solution of this type can be found beyond a
radius ratio of Q=0.7 (Fig. 2).

Convective instabilities are of higher azimuthal
wave number in the thinner shells at larger radius
ratios. At Q=0.7 the convective £ow is of m=20
for the equatorial dynamo solutions (which are
ultimately unstable at this radius ratio), while it
is m=16 with an axial dipole. Another reason
why equatorial solutions cease to exist at larger
radius ratios may simply be sought in the large
disparity between the m=1 magnetic ¢eld and a
high wave number convective ¢eld. The m=1
magnetic mode corresponds to a large scale cor-

Fig. 2. Stability diagram for E=1033, q=14.3, Pr=1, vary-
ing radius ratio Q, and Ra/Rac, where Rac is the critical Ray-
leigh number for the onset of convection. Crosses mark
failed dynamos, squares are parameter sets for which either
axial or equatorial dynamos can be found, circles are param-
eter sets for which only the axial dynamos are stable.

Fig. 3. Axial vorticity maps for (A) the non-magnetic convection case, (B) the equatorial dipole case at time t=54.3, and (C) the
axial dipole case at time t=56.6.
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relation in azimuth, which is not very likely con-
sidering the small scale £ow background that
feeds the magnetic ¢eld.

3.2. Nature of the axial dipole dynamo

The axial dipole dynamo is similar in nature
and mechanism to the K

2 dynamos studied earlier
[6]. We present a new visualization (Fig. 4) that
highlights di¡erences between the equatorial and
axial dipole mechanisms and refer to [6] for a
more detailed analysis. Fig. 4A shows anticy-
clones, selected magnetic ¢eld lines, and the inner
core. Also shown is a section of the outer bound-
ary with color-coded radial magnetic ¢eld, out-
ward (inward) directed ¢eld in plotted in red
(blue). Anticyclones are represented by blue iso-
surfaces of negative axial vorticity, cyclones have
a much lower amplitude and are not shown here.

The rendered magnetic ¢eld lines illustrate the
¢eld^vortex interaction. Their thickness has been
weighted with the magnetic pressure B2. This rep-
resentation has several advantages. First, it allows
to judge which lines are energetically important.
Second, it gives an idea of the Lorentz forces act-
ing perpendicular to the line. The Lorentz force
can be interpreted as the sum of a magnetic ten-
sion and a magnetic pressure gradient:

ð9UBÞUB ¼ ðBW9ÞB39
B2

2

� �� �
: ð11Þ

We switch to a local curvilinear coordinate sys-
tem that is spanned by the tangential unit vector
es along the ¢eld line, the normal unit vector en in
the local ¢eld line plane, and the binormal vector
eb = esUen. Magnetic tension is then given by:

ðBW9ÞB ¼ B2

Rc
en þ

D

D s
B2

2

� �
es: ð12Þ

Here, Rc is the local curvature radius and s is
the coordinate along es. Plugging this into the
Lorentz force expression Eq. 11 results in:

ð9UBÞUB ¼ B2

Rc
en39H

B2

2

� �� �
: ð13Þ

with 9H =93esD/Ds. The Lorentz force is thus
strong where magnetic pressure and ¢eld line cur-
vature are large. Moreover, magnetic pressure
variations between adjacent lines carry informa-
tion on the Lorentz force.

Fig. 4 indicates that the magnetic pressure in-
side the anticyclones (area 3) is larger than at
their perimeter (areas 1 and 2). The respective
magnetic pressure gradient is mainly balanced
by the Coriolis force. The strong poloidal ¢eld
lines sitting in the center of the antivortices are
aligned with the vortex axis (area 3). Responsible
for the alignment is a secondary £ow directed
away from the equator towards the northern
and southern end of the vortex columns. This
£ow plays an important role in the poloidal ¢eld
production [6]. Axially aligned ¢eld minimizes the
£ow disruption due to Lorentz forces.

The picture is di¡erent for the cyclones, where
the internal secondary £ow is directed equator-
wards. It collects magnetic ¢eld near the outer
boundary and stretches the ¢eld lines down the
columnar axis (area 4). However, the ¢eld is
also expelled from the vortex resulting in strong
¢eld lines that cross the vorticity structure (lower
part of area 4). The associated Lorentz force
brakes the vortex motion and is responsible for
the dominance of anticyclones in the system, as
observed in an earlier study [11]. Note that this
selection of anticyclones is the result of a mag-
netic instability. Flow instabilities also tend to
favor anticyclones but only at considerably higher
Rayleigh numbers [12].

3.3. The equatorial dipole dynamo mechanism

Fig. 5 illustrates the ¢eld con¢guration in the
equatorial dynamo solutions. The ¢eld is mainly
symmetric with respect to the equator but also

6

Fig. 4. The axial dipolar dynamo at t=56.6. (A) Axial vorticity isosurface (value 31400), and magnetic ¢eld lines. The line thick-
ness is weighted by B2. (B) Radial component of the magnetic ¢eld at the outer boundary (red is outwards). The zone within the
red rectangle is represented on image A.
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Fig. 5. Representations of the equatorial dipole dynamo at time t=54.3. Color-coded radial (A) and azimuthal (B) magnetic ¢eld
¢ve degrees below the equatorial plane (see text), with contours of the axial vorticity (dashed lines are cyclones). (C,D) Magnetic
¢eld lines representations, from above and from the side. On the side view only the front half of vortices is represented for
clarity. Flow and ¢eld lines in zones 1 and 1P, 2 and 2P, 3 and 3P are identical, only the direction of the ¢eld changes, so each
zone can be viewed from two angles. Isosurfaces 31400 (blue) and 1400 (red) of the axial vorticity are represented. (E) Same as
in ¢gure with axial plots (B). The outer boundary slices represented in (B) and (D) are respectively delineated in red and blue.
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has a non-negligible antisymmetric component
(see Fig. 5E). For simplicity we will neglect the
latter in the following exploration.

Toroidal and poloidal magnetic energy are
dominated by the m=1 contributions. However,
the ¢eld is locally produced by the cyclones and
anticyclones, the action of this m=6 £ow on the
large scale m=1 ¢eld results in a combination of
m=5 and m=7 magnetic ¢eld contributions ac-
cording to the non-linear selection rules in the
dynamo equation. Fig. 6 shows the magnetic en-
ergy content in the respective wave number con-
tributions.

The mechanism of poloidal ¢eld production is a
typical K-process that is also working in the axial
dynamo case. The di¡erences in the resulting po-
loidal ¢eld structures are caused by the di¡erent
toroidal ¢eld symmetries. This mechanism is com-
monly explained by the action of a cyclone/anti-
cyclone pair on azimuthal toroidal ¢eld, we refer
to [6] and their Fig. 5A. In the axial dipole case
the opposite sign of the azimuthal toroidal ¢eld in
the Northern and Southern Hemispheres results
in production of a poloidal ¢eld that also changes
its sign at the equatorial plane. In the equatorial
dynamo, the azimuthal toroidal ¢eld is symmetric

with respect to the equator and so is the poloidal
radial ¢eld.

A key feature of the K-process is the wrapping
of ¢eld lines around cyclones and anticyclones
which can clearly be identi¢ed in Fig. 5C. The
radial magnetic ¢eld thus changes its sign in azi-
muthal direction within each cyclone and each
anticyclone (Fig. 5A). The secondary £ow de-
scribed above concentrates magnetic ¢eld in the
equatorial region of anticyclones (Fig. 5A and
zones 3 and 3P in Fig. 5C) and where cyclones
touch the outer boundary (Fig. 5D,E).

The mechanism of toroidal ¢eld production can
be categorized as an K-mechanism since the tor-
oidal ¢eld is locally produced by the action of
cyclones and anticyclones. The process suggested
by [6] is only part of the answer here. It is mainly
working in regions where the meridional compo-
nent of the poloidal ¢eld is signi¢cant. Azimuthal
toroidal ¢eld is mainly produced where the radial
poloidal ¢eld is strong (see for example regions 1
and 1P in Fig. 5C,D). The respective mechanism is
shearing of radial ¢eld by radial gradients in the
azimuthal £ow. Especially apparent is this e¡ect
where strong radial magnetic ¢eld leaves and en-
ters the outer boundary, these regions are labeled
1 and 1P in Fig. 5. Note that the ¢eld lines are also
very thick, i.e. energetic, in these regions. The
local e¡ects of azimuthal toroidal ¢eld production
are correlated in a way that guarantees produc-
tion of a large scale m=1 component. Two sepa-
rate radial layers can be distinguished with a
phase di¡erence of one cyclone/anticyclone pair
in the azimuthal ¢eld component. (Fig. 5B,C).

Since the toroidal ¢eld loops close within the
Northern and Southern Hemispheres latitudinal
¢eld components are as important as the azimu-
thal components. The latitudinal toroidal ¢eld is
produced by the shearing of azimuthal poloidal
¢eld between the secondary poleward £ows in an-
ticyclones and equatorward £ows in cyclones.
There are two regions where this e¡ect is domi-
nating the production of azimuthal toroidal ¢eld,
these are also the regions where the azimuthal
toroidal ¢eld changes sign (regions 2 and 2P in
Fig. 5C,D).

The orientation of the poloidal magnetic ¢eld
along the axis of anticyclones in the axial dipole

Fig. 6. Spectral decomposition of Ek and Em with the azimu-
thal mode number m. Solid line is the self-sustained equatori-
al dynamo case. Dashed line is the kinematic dynamo case
where the Lorentz force is turned o¡ (convection structure is
then identical to the non-magnetic case). Em in the kinematic
case is normalized to the value of Em in the self-consistent
case.
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case plays no important role in the equatorial di-
pole solutions. Here, magnetic ¢eld passes hori-
zontally through cyclones and anticyclones. Both
are braked by the associated Lorentz forces. This
e¡ect is stronger in anticyclones because of the
increased ¢eld strength at the equatorial plane
(see above). Consequently, the amplitude of the
anticyclonic columns is somewhat smaller than
that of the cyclones.

This also suggests an answer to the question of
why the axial dipole is so much more e⁄cient
than the equatorial case. In the axial dipole dyna-
mo, most of the kinetic energy is carried by anti-
cyclones and these are also more active elements
in poloidal ¢eld production. The axial orienta-
tion of poloidal magnetic ¢eld in these columns
minimizes the interaction with the £ow. In the
equatorial dipole dynamo the magnetic ¢eld lines
impair the motion of cyclones as well as anticy-
clones. This requires a much lower equilibrium
¢eld strength than in the axial case. An increase
in magnetic ¢eld amplitude would brake cyclones
as well as anticyclones, it would therefore reduce
the magnetic ¢eld production, and it would ulti-
mately cause the ¢eld strength to decrease again.

The fact that the convective £ow is less dis-
rupted by magnetic ¢eld lines in the axial dipole
case also means that this con¢guration can ac-
commodate stronger convective £ows. As stated
above, this is probably the reason why only axial
dipole dynamos remain stable at higher Rayleigh
numbers.

A few words about the time dependence of the
equatorial dipole solution. The magnetic energy is
almost steady in the equatorial dipole dynamo
(Fig. 1d). But magnetic ¢eld and velocity ¢eld
drift as prograde-propagating waves with periods
reported in Table 1. To check the in£uences of

magnetic back reaction on the £ow we have also
performed a calculation without the Lorentz force
in the Navier^Stokes Eq. 1. The resulting mag-
netic ¢eld is very similar to the solution of the
full problem which indicates that the equatorial
dynamo is close to being kinematic. However,
there are some di¡erences in the time behavior.
The drift period of the m=5 and m=7 magnetic
¢eld components is determined by the drift of the
m=6 convective instability. The much slower drift
of the m=1 dipole component, on the other hand,
is determined by the magnetic instability and
seems to be independent of the convective drift.
Respective periods di¡er signi¢cantly between the
kinematic (no Lorentz force) and the full prob-
lem.

There is also an additional fast oscillation of
low amplitude in the convective as well as in the
magnetic ¢eld (see inset in Fig. 1). This oscillation
is a result of the relative drift of the m=6 £ow
structure with respect to the m=1 magnetic ¢eld,
the convective columns ‘feel’ variations in the
Lorentz force. The oscillation is in turn translated
to the magnetic ¢eld via small variations in the
local dynamo mechanism. Consequently, these os-
cillations are missing when we switch out the
magnetic back reaction on the £ow.

4. Implications for planetary dynamos

We have demonstrated that the magnetic ¢eld
strength saturates at a much lower level in the
equatorial dipole con¢gurations than in the axial
dipole cases. The Elsasser number 1=cB2/b6 (c
is the £uid conductivity) measures the relative im-
portance of Lorentz and Coriolis forces in the
Navier^Stokes Eq. 1. It can also be interpreted
as a measure for the relative magnetic ¢eld
strength. The ratio of the Elsasser number 1a of
the axial dynamo and the Elsasser 1e number of
the equatorial dynamo that have been examined
above (Ra=62) is 1a/1e = 20.

What is this ratio for planetary dynamos? Plan-
etary magnetic ¢elds that are dominated by axial
dipoles have Elsasser numbers of order one
(Earth, Jupiter, Saturn). The internal models
of Uranus and Neptune are not very well con-

Table 1
Drift periods for the main components of the dynamo, the
£ow component and the energetic oscillation

Kinematic Self-consistent

m=1 2.98W 0.4 0.682
m=5 0.124 0.116
m=6 (£ow) 0.148 0.135
m=7 0.171 0.152
Oscillation none 0.023
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strained yet. For example, it is still unknown
where the dynamo region is located. The surface
¢elds of Uranus and Neptune are about as large
as the geomagnetic surface ¢eld, we simply as-
sume here the ¢elds in the dynamo region are
also of comparable magnitude. The electrical con-
ductance in the interior of Uranus and Neptune is
most likely carried by water and ammonia ions.
Ab-initio calculations suggest conductivities of the
order 104 S/m [13]. These estimates give an Elsass-
er number of order 1032. We thus arrive at a ratio
1a/1e of order 102 for the planetary dynamos in
our solar system.

The dynamo models explored here suggest that
the lower ¢eld strength in the equatorial dipole
con¢gurations is a consequence of the mainly
transverse ¢eld lines that oppose the shearing mo-
tion of axial vorticity columns. This can possibly
by generalized to all dynamos in rapidly rotating
systems whose dipole axis is signi¢cantly tilted
away from the rotation axis. We therefore pro-
pose that the anticipated lower Elsasser numbers
for Uranus and Neptune are likely and that this
fact is strongly related to the inclination of the
magnetic dipole axes.
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