
Geophys. J. Int. (2020) 00, 378–393 doi: 10.1093/gji/ggaa007
Advance Access publication 2020 January 7
GJI Geomagnetism, Rock Magnetism and Palaeomagnetism

Recent geomagnetic variations and the force balance in Earth’s core

Julien Aubert
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S U M M A R Y
The nature of the force balance that governs the geodynamo is debated. Recent theoretical
analyses and numerical simulations support a quasigeotrophic (QG), magneto-Archimedes-
Coriolis (MAC) balance in Earth’s core, where the Coriolis and pressure forces equilibrate
at leading order in amplitude, and where the buoyancy, Lorentz and ageostrophic Coriolis
forces equilibrate at the next order. In contrast, earlier theoretical expectations have favoured a
magnetostrophic regime where the Lorentz force would reach leading order at the system scale.
The dominant driver (buoyant or magnetic) for the general circulation in Earth’s core is equally
debated. In this study, these questions are explored in the light of the high-quality geomagnetic
data recently acquired by satellites and at magnetic ground observatories. The analysis involves
inverse geodynamo modelling, a method that uses multivariate statistics extracted from a
numerical geodynamo model to infer the state of Earth’s core from a geomagnetic field model
interpretation of the main field and secular variation data. To test the QG-MAC dynamic
hypothesis against the data, the framework is extended in order to explicitly prescribe this force
balance into the inverse problem solved at the core surface. The resulting inverse solutions
achieve a quantitatively adequate fit to the data while ensuring deviations from the QG-MAC
balance (which amount to an inertial driving of the flow) lower than each of the leading
forces. The general circulation imaged within the core over the past two decades confirms
the existence of a planetary-scale, eccentric, axially columnar gyre that comprises an intense,
equatorially symmetric jet at high latitudes in the Pacific hemisphere. The dominant driver
of this circulation is shown to be of buoyant nature, through a thermal wind balance with a
longitudinally hemispheric buoyancy anomaly distribution. Geomagnetic forecasts initiated
with the inverted core states are systematically more accurate against the true interannual
geomagnetic field evolution when enforcing the QG-MAC constraint. This force balance is
therefore consistent with the geomagnetic data at the large scales of Earth’s core that can be
imaged by the method.

Key words: Dynamo: theories and simulations; Rapid time variations; Satellite magnetics;
Inverse theory.

1 I N T RO D U C T I O N

In the past two decades, satellite geomagnetism has complemented
ground observatory measurements to provide a dramatically en-
hanced monitoring of Earth’s internally generated magnetic field.
Together with improved mathematical modelling, this wealth of
data has given access to reliable determinations of the core main
magnetic field and its time derivatives (known as the geomagnetic
secular variation and acceleration) with temporal resolution down
to about a year on the largest length scales (Finlay et al. 2016b;
Lesur et al. 2017). In combination with earlier modelling efforts
targeted towards the historical timescales (Wardinski & Lesur 2012;
Gillet et al. 2013; Sabaka et al. 2015), the observational progress
has strongly motivated recent numerical modelling efforts towards

simulations that better approach the conditions of Earth’s core and
better render the richness of its dynamics.

As an outcome of these efforts, direct numerical simulation of
the geodynamo now provides a self-consistent interpretation of
geomagnetic variations over a broad range of timescales through
successive force balances organized in a hierarchy of amplitudes.
At decadal timescales and longer, it has been suggested that ge-
omagnetic variations are realistically rendered even in numerical
simulations operating at moderate values of the control parameters
(Christensen et al. 2012; Aubert 2018). This is so because the force
balance governing the slow convective evolution of the system is
in fact remarkably invariant across the parameter space (Schwaiger
et al. 2019) and as Earth’s core conditions are approached (Aubert
et al. 2017; Aubert 2019). At leading order in amplitude, the details
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of this so-called QG-MAC balance involve a geostrophic equilib-
rium between the Coriolis and pressure forces. The difference be-
tween the two does however not vanish, such that the equlibrium
is in fact quasi-geostrophic (QG) and a small part of the Coriolis
force remains ageostrophic. About an order of magnitude below
the leading-order forces (the first order), this ageostrophic Coriolis
force is in balance with the buoyancy and Lorentz forces (the MAC
balance). Capturing the faster, interannual geomagnetic variations
in the simulations however requires simulation with parameters sig-
nificantly closer to Earth’s core conditions (Schaeffer et al. 2017;
Aubert 2018). The key here is to enlarge the gap between the first
order MAC forces and the inertial and viscous force which come
at the second order in amplitude. When this is achieved, magneto-
inertial Alfvén hydromagnetic waves (including torsional waves)
can emerge in the simulations at the appropriate timescale (which
in Earth’s core is on the order of a few years, Gillet et al. 2010) and
with weak enough damping. Such waves generally cause weak mag-
netic variation signals (Aubert 2018) except during sporadic events
where they can focus on approach of the core–mantle boundary and
generate pulses of magnetic acceleration that lead to geomagnetic
jerks (Aubert & Finlay 2019).

Another area of research where the links between geomagnetic
variations and the force balance in Earth’s core are evident is the
inverse problem where the magnetic induction equation is used to
infer the fluid flow inside Earth’s core that accounts for these vari-
ations. Various hypotheses on the geodynamo force balance have
frequently been critical to alleviate the inherent underdetermination
of this problem. Many inversions for flow at the core surface (e.g.
Jackson 1997; Hulot et al. 2002; Pais et al. 2004; Holme & Olsen
2006) use for instance the tangentially geostrophic constraint (Le
Mouël 1984; Le Mouël et al. 1985).This constraint can be thought
of as the toroidal component of the QG-MAC balance, with the
magnetic force considered subdominant immediately beneath the
core–mantle boundary (see Section 2.3). More recently, the quasi-
geostrophic approximation (again naturally encompassed by the
QG-MAC theoretical description) has been repeatedly invoked to
solve for flow at the core surface by using its equatorial symmetry
properties and to infer its axially columnar structure throughout
the core (Pais & Jault 2008; Gillet et al. 2009; Amit & Pais 2013;
Gillet et al. 2015; Kloss & Finlay 2019). Another avenue of research
has focused on using statistics from numerical dynamos in order to
constrain the inverse problem at the core surface (Fournier et al.
2011; Barrois et al. 2017; Gillet et al. 2019) as well as throughout
the core (Aubert 2013, 2014, 2015). Together with the buoyancy
field that can also be statistically inferred that way, the resulting
flows respect a thermal wind balance between the buoyancy and
ageostrophic Coriolis forces. This is expected because this balance
is also generally observed at large scales in the numerical dynamos
used as prior models (Aubert 2015; Aubert et al. 2017), and has
a significant signature in the linear correlations between observed
and hidden quantities that are used for the inversion. Here again,
the thermal wind balance can be seen as the poloidal projection of
the QG-MAC balance, again with magnetic forces neglected.

Among recent results of inverse core flow modelling, it is partic-
ularly noteworthy that the general circulation throughout the core
has become rather consensual. Numerous studies indeed highlight
a planetary-scale, eccentric and axially columnar gyre that accounts
for the core surface geomagnetic westward drift beneath the Atlantic
hemisphere and features a strong, high-latitude localized jet beneath
the Pacific (Pais & Jault 2008; Gillet et al. 2013, 2015, 2019; Aubert
2013, 2014, 2015; Pais et al. 2015; Barrois et al. 2017; Livermore

et al. 2017; Bärenzung et al. 2018). The dominant driver of this cir-
culation is however still debated between the two end-members of a
thermal wind origin (e.g. Aubert et al. 2013; Aubert 2015) or a mag-
netic wind origin (e.g. Livermore et al. 2017), the latter representing
a situation where it is the magnetic force, rather than buoyancy, that
equilibrates the pressure and Coriolis forces at the large, plane-
tary scale. This debate in fact reflects the more general theoretical
question of whether quasi-geostrophy is indeed enforced at the sys-
tem scale (as theoretically advocated by a number of authors, e.g.
Davidson 2013; Calkins et al. 2015; Aurnou & King 2017; Calkins
2018) or whether this scale is controlled by magnetostrophy, that is a
leading-order equilibrium between magnetic, Coriolis and pressure
forces, as historically conjectured (e.g. Hollerbach 1996; Dormy
2016). The recent numerical simulations of Schwaiger et al. (2019)
suggest that although magnetostrophy can occur in the system, the
scale at which it occurs is significantly below the system scale. Fur-
thermore, the possibility of magnetic winds is generally hampered
in the simulations by the effects of Lenz’ law which align mag-
netic field lines along axial vorticity structures (Aubert 2019). The
question of whether Earth’s core is in a QG-MAC or system-scale
magnetostrophic force balance nevertheless remains central to the
geodynamo theory (Aurnou & King 2017), and to the geophysical
relevance of numerical dynamo simulations in general.

The purpose of this study is to pursue a data-driven approach
to this question and use the recent high-quality geomagnetic data
collected by satellites and at ground observatories in an attempt to
provide further insight into the nature of force balance in Earth’s
core. To this end, it is necessary to infer the hidden state variables of
the core from the data in a dynamically consistent way. In its previ-
ous implementations, inverse geodynamo modelling (Aubert 2013,
2014, 2015) has provided inferences of these variables that were
largely of probabilistic nature (except for the determination of core
surface flow from the secular variation by inversion of the magnetic
induction equation). Here, the framework is further developed in or-
der to also hypothesize the QG-MAC balance at the core surface as
a prior and include the corresponding dynamical constraints in the
inversion scheme. As these constraints involve the velocity field but
not its time derivative, the geomagnetic acceleration is not needed
to probe the dynamics, and the secular variation data remain suf-
ficient. A quantitative evaluation of the compatibility of observed
geomagnetic variations with this prior force balance hypothesis then
becomes possible (with the high-accuracy recent data providing the
tightest checks), which forms the first goal of this study. Our second
goal is then to determine the dominant driver of flows at large scales
within Earth’s core. Among the tools that can be used to reach these
two goals, the updated scheme can be used to perform short-term
forecasts of the geomagnetic field evolution, and as a third side
goal we also wish to examine the quality of these forecasts from an
operational point of view. The manuscript is organized as follows:
Section 2 presents the numerical dynamo and geomagnetic field
models, together with the inverse geodynamo modelling scheme.
Results are presented in Section 3 and discussed in Section 4.

2 M O D E L S A N D M E T H O D S

2.1 Governing equations of the direct problem and
numerical implementation

Earth’s outer core is modelled as an electrically conducting and
rotating spherical fluid shell of thickness D = ro − ri = 2260 km
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between the inner core and core–mantle boundary radii ri and ro,
with ri/ro = 0.35. In this domain, the equations of Boussinesq ro-
tating convection, magnetic induction in the magnetohydrodynamic
approximation and thermochemical density anomaly transport are
solved. The unknowns are the velocity field u, magnetic field B,
pressure field � and codensity (opposite of density anomaly) field
C. In dimensional form these equations and the solenoidal condi-
tions on u and B write:

−2 � ez × u − ∇�

ρ
+ go

r

ρro
C + 1

ρμ0
(∇ × B) × B

= Du

Dt
− ν∇2u, (1)

∂B

∂t
= ∇ × (u × B) + η∇2B, (2)

∂C

∂t
+ u · ∇C = κ∇2C + χ, (3)

∇ · u = 0, ∇ · B = 0. (4)

Here �ez is the rotation vector of the planetary reference frame
in which the equations are solved, r is the radius vector, go the
gravity at radius ro, ρ, μ0, ν, κ and η are, respectively, the fluid den-
sity, magnetic permeability, viscous, thermo-chemical and magnetic
diffusivities and χ is a source term ensuring mass conservation. In
eq. (1) the terms relevant to the QG-MAC force balance have been
grouped in the left-hand side, such that in the models as well as at
Earth’s core conditions (Aubert et al. 2017; Aubert 2018), individ-
ual terms in this balance dominate the residual of their sum in the
right-hand side, that comprises inertia (represented here as a total
time derivative) and viscosity. As demonstrated in Aubert (2018)
also, the dynamics of the system on decadal and longer timescales,
as well as on shorter timescales away from jerk events, is governed
by the balance between terms in the left-hand side of eq. (1), with
the temporal dependence being prescribed by the time derivatives
present in eqs (2) and (3) rather than by inertia in eq. (1).

The specific model used here is the coupled Earth dynamo
(Aubert et al. 2013), which has already served a number of times
in geomagnetic inverse problems (Aubert 2014, 2015; Finlay et al.
2016a; Barrois et al. 2017). Rigid (no-slip) and stress-free mechan-
ical boundary conditions are prescribed at the inner core (core–
mantle) boundary, respectively. The inner core is electrically con-
ducting and insulating electromagnetic boundary conditions are
prescribed at the core–mantle boundary. A gravitational restoring
torque couples the inner core and the mantle. As a result of the
electromagnetic, mechanical and gravitational couplings between
the inner core, outer core and mantle, the inner core and mantle
have a time-dependent axial rotation rate respectively to the outer
core, and the ensemble has a constant axial angular momentum
defining the planetary rotation rate �. Fixed-flux, heterogeneous
density anomaly boundary conditions are prescribed at both bound-
aries, with amplitudes and patterns as detailed in Aubert et al.
(2013). The geophysical situation that is modelled is that of dom-
inant bottom-driven chemical convection driven by a differentially
freezing inner core. The longitudinally hemispherical pattern of the
freezing rate is fastest in the Eastern Hemisphere (from longitudes
0◦E to 180◦E) and peaks at 90◦E. At the core–mantle boundary,
the homogeneous part of the density anomaly flux vanishes (corre-
sponding to a situation where the heat flow is exactly adiabatic), and
the density anomaly flux is locally perturbed by an heterogeneous
thermal control from the mantle.

The system of eqs (1)–(4) is cast into a dimensionless form before
being numerically solved (see e.g. Aubert et al. 2017). This leads

to four main dimensionless parameters, the flux Rayleigh, Ekman,
Prandtl and magnetic Prandtl numbers, the respective values of
which for the coupled earth model are:

RaF = go F

4πρ�3 D4
= 2.7 × 10−5, (5)

E = ν

�D2
= 3 × 10−5, (6)

Pr = ν

κ
= 1, (7)

Pm = ν

η
= 2.5. (8)

Here F is the homogeneous part of the density anomaly flux pre-
scribed at the inner core boundary. In terms of computational re-
quirements, the model is located within a parameter space region
of moderate cost that has been extensively explored, leading in
particular to a quantitative assessment of the degree of semblance
between the output of numerical simulations and the geomagnetic
field (Christensen et al. 2010). Against the metrics that have been in-
troduced, the large scale output of the coupled earth model is rated
highly semblant to the historical geomagnetic field, and this also
true (though on a more qualitative level) of the large-scale spatial
structure of its secular variation and underlying core flows (Aubert
et al. 2013). Its relevance for geomagnetism has also recently been
further strengthened by the formulation of a theoretical parameter
space path between this model and conditions in Earth’s core, along
which the leading order QG-MAC force balance and the large-scale
structure of the solution are approximately invariant (Aubert et al.
2017).

The properties of the parameter space path also justify the rescal-
ing rules that have been previously defined (Fournier et al. 2011,
and following studies) to cast the dimensionless model output back
into dimensional values relevant to Earth’s core despite the wide
parameter gap existing between the two. Here we proceed in the
following steps:

(i) Dimensionless lengths in the model are expressed relative to
D and therefore rescaled by multiplying the result with Earth’s core
shell gap D = 2260 km.

(ii) We then invoke the invariance along the path of the ratio
τ SV/τ η between the typical timescale for secular variation (see e.g.
Christensen et al. 2012; Aubert 2018) and the magnetic diffusion
time τ η = D2/η. Dimensionless times in the model are therefore
expressed relative to τ SV and rescaled by multiplying the result
with the value τSV = 415 yr inferred from the geomagnetic field
evolution (Lhuillier et al. 2011). Using the value τ SV/τ η = 2.96 ×
10−3 obtained in the coupled earth model, this is equivalent to
expressing dimensionless times in the model relative to the magnetic
diffusion time τ η and then multiplying the result with the value τη =
140280 yr, corresponding to a magnetic diffusivity η = 1.15 m2 s−1

at the midpoint of current estimates (Aubert et al. 2017).
(iii) Dimensionless velocities in the model are expressed relative

to η/D (yielding magnetic Reynolds numbers) and then rescaled
by multiplying the result with the value for Earth’s core η/D =
0.016 km yr−1 obtained using the values determined above.

(iv) We invoke the invariance along the path of the ratio between
the Coriolis force −2 � ez × u and buoyancy force gorC/ρro. The
dimensionless density anomaly field is therefore expressed rela-
tive to ρ�η/goD and then rescaled by multiplying the result with
the value ρ�η/go D = 4.08 × 10−8 kg m−3 obtained using ρ =
11 000 kg m−3, � = 7.29 × 10−5 1 s−1, go = 10 m s−2 and the val-
ues determined above.
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(v) We invoke the invariance along the path of the ratio be-
tween the Coriolis force −2 � ez × u and Lorentz force (∇ × B) ×
B/ρμ0. The dimensionless magnetic field is therefore expressed rel-
ative to the Elsasser unit

√
ρμ0η� and then rescaled by multiplying

the result with the value of
√

ρμ0η� obtained for Earth’s core.
Using the values determined above and μ0 = 4π × 10−7 H m−1,
we should prescribe

√
ρμ0η� = 1.08 mT. With this unit, the r.m.s.

magnetic field in the shell of the coupled earth model is 4.7 mT,
compatible with the value 4 mT inferred for Earth’s core (Gillet
et al. 2010). Note that prior to the formulation of the parameter
space path in Aubert et al. (2017), previous studies using the same
dynamo model (Aubert et al. 2013; Aubert 2014, 2015; Fournier
et al. 2015; Barrois et al. 2017) proceeded along somewhat different
lines of reasoning. These nevertheless arrived at a very similar result√

ρμ0η� = 0.82 mT which is also admissible given the leeway in
the possible magnetic field amplitude in Earth’s core. As the results
presented here are largely immune to this slight difference, and to
facilitate comparison with these earlier studies, we chose to retain
this last value for the Elsasser unit.

Through this rescaling procedure, the dimensional outputs re-
spect the QG-MAC balance at the same level as their dimensionless
counterparts, and at the same time compare favourably with their
estimates in Earth’s core.

The numerical implementation involves a representation of the
solenoidal vector fields in a toroidal–poloidal formalism:

u = ∇ × (T r) + ∇ × ∇ × (Pr), (9)

B = ∇ × (Zr) + ∇ × ∇ × (W r). (10)

Note that the pressure � is not solved for as the equations that are
numerically implemented involve the curl and double curl of (1).
The scalar fields P, T, W, Z, C representing the velocity, magnetic
and density anomaly fields in the spherical coordinate system (r, θ ,
ϕ) are expanded on a discrete radial grid rj, j = 1, ..., NR with NR
= 184 gridpoints (NG = 25 points of which are in the inner core),
and in a spherical harmonic representation on a fully normalized
basis of complex spherical harmonic functions Y m

l (θ, ϕ) of degree
� and order m, up to degree and order �max = 133, according to, for
example:

P =
�max∑
�=0

�∑
m=−�

Pm
� (r j ) Y m

� (θ, ϕ). (11)

Spatial derivatives are handled with a second-order finite-
differencing scheme, and time stepping is semi-implicit with
second-order accuracy. We use the spherical harmonics trans-
form library SHTns (Schaeffer 2013) freely available at https:
//bitbucket.org/nschaeff /shtns. Angular momentum conservation
within the coupled core–mantle–inner core system is controlled
at each time step.

2.2 Geomagnetic field model

For reasons of mathematical tractability as well as reasons related to
the high level of expertise that is involved in separating the internal
and external sources of the geomagnetic field (see a discussion in
Aubert 2015), the inverse geodynamo modelling framework devel-
oped in Section 2.3 uses as input the output of a geomagnetic field
model rather than direct geomagnetic satellite and ground observa-
tory measurements. Here, we use the iteration CHAOS-6x8 of the
CHAOS-6 family of field models (Finlay et al. 2016b), spanning

epochs 1999.0–2019.0. This model provides a spherical harmonic
global representation of the geomagnetic field that is also expanded
on a spline basis in time. Spherical harmonic coefficients up to
degree �obs = 13 can be safely assumed to represent the inter-
nal magnetic field and secular variation (Hulot et al. 2015; Finlay
et al. 2016b), and we therefore adopt this truncation level. The
geomagnetic field model output is sampled at yearly intervals for
the poloidal magnetic field coefficients at the core surface W m

� (ro)
and their first time derivative evaluated on the spline basis Ẇ m

� (ro),
which relate to the supplied classical Gauss coefficients gm

� , hm
�

through, for example

W m
� (ro) = ro

�

(
a

ro

)l+2
(
gm

� − ihm
�

)
√

2� + 1
. (12)

Here a = 6371.2 km is Earth’s radius, and a similar expression
holds for Ẇ�m(ro). The vectors

d = [
W m

� (ro)
]ᵀ

, 1 ≤ � ≤ �obs, (13)

ḋ = [
Ẇ m

� (ro)
]ᵀ

, 1 ≤ � ≤ �obs, (14)

where superscript ᵀ denotes the transpose, are the data vectors that
are introduced in the inverse framework at each given epoch. Also
needed are the data error covariance matrices R and Ṙ statistically
representing the deviation ε, ε̇ of d, ḋ to their true value in Earth’s
core:

R = E(εε ′) , Ṙ = E(ε̇ε̇ ′), (15)

where E is the expected value and the prime denotes the trans-
pose complex conjugate. We adopt diagonal data error covariance
matrices with the following coefficients:

Rm
� = r 2

o

�2(� + 1)2(2� + 1)

(
a

ro

)2�+4
ε2

B

�obs
. (16)

Here εB is the error level, and a similar expression involving a level
εḂ holds for Ṙ. Note that eqs (12) and (16) differ slightly from the
expressions given in Aubert (2015) because of the spherical har-
monic basis chosen for the present analysis (as defined in Dormy
1997), particularly the fully normalized character of basis func-
tions (while Gauss coefficients are Schmidt semi-normalized). The
quantities εB, εḂ are the total amplitudes of the error on all three
magnetic field components at Earth’s surface, and the expression
(16) evenly distributes the error among spherical harmonic degrees
in a Mauersberger–Lowes spectral representation of magnetic en-
ergy at Earth’s surface (the level of this flat error spectrum being
marked by arrows in Figs 1a and c, with corresponding fit residuals
at the core-mantle boundary being imaged in Fig. 2). For the un-
constrained inversions as well as the inversions where a moderate
level of the QG-MAC constraint is imposed (see Section 2.3),
we adopt εB = 1 nT and εḂ = 2 nT yr−1, these values being com-
mensurate with the typical residuals obtained when constructing
CHAOS-6 (Finlay et al. 2016b). For inversions where we impose
a high level of the QG-MAC constraint, we allow for more devia-
tion from the geomagnetic field model by keeping εB = 1 nT but
adopting εḂ = 10 nT yr−1.

2.3 Ensemble-based inverse geodynamo modelling
framework including the QG-MAC constraint

The formulation of the inversion scheme follows the single-epoch
ensemble Kalman filter formulation presented in Aubert (2015). We
define the magnetic and hydrodynamic state vectors for the entire
discretized core model

https://bitbucket.org/nschaeff/shtns
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(a)
(b)

(c) (d)

Figure 1. (a, c) Main field (MF) and secular variation (SV) characteristics of ensembles of core states inferred from CHAOS-6x8 data in 2015. Mauersberger
(a) and Lowes (c) energy spectra of the MF and SV, showing the data (black lines), the level of error specified prior to the inversion (arrows), the estimated ±1
SD range of diffusion within the ensemble of inverted states (pink shaded region), the range of fit residuals (blue, yellow, green shaded regions) obtained in
inversions with varying levels of the QG-MAC constraint (note that analysis of MF is independent on this constraint), and the range of small scales estimated
from the data (violet shaded regions). (b, d) Hammer projections of the ensemble averaged radial magnetic field (b) and radial secular variation (d) at the
core–mantle boundary (orange is outwards) obtained in 2015, featuring small-scale details between degrees �obs = 13 and �asm = 30 estimated through the
inversion procedure.

b = [W m
� (r j ), Zm

� (r j )]
ᵀ, 1 ≤ j ≤ N R , 1 ≤ � ≤ �asm, (17)

x = [Sm
� (r j ), T m

� (r j ), Cm
� (r j )]

ᵀ, 1 ≤ j ≤ N R , 0 ≤ � ≤ �asm.

(18)

Here the spheroidal flow potential Sm
� = d(r Pm

� )/rdr is preferred
over the poloidal flow potential Pm

� , and �asm = 30 is the maximum
degree at which the analysis of the core state is performed. The
variability of hidden core state quantities, as well as the general
covariance properties of core state variables is represented through
an ensemble of N = 746 decorrelated samples xi , bi obtained
during a preliminary free run of the coupled Earth dynamo model
spanning about 70 000 yr. The ensemble average is defined as (e.g.
in the case of xi )

x = 1

N

N∑
i=1

xi , (19)

and the covariance matrices P, Q for b, x are approximated by

P ≈ 1

N − 1

N∑
i=1

(
(bi − b)(bi − b)′

)
, (20)

Q ≈ 1

N − 1

N∑
i=1

(
(xi − x)(xi − x)′

)
. (21)

These matrices essentially have a block-diagonal shape (see
examples in fig. 3 of Aubert 2013) that couples adjacent spherical
harmonic degrees within an harmonic order. As in Aubert (2015)
the inversion for a complete core state proceeds in two steps. The
first step remains an ensemble-based statistical inference of the
magnetic field throughout the core from the data vector d. An ob-
servation operator H is introduced, with this matrix having a simple
form consisting of ones in entries corresponding to an observed
quantity (the poloidal magnetic field at the core surface), and zeros
otherwise. The direct problem then writes Hb = d, and an ensemble
of inverse (or analysed) solutions ba

i is obtained from the initial
states bi through a classical Bayesian inference (Aubert 2015):

ba
i = bi + PH′

HPH′ + R
(d − Hbi ) . (22)

From the observable magnetic field, the ensemble ba
i estimates the

variability of the magnetic field hidden inside the core, including
its toroidal potential and its small-scale content up to degree �asm

(see Fig. 1b). As is generally the case in an ensemble Kalman filter
(Evensen 2003), the average value ba

i provides the best estimator
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Figure 2. (a) Hammer projection of the core–mantle boundary radial secular variation from CHAOS-6x8 in 2015, presented up to spherical harmonic degree
�obs = 13. (b–d) Ensemble averaged residuals of the fit to SV data obtained in the unconstrained (b), mid-constrained (c) and highly constrained (d) inversions,
presented at the same truncation level.

given the data, the dynamo model, and their respective covariance
properties. As eq. (22) produces an estimate of magnetic field
throughout the core, and in particular below the core surface, it is
possible to compute an ensemble of estimates for the core surface
magnetic diffusion and Lorentz force, which we, respectively,
represent through the vectors δi and λi as

δi = η
[
(∇2W a

i )m
�

]ᵀ
, r = ro, 1 ≤ � ≤ �asm (23)

λi =
( [(

r · ∇ × fa
i

)m

�

]ᵀ
[(

r · ∇ × ∇ × fa
i

)m

�

]ᵀ
)

, r = ro, 1 ≤ � ≤ �asm. (24)

Here W a
i and fa

i are, respectively, the poloidal magnetic potential
and Lorentz force computed from ba

i . This latter force is evaluated
by transforming ba

i in the physical space to yield the magnetic
field vector Ba

i and its curl, and then evaluating the product
fa

i = (∇ × Ba
i ) × Ba

i /ρμ0 over the discrete physical grid.
In a second step, we introduce the ensemble of model operators

Mi linking the hydrodynamic state vector x to the secular variation
data ḋ as well as incorporating the QG-MAC constraint,

Mi =
(

MSV
i

MMAC

)
, (25)

as well as the ensemble of direct problems

Mi x =
(

ḋ − δi

−λi

)
(26)

As already detailed in Aubert (2015), the matrices MSV
i encap-

sulate the spectral representations of the magnetic induction term
∇ × (u × Ba

i ) from eq. (2), taken at the core surface (r = ro). Its
coefficients therefore involve the analysed magnetic field ba

i (ro),
including its small scales up to degree �asm, together with classical
Elsasser and Adams–Gaunt coupling integrals (see Aubert 2013).
The ensemble of these matrices samples the variability of induction

that results from the variability of hidden core surface magnetic
field small scales. This is the procedure through which the inverse
framework handles the classical truncation errors inherent to the
core flow inversion problem (e.g. Eymin & Hulot 2005).

The matrix MMAC encapsulates the linear part of the QG-MAC
constraint at the core surface, also written in the spectral space. To
find its coefficients, we consider the radial components of the curl
and double curl of eq. (1) at r = ro, neglect inertia and viscosity
and project on the spherical harmonic basis at degree and order �,
m (see e.g. Dormy 1997, eq. 2.102):

2�
[
imT m

� (ro)
]

− 2�
[
K12 Sm

�−1(ro) + K22 Sm
�+1(ro)

]
= − 1

ρμ0
[r · ∇ × ((∇ × B) × B)]m

� (ro),

(27)

− 4
�

ro

[
imSm

� (ro)
]

− 2
�

ro

[
(K11 + K12)T m

�−1(ro) + (K21 + K22)T m
�+1(ro)

]
+ �(� + 1)

go

ρro
Cm

l (ro)

= − 1

ρμ0
[r · ∇ × ∇ × ((∇ × B) × B)]m

� (ro).

(28)

Eq. (27) refers to the toroidal part of the QG-MAC balance, and
eq. (28) represents its spheroidal (or poloidal) part. Note that the
derivation of (27, 28) from eq. (2.102) in Dormy (1997) involves the
following relationships, which stem from the stress-free conditions
at the core–mantle boundary:

Pm
� (ro) = 0, (29)

∇2 Pm
� (ro) = 2Sm

� (ro)/ro, (30)
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dPm
�

dr
(ro) = Sm

� (ro), (31)

dT m
�

dr
(ro) = T m

� (ro)/ro. (32)

The coupling coefficients K11, K12, K21, K22 write

K11 = (� + 1)(� − 1)2

√
(� − m)(� + m)

(2� − 1)(2� + 1)
, (33)

K12 = −K11/(� − 1), (34)

K21 = −�(� + 2)2

√
(� + m + 1)(� − m + 1)

(2� + 3)(2� + 1)
, (35)

K22 = K21/(� + 2). (36)

Note also that these last expressions account for the omission of
spherical harmonic normalization constants in eq. (2.101) of Dormy
(1997) (see Errata of this document). The route to the present ex-
pressions therefore involves reintroducing these constants (as given
by his eq. 2.82), writing the corrected equation for degrees � + 1
and � − 1 and collecting the terms relevant to degree �. Finally, the
coefficients acting on T, S, C in the left-hand side of (27, 28) are
collected to build MMAC, while the non-linear Lorentz force terms
in the right-hand side are treated explicity as the −λi contribution
in eq. (26).

At this point, the ensemble of direct problems given by (26)
relate the hydrodynamic state vector x to the secular variation data
ḋ through the joint consideration of the core surface QG-MAC
balance in (1) and the full magnetic induction eq. (2), including
magnetic diffusion. Similarly to Aubert (2015), an ensemble of
inverse solutions xa

i is again obtained by Bayesian inference:

xa
i = xi + QM′

i

Mi QM′
i +

(
Ṙ 0

0 �

)
[(

ḋ − δi

−λi

)
− Mi xi

]
. (37)

This ensemble describes the variability of core flows that account
for the secular variation data while respecting the QG-MAC con-
straint, given the uncertainty on the core magnetic field below the
core surface and at small unobservable scales. The average value
xa

i again provides the best estimator of x given the geomagnetic
data, the dynamo model, their respective covariance properties and
the dynamical constraint. The diagonal matrix � represents the
tolerance level for the enforcement of the QG-MAC balance. For
the toroidal and spheroidal parts of �, respectively corresponding
to eqs (27, 28), we adopt the following coefficients correspond-
ing to an even distribution of the constraint level among spherical
harmonic degrees and orders:

� =
(

L2σ
2
T 0

0 L2σ
2
S

)
. (38)

Here L2 is the diagonal matrix with coefficients �(� + 1). To guide
the choice of σ T, σ S, it is useful to relate these coefficients to
the typical r.m.s level of flow acceleration < ∂t u(ro) > that is ex-
pected from the deviation to the QG-MAC balance. Imbalances
in eqs (27, 28) predominantly correspond to inertial contributions
(see Fig. 3) and from eq. (1) they write �(� + 1) [r · ∇ × Du/Dt]m

�

and �(� + 1) [r · ∇ × ∇ × Du/Dt]m
� , respectively. The presence of

a total derivative precludes an exact relationship but the following

approximate relationship holds:

< ∂t u(ro) >≈
√

N30

(
σ 2

T + r 2
Sσ

2
S

)
. (39)

Here the angled brackets denote the root-mean-squared surface av-
erage, N30 = 496 is the number of complex spherical harmonic
coefficients involved up to degree �asm = 30 and rS = 0.03D is a
typical length scale for the radial variations of S near the core–
mantle boundary in the coupled earth model. We target Earth-
like flow accelerations of < ∂t u(ro) >≈ 1 km yr−2 (Aubert 2014).
Guided by eq. (39), in our moderately constrained case we adopt
σT = 2.4 10−2 km yr−2 and σS = 6.4 10−4 1 yr−2. As will be seen
in Fig. 3, this value of σ T suffices to reduce the toroidal flow accel-
eration of the inverse solutions to the levels commonly observed in
a free run of the coupled earth model. In an attempt to also reduce
the spheroidal flow acceleration to such levels, in our highly con-
strained case we keep σT = 2.4 × 10−2 km yr−2 but reduce σ S to
3.2 × 10−4 1 yr−2. These values are summarized in Table 1 together
with the corresponding level of data error in the three inversion cases
(no constraint, mid constraint, high constraint) that we analyse.

At this point we have completed the procedure through which
an ensemble of analysed complete core states xa

i , ba
i can be con-

structed, that accounts for the core surface magnetic field and secular
variation data at a given epoch while respecting the QG-MAC con-
straint at the core surface. The ensemble average estimates the most
probable state given the data, the dynamo model, their respective
covariances and the dynamical constraint. The variability within
the ensemble accounts for the uncertainty in the variables that are
hidden from observation (at depth in the core or at small scales).

2.4 Evaluation of misfits

For each ensemble member and at each given epoch, we use six
misfit quantities to characterize the deviation of inverse solutions
from the data, from the behaviour of the prior numerical model,
and from the imposed constraints. Among these, five normalized
quantities are constructed such that a unit value represents one stan-
dard deviation of the distribution of data errors or model variability.
First, we introduce two quantities measuring the deviation to the
main field (MF) and secular variation (SV) data, normalized by the
respective levels of observation errors εB and εḂ :

�MF(i) =
√

1

N13

(
d − Hba

i

)′
R−1

(
d − Hba

i

)
, (40)

�SV(i) =
√

1

N13

(
ḋ − δi − MSV

i xa
i

)′
Ṙ

−1 (
ḋ − δi − MSV

i xa
i

)
.

(41)

Here N13 = 105 is the number of complex spherical harmonic
coefficients involved in a decomposition up to degree and order �obs

= 13.
Secondly, we normalize the amplitude of analysed state vector

increments with the variability of the prior numerical model, leading
to the three quantities

�B(i) =
√

1

N30

(
ba

i − bi

)′
B(ro)

P−1
B(ro)

(
ba

i − bi

)
B(ro)

, (42)

�u(i) =
√

1

2N30

(
xa

i − xi

)′
u(ro)

Q−1
u(ro)

(
xa

i − xi

)
u(ro)

, (43)

�C (i) =
√

1

N30

(
xa

i − xi

)′
C(ro)

Q−1
C(ro)

(
xa

i − xi

)
C(ro)

. (44)
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(a) (b)

(c) (d)

Figure 3. Scale-dependent force balance diagrams at the core surface for: (a) a snapshot obtained during a free run of the numerical dynamo prior model,
and (b–d) individual ensemble members obtained from inversion of CHAOS-6x8 data in 2010 with varying levels of the imposed QG-MAC constraint. These
ensemble members are numerically integrated forward in time with the dynamo model to obtain the instantaneous force balance immediately after the analysis
epoch. R.m.s amplitudes of each force present in eq. (1) are represented as functions of the spherical harmonic degree � (see Aubert et al. 2017, for technical
computation details). Forces are normalized relative to the maximum value of the pressure force. The ageostrophic Coriolis force represents the residual
Coriolis force after removal of the pressure force. Inertial forces are represented through separate toroidal and spheroidal contributions to ∂t u.

Table 1. Values of data error (Section 2.2) and QG-MAC constraint level (Section 2.3) parameters used in the inversions.

εB ( nT) εḂ (nT yr–1) σ T (km yr–2) σ S (1 yr–2)

Unconstrained 1 2 – –
Mid constraint 1 2 2.4 × 10−2 6.4 × 10−4

High constraint 1 10 2.4 × 10−2 3.2 × 10−4

Here subscripts B(ro), u(ro), C(ro) indicate that the computation is
restricted to the state vector and covariance matrix components,
respectively, referring to the poloidal magnetic field, toroidal and
spheroidal flow, and density anomaly at the core surface. Finally,
we characterize the degree of enforcement of the QG-MAC balance
through an equivalent core surface flow acceleration timescale

τflow(i) = < ua
i (ro) >

< ∂t ua
i (ro) >

. (45)

Here ua
i (ro) is the analysed core flow described by the state vector

xa
i and we recall that the angled brackets denote the root-mean-

squared surface average. Along the same lines as those introduced
for eq. (39), the r.m.s. core surface flow acceleration < ∂t ua

i (ro) >

that is effectively obtained after the inversion can be related to
the residuals of the QG-MAC balance enforcement through the

following approximate relationship:

< ∂t u
a
i (ro) >2≈(

MMACxa
i + λi

)′
tor

L2
−1

(
MMACxa

i + λi

)
tor

+ r 2
S

(
MMACxa

i + λi

)′
spher

L2
−1

(
MMACxa

i + λi

)
spher

,

(46)

where the typical length scale rS for the radial variations of S near the
core–mantle boundary is again involved, and the subscripts denote
the toroidal and spheroidal parts of the vector MMACxa

i + λi .

2.5 Ensemble subset and forecasts

The matrices P and Q are computed only once for all inversions,
but given the large size N of the ensemble and the yearly intervals
at which the geomagnetic field model is analysed, it is computa-
tionally expensive to retain all ensemble members for the analysis
and the subsequent forecasts. For all epochs, the same subset of
21 ensemble members is therefore retained throughout Section 3.
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In particular, in Section 3.4 these are used as starting points for
the temporal integration of the numerical model, thereby provid-
ing a forecast for the future, with the ensemble mean representing
the most likely forecast and the ensemble variance accounting for
the forecast uncertainty. Here the selection of ensemble members is
made on the basis of the quality of their forecast of epoch 2015 from
epoch 2009. This optimizes the forecasts performed throughout the
epoch range 1999–2019 (a desirable property in an operational
perspective) while otherwise producing results that are reasonably
converged against doubling of the ensemble size.

As in a previous study (Fournier et al. 2015), a ‘dynamic’ fore-
cast strategy based on the full set of eqs (1)–(3) will be used in Sec-
tion 3.4, together with a ‘steady flow’ strategy that only involves the
numerical integration of eq. (2). In the steady flow configuration, the
magnetic acceleration therefore only comprises the part that couples
the magnetic variation to the flow and the contribution of diffusive
acceleration (see Aubert 2018, and Section 3.4 for a description of
contributions to the magnetic acceleration). In the dynamic config-
uration, the magnetic acceleration is completed with the part that
couples the magnetic field to the flow acceleration. The resulting
forecasts are similar in methodology to previous attempts to forecast
geomagnetic variations by using steady (Beggan & Whaler 2010) or
accelerating (Whaler & Beggan 2015) core flows, with the notable
difference that diffusive acceleration is presently accounted for.

3 R E S U LT S

3.1 Fit to data and adequation with prior numerical
dynamo model

Table 2 and Figs 1 and 2 characterize the fit quality of our ensem-
bles of inverse solutions to the MF and SV data, as well as their
level of compatibility with the prior numerical dynamo model. The
inversion misfit to MF data is generally excellent, as shown by the
low residuals (Fig. 1a) well below the specified observation error
level εB = 1 nT which is evenly distributed among spherical har-
monic degrees (the corresponding flat spectrum being marked by
an arrow in Fig. 1a). As a consequence, the normalized misfit to
the data �MF is also very low (Table 2). The normalized deviation
to the prior model variability �B = 1.8 obtained throughout the
considered epoch range also indicates that the MF prescribed by
the numerical dynamo model is also reasonably compatible with
that required by the data. This compatibility can also be seen in the
estimation of unobserved MF small scales made by the inversion
scheme, where the transition between observed (� ≤ �obs, black line
in Fig. 1a) and estimated (�obs < � ≤ �asm, purple ±1 std. dev. range)
scales is seamless, both in amplitude and in spectral slope. The re-
sulting ensemble-averaged, analysed radial magnetic field at the
core–mantle boundary (Fig. 1b) featuring observed and estimated
scales is broadly consistent with images obtained through earlier
attempts to obtain high-resolution core MF models (see e.g. fig. 5
of Finlay et al. 2012). The level of magnetic diffusion computed
from the analysed MF (pink range in Fig. 1c) and involved in the
inversion of eq. (2) is also broadly consistent with that found in
unconstrained runs of the dynamo model (Aubert 2013).

In our three (unconstrained, mid-constrained and highly con-
strained) cases, the misfit to the SV data (green, yellow and blue
spectra in Fig. 1c) is generally higher than the observation error that
is prescribed (the corresponding flat spectrum levels of which are
marked by green, yellow and blue arrows in Fig. 1c), leading to �SV

> 1. This is especially true in cases where the QG-MAC constraint

is imposed, which logically leads to a degradation of the fit to SV
data since adding constraints to the inverse problem (26) neces-
sarily shifts the trade-off between fit quality and adherence to the
constraints. Still, values of �SV remain below 2 standard deviations,
and the fit residuals to SV remain weak relative to the data for � ≤ 9
(Figs 1c, 2b and c) except in the highly constrained case where the
observation error level εḂ on the SV has been increased on purpose
in order to best satisfy the QG-MAC constraint (see Table 1). In
this case (Fig. 2d), strong SV misfits at the core–mantle boundary
are essentially located in a longitudinal band between 90◦E and
180◦E. The compatibility between the flow and density anomaly
fields prescribed by the numerical model and those required by the
data is also fair, with values of the normalized deviations to the prior
model variability �u ≈ 1 and �C ≈ 2. As was the case with the MF,
this compatibility can also be seen in the seamless continuation of
the observed SV energy spectrum (� ≤ �obs, black line in Fig. 1c
corresponding to the pattern in Fig. 2a) into the estimated part (�obs

< � ≤ �asm, purple range in Fig. 1c). The corresponding ensem-
ble averaged, analysed radial secular variation at the core–mantle
boundary (Fig. 1d) features axially elongated small-scale structures
which are typical of induction by an axially columnar flow, as also
usually observed in the prior numerical dynamo model.

3.2 Core surface force balance

To examine the force balance that is realized in the analysed core
states, we rely on the scale-dependent representation introduced and
discussed in our previous studies, where the r.m.s. amplitude of each
force is represented as a function of the spherical harmonic degree
�. In Fig. 3, we focus specifically on the force balance at the core sur-
face, as this is the location where we can check the enforcement of
the QG-MAC constraint specified in our inversions through eqs (27)
and (28). The amplitude hierarchy of forces found at the surface in
a free run snapshot of the coupled earth model (Fig. 3a) conforms to
results previously obtained in the bulk (Aubert et al. 2017; Aubert
2019; Schwaiger et al. 2019). The leading-order force balance is a
QG equilibrium between the Coriolis force and the pressure gradi-
ent. At the next order in amplitude, a MAC equilibrium is found
between the Lorentz, buoyancy and ageostrophic Coriolis force.
The main difference between surface and interior is that the mag-
netic field being weaker at the core surface, the crossing between
the buoyancy and Lorentz force lines occurs at rather small scales �

= 30 and beyond, while it occurs at � ≈ 10 in the bulk. Inertial and
viscous forces can be interpreted as the residual of the QG-MAC
balance, and Fig. 3(a) shows that this residual is much lower than
the contribution from buoyancy but not significantly smaller than
that of the Lorentz force, a situation which is typical of the start of
the parameter space path where the coupled earth model is located
(Aubert et al. 2017).

Turning now to the results of inverse modelling, Fig. 3(b) shows
that unconstrained inversions enforce the leading-order QG balance
between Coriolis and pressure forces, with the deviations from this
equilibrium being mainly balanced by the buoyancy force at large
scales. Inertial and viscous contributions are also much lower than
the buoyancy force except close to the analysis cut-off level �asm =
30. As previously highlighted in Aubert (2015), this thermal wind
balance is indeed linear and therefore already well represented by
the statistical cross correlations between u and C present in matrix
Q alone. However, the linear inversion framework cannot natu-
rally handle the non-linear part of the QG-MAC balance, and the
level of residuals is therefore as strong as the Lorentz force. In
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Table 2. Values of misfit quantities defined in Section 2.4, averaged over all yearly epochs between 1999.0 and 2019.0
and over ensemble members.

�MF �SV �B �u �C τflow (yr)

Unconstrained 0.03 1.1 1.8 0.8 1.8 7.8
Mid constraint 0.03 1.7 1.8 1.1 2.1 13.2
High constraint 0.03 1.7 1.8 1.0 1.8 17.5

inversions where a moderate to high level of the constraint is im-
posed (Figs 3c and d), we verify that the residual level of inertial
contributions move below the level of the Lorentz force, thereby
better enforcing the QG-MAC balance. In the mid- and high con-
straint cases, inertial contributions have, respectively, decreased by
40 and 60 per cent relative to the unconstrained case, both values
being consistent with the evolution of the diagnostic quantity τ flow

in Table 2. In the mid-constraint case (Fig. 3c) the residual level
of toroidal inertia is already comparable to that of the prior, so it
is not necessary to further decrease the constraint level σ T beyond
this point. In contrast, it is significantly more difficult to enforce
the spheroidal part of the constraint in order to obtain residuals of
spheroidal inertia as low as those of the prior model. In particular,
attempting to enforce high levels of this constraint leads to misfits
to the SV (Fig. 2d) that are the signature of strong convective up-
wellings in the Eastern Hemisphere (see Fig. 4a). These upwellings
are imposed more strongly by the prior model as the constraint
level is raised, but they are not compatible with the SV data. As
a consequence, imposing high levels of the QG-MAC constraint
also affects the buoyancy field at small scales (see evolution of the
buoyancy force line in Figs 3b, c and d) to mitigate the misfit to
SV data.

3.3 Core surface flow and underlying density anomaly
structure

As could be anticipated from the force balance structure presented
in Fig. 3, enforcing the QG-MAC constraint in the inversion scheme
does not significantly alter the resulting core surface flow structure.
Fig. 4 indeed shows that constrained inversions present the same
general circulation features as those already found by a number
of authors (see list in Section 1). The general core surface flow
pattern seen in an Atlantic-centred projection (Fig. 4a) is that of
a double conveyor belt, with strong westward drift in the Atlantic
hemisphere, convergence of higher-latitude core flow towards the
equator together with upwelling from the deeper parts of the core
beneath Indonesia, and divergence of equatorial core flow towards
higher latitudes together with downwelling to the deeper core be-
neath central America. This is the surface signature of an eccentric
axial columnar gyre found in the volume (see e.g. Pais & Jault 2008;
Aubert 2013; Gillet et al. 2015). The general circulation closes on
itself in the Pacific hemisphere through a high-latitude jet (Figs 4c
and e) that represents (at recent epochs) the strongest core flows that
can be seen at the surface, locally accounting for the strongest core
surface secular variation (Figs 2a and 4b). In the present inversions,
while the jet shows symmetry with respect to the equator (compare
Figs 4c and e), the southern hemisphere surface signature is weaker
(since secular variation there is also weaker, Fig. 4d). This is in
line with other inversions using prior information from numerical
dynamos (e.g. Gillet et al. 2019) but departs from the pure axial
invariance assumed in other studies (Pais & Jault 2008; Gillet et al.
2015; Livermore et al. 2017). Unlike these last studies, also, we

observe significant crossings of the axial cylinder tangent to the
inner core (the tangent cylinder), and continuity between the jet out-
side the tangent cylinder with polar vortices inside the tangent cylin-
der. Such crossings of the tangent cylinder in rim-like, high-latitude
core surface flows are routinely observed in numerical dynamo sim-
ulations results (Schaeffer et al. 2017; Aubert 2019). The evolution
of the jet velocity over the period 1999–2019 is non-monotonous
(Fig. 5) and only significant in the Northern hemisphere, with an
average acceleration of 0.4 km yr−2 there. This is in line with the
results of Gillet et al. (2019) but more than four times smaller than
the value reported by Livermore et al. (2017), despite a fit to the SV
data which is locally as good (compare Figs 4c, e to their figs 3c, d).
As in Gillet et al. (2019) we ascribe this difference to the handling
of truncation errors and magnetic diffusion in our scheme, which is
thereby safe against the risk of overfitting the SV.

Taking advantage of the controlled dynamical consistency of our
constrained inversions, in Fig. 6 we next investigate the dominant
driver of the core surface flow, with a focus on the high-latitude jet
in the Pacific. As can be seen in Fig. 3, at the large scales imaged
by the inversion the thermal wind driving (i.e. equilibrium between
pressure, Coriolis and buoyancy forces) largely dominates the mag-
netic wind driving (where Lorentz force substitutes to the buoyancy
force). Outside the tangent cylinder, the high-latitude jet observed
in the Pacific hemisphere is in equilibrium with a longitudinally
hemispheric pattern of buoyancy, especially visible in the Northern
Hemisphere (Fig. 6a), with lighter fluid being present in the At-
lantic hemisphere. Hemisphericity of the density anomaly field is
built into the coupled Earth dynamo prior, but it has been previously
shown that the density anomaly pattern obtained here is neverthe-
less largely data-driven (Aubert 2014). As is generally the case for
thermal winds at high latitudes, the flow circulation is orthogonal
to the density anomaly gradient and its amplitude is proportional
to that of this gradient. The density anomaly gradients between
high and low latitudes are stronger in the Pacific hemisphere than
in the Atlantic (Fig. 6a), explaining the localized nature of the jet.
Likewise, latitudinal density anomaly gradients are weaker in the
Southern Hemisphere (Fig. 6b), accounting for the weaker jet there.
Inside the tangent cylinder and in both hemispheres, polar vortices
circulating around areas of lighter fluid locally merge with the high-
latitude jet.

Comparing the core-originated variations of the length-of-day
(l.o.d.) predicted by the ensemble of inverted core flows with geode-
tic observations provides another way to check the consistency of
the discrete temporal sequence of inversions. Predicted l.o.d. varia-
tions are found to be rather insensitive on the QG-MAC constraint
level. In Fig. 7, we present the results obtained in the mid-constraint
case. The difference between the predictions and a geodetic model
generally lies at less than two standard deviations of the ensemble
variability. This is a similar level of agreement, both in amplitude
and trend, as that obtained in other recent studies (e.g. Aubert 2014;
Gillet et al. 2015). This increases our confidence in the retrieval of
T 0

1 (ro) at the core surface and in the estimation of its internal profile
T 0

1 (r ).
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Figure 4. Visualizations of the ensemble averaged core surface flow (arrows) obtained in 2015 in the mid-constraint inversion case. Arrows are colour-coded
with the local flow velocity |u(ro)| (greyscale). (a) Hammer projection of core flow overplotted on the large-scale (up to degree 8) pattern of upwelling
−∂r (u · r)(ro)/ro (colour scale). (b, d) North (respectively South) polar projection of the core surface radial SV from CHAOS-6x8 in 2015 (same data as in
Fig. 2a). (c, e) North (respectively South) polar projection of the core flow overplotted on the ensemble averaged fit residual to radial core surface SV (same
data as in Fig. 2c).

3.4 Short-term forecasts of the geomagnetic evolution

We next examine the dynamical behaviour of our ensembles of core
states, when using these as starting points for a time integration
of the numerical model in order to predict the future evolution
of the system. We restrict our experiments to the unconstrained
and mid-constrained cases, as the highly constrained case does not
fit the initial geomagnetic data with sufficient accuracy (Fig. 1c)

to provide adequate forecasts. To illustrate the forecast quality, it
is usually more relevant to represent the magnetic variation ∂t B
rather than the magnetic field B itself, as done in Figs 8 and 9
where the predicted geomagnetic evolution at 5- and 10-yr ranges is
represented from a variety of starting points between epochs 1999
and 2014.

To assist the discussion of results, we first recall the geomag-
netic acceleration equation obtained by taking the time derivative
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Figure 5. Evolution of the root-mean-squared velocity of the northern and
southern parts of the high-latitude Pacific jet in the epoch range 1999–2019
(black line: ensemble average, blue shaded region: ±1 std. dev. range), in the
mid-constraint inversion case. The jet velocity is determined by averaging
u2(ro) between longitudes 135◦–225◦E and latitudes 63◦–77◦ north or south.

Figure 6. North (a) and south (b) polar projections of the ensemble averaged
core surface flow obtained in 2015 in the mid-constraint inversion case (same
conventions as in Fig. 4, overplotted on the ensemble averaged density
anomaly pattern C(ro).

Figure 7. Core-originated variations of the length of day predicted by
the ensemble of inverted core flows in the epoch range 1999–2016 (blue
shaded ±1 std. dev. range), for the mid-constraint inversion case. See
equations (25,26) in Aubert et al. (2013) for the technical computa-
tion procedure, which only involves the radial profile T 0

1 (r ). Also rep-
resented (black) is a geodetic model obtained from the IERS C04 time-
series (Bizouard & Gambis 2009) after removal of contributions from at-
mospheric angular momentum, from solid tides, and from a 1.4 ms cy–1

secular linear trend (computation courtesy of N. Gillet). The model stops
in 2016 because the reanalysis of external contributions is not available
afterwards.

Figure 8. Temporal evolution of Gauss coefficients time derivatives
∂t g0

1 , ∂t g1
1 , ∂t h1

1 for the geomagnetic field model CHAOS-6x8 (grey shaded
area representing the ±1 SD of the error model described in Section 2.2),
and for forecasts at 5-yr range obtained by numerically integrating the en-
semble of core states obtained at various starting epochs (colour shaded
regions representing the average ±1 std. dev. of ensemble forecasts).
Shown are the results for three forecasting strategies: dynamic uncon-
strained (red), dynamic mid-constrained (green) and steady flow mid-
constrained (blue).
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Figure 9. Same as Fig. 8, for forecasts at 10-yr range. Examples of indi-
vidual ensemble trajectories are shown in the upper panel for the dynamic
unconstrained forecast started in 2009.

of eq. (2):

∂2B

∂t2
= ∇ ×

(
∂u

∂t
× B

)
+ ∇ ×

(
u × ∂B

∂t

)
+ η∇2

(
∂B

∂t

)
. (47)

The key to a successful forecast is to estimate a relevant geomagnetic
acceleration ∂2

t B by analysing data for the magnetic field B, secular
variation ∂t B in order to correctly describe all terms on the right-
hand side of eq. (47). We recall that at subdecadal to decadal ranges,
this acceleration is governed by several contributions (e.g. Aubert
2018). First, the slow convective evolution is governed by the QG-
MAC balance in eq. (1), with the time dependency being provided
by the evolution of the magnetic field B and density anomaly field
C in eqs (2) and (3). In terms of contributions to the geomagnetic
acceleration as broken down in eq. (47), this part arises from the
contribution of the interaction between ∂t B and u as well as that
of the diffusive acceleration ∇2∂t B. Secondly, deviations from the
QG-MAC balance can intermittently lead to rapid accelerations
driven by inertia in eq. (1), and by the interaction between flow
acceleration ∂t u and the magnetic field B in eq. (47). If the QG-MAC
balance is adequately respected, then these deviations can have a
geophysical significance, for instance to describe geomagnetic jerks
resulting from magneto-inertial wave dynamics (Aubert & Finlay
2019). However, if the balance is improperly rendered in the inverse
states, then the resulting inertial and magneto-inertial dynamics is
not physically relevant and deteriorates the forecast quality.

This last situation is indeed encountered in our forecasts where
the QG-MAC force balance is initially not constrained, which re-
produce behaviours previously reported in Aubert (2015). Exam-
ining the evolution of magnetic variation ∂t g0

1 , ∂t g1
1 , ∂t h1

1 for a
set of large-scale Gauss coefficients (Figs 8 and 9) we indeed no-
tice that the envelope of unconstrained ensemble forecasts tends to

Figure 10. R.m.s difference at Earth surface between CHAOS-6x8 and the
ensemble averaged magnetic field (MF, top) or secular variation (SV, bottom)
obtained at the end of 5-yr forecasts, as a function of the epoch of forecast
start. Represented are the results of dynamic unconstrained (red), dynamic
mid-constrained (green) and steady flow (blue) forecasting strategies. Also
reported are the results of a mathematical linear extrapolation of the MF
from CHAOS-6x8 using its SV at the epoch of forecast start (black, top),
and the results of a nocast prediction of the SV assuming zero acceleration
(black, bottom). Numbers between parentheses indicate the level of error
averaged over forecasts started each year in the epoch range 1999–2014.

oscillate at a natural period close to the planetary rotation period
2π/� = 10.6 yr of the coupled Earth model. This behaviour is best
seen in the forecasts at 10-yr range (Fig. 9), where the examination
of individual trajectories also reveals that the oscillation period is
variable among ensemble members. These oscillations are the sig-
nature of uncontrolled inertial waves (Alfvén waves being absent at
the start of path, Aubert 2018), and consistently with inertial wave
theory (e.g. Greenspan 1968) we do not observe periods shorter
than half that of planetary rotation. The spurious appearance of in-
ertial waves is consistent with the value τflow = 7.8 yr obtained in
unconstrained inversions (see Table 2). This is significantly shorter
than the value τflow = 24 yr obtained in a free run of the coupled
earth model (Aubert 2014), and also interferes with the range 5–
10 yr at which the geomagnetic evolution is predicted, which implies
that the forecast quality is degraded by the presence of the inertial
waves. In contrast, the amplitude of spurious inertial oscillations
is reduced when imposing the QG-MAC constraint, consistently
with the reduced levels of inertia obtained in Fig. 3(c) and with
the larger value τflow = 13.2 yr. Relative to the unconstrained situ-
ation, the r.m.s. forecast error at Earth’s surface (Figs 10 and 11)
is then markedly reduced in the constrained case. This last result
confirms the relevance of the QG-MAC balance to describe Earth’s
core dynamics.

Figs 10 and 11 however show that the QG-MAC constrained dy-
namic forecasts still do not surpass the quality of naive mathematical
predictions made by extrapolating the field using its rate of change
at the start epoch (linear forecasts without magnetic acceleration),
though the gap between the two is now rather narrow. To explain
this it should be kept in mind that the constraint is only incompletely
enforced at the core surface (Fig. 3c) and not at all in the volume.
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Figure 11. Same as Fig. 10, for forecasts at 10-yr range, with numbers
between parentheses indicating the level of error averaged over the epoch
range 1999–2009.

Introducing a steady flow forecast that is representative of the results
that would be obtained if the QG-MAC balance was perfectly en-
forced throughout the core, we notice that the resulting predictions
now slightly improve over the quality of the mathematical extrapo-
lations. This shows that the estimation of the magnetic acceleration
parts captured by a steady flow approach [i.e. those resulting from
the interaction of u with ∂t B and the diffusive acceleration ∇2∂t B in
eq. (47)] is adding relevant information into the forecast. A closer
inspection of the contributions to error from individual Gauss co-
efficients reveals that much of the improvement over mathematical
extrapolations is carried by the large-scale coefficients represented
in Figs 8 and 9, where the steady flow forecasts frequently capture
the correct future trend, though with a lower acceleration than that
required by the data. The missing part underlines the importance of
the geomagnetic acceleration resulting from the interaction of ∂t u
with B in eq. (47), which can only be correctly rendered if levels of
residual inertia are reduced enough relative to the MAC forces in
order to enable the correct magnetohydrodynamic wave dynamics at
interannual timescales (Aubert 2018; Aubert & Finlay 2019). This
goal is outside the scope of the dynamics rendered by the coupled
earth model because of its position on the parameter space path.

4 D I S C U S S I O N

4.1 Force balance in Earth’s core

In this study, an inverse geodynamo framework has been extended
in order to quantitatively assess the compatibility of recent geomag-
netic main field and secular variation data with the prior hypothesis
of a QG-MAC force balance in Earth’s core. This hypothesis is
to some extent already embedded into the statistics used to con-
strain the inversion, since these are obtained from a numerical dy-
namo model that already respects this balance. We have seen indeed
(Fig. 3) that the sole specification of statistics already leads to states
that respect the linear part of the QG-MAC balance, that is the ther-
mal wind equilibrium between the pressure gradient, buoyancy and

Coriolis forces. However, the Bayesian inference that is used in the
framework is not sufficient to account for the nonlinear effects of
the Lorentz force. Enforcing the full QG-MAC balance through a
direct implementation in the hydrodynamic inverse problem, with
nonlinear Lorentz terms being explicitly treated (eq. 26), we have
seen that it is possible to obtain core states that adequately fit the
geomagnetic data (Figs 1 and 2, Table 2) while producing residuals
of the QG-MAC balance smaller than each term in this balance
(Fig. 3). As these residuals induce a spurious inertial response,
decreasing their amplitude is also systematically beneficial when
performing forecasts of the future geomagnetic evolution by using
the inverted states as startup points (Figs 8–11). Up to spherical
harmonic degree �asm = 30, and at the core surface, the Lorentz
force is found to be subdominant relative to the pressure, Coriolis
and buoyancy forces (Fig. 3), thereby confirming the absence of
system-scale magnetostrophy (equilibrium between the magnetic
and pressure force). All these elements complement the bulk of
recent direct modelling results (Aubert et al. 2017; Schwaiger et al.
2019) and provide further data-driven support to the proposal of a
QG-MAC force balance controlling the geodynamo.

4.2 General circulation in Earth’s core and its main
driving source

The core flow solutions constrained with the QG-MAC balance
confirm the general circulation features found in previous studies
(Pais & Jault 2008; Gillet et al. 2013, 2015, 2019; Aubert 2013,
2014, 2015; Pais et al. 2015; Barrois et al. 2017; Livermore et al.
2017; Bärenzung et al. 2018), and again highlight a planetary-
scale, eccentric columnar gyre in Earth’s core, the surface signature
of which consists of a strong equatorial westward drift in the At-
lantic hemisphere and an intense, roughly equator-symmetric jet at
high latitudes in the Pacific hemisphere (Fig. 4). By directly im-
posing dynamical consistency into the inverse problem, the present
results confirm that this circulation is driven by buoyancy, rather
than magnetic forces (Fig. 3). At the core surface, the longitudinal
hemispheric flow circulation is therefore in thermal wind balance
with a similarly hemispherical density anomaly distribution (Fig. 6).
Similarly to Gillet et al. (2019), our results also incite to revise the
amount of acceleration seen in the high-latitude Pacific jet during
the past two decades. During this period indeed (Fig. 5), we find
significant acceleration only in the Northern Hemisphere, with an
average value of 0.4 km yr−2 that is more than four times smaller
than that reported by Livermore et al. (2017). This is probably the
consequence of our inversions accounting for truncation errors and
magnetic diffusion effects. While the strong accelerations found by
Livermore et al. (2017) were supportive of a magnetic driving of
the flow, we note that with a typical jet velocity of 30 km yr−1, the
acceleration timescale of the gyre is at least 30/0.4 = 75 yr, a value
compatible with convective advection of density anomalies.

The geophysical origin of the striking hemispherical buoyancy
pattern (Fig. 6) is not yet entirely clear. As in our earlier work
(Aubert 2013; 2014; Aubert et al. 2013), the present results confirm
that the hypothesis of generating this pattern through faster inner
core freezing in the Eastern Hemisphere (0◦E–180◦E) is reasonably
compatible with the geomagnetic data. The geodynamic justifica-
tion for differential inner core freezing initially came from the idea
that the inner core surface should be considered as an open surface
permeable to transfers of matter (Monnereau et al. 2010), and that
the solid inner core could then be subject to translational convective
instabilities. This however requires the background density pattern
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of the inner core to be convectively unstable, a possibility which
has been questioned owing to the ongoing debate on the value of
thermal conductivity in the inner and outer core (e.g. Pozzo et al.
2012; Konôpková et al. 2016). In the event that the inner core is
thermally stratified, it has been recently underlined that it can still
be chemically unstably stratified because of a time-dependent light
element partitioning between the solid and the liquid as the inner
core grows (Gubbins et al. 2013). In this case, the net stratifica-
tion can be unstable and the resulting translational hemispherical
anomalies in the inner core freezing rate may be of the same order
as the homogeneous freezing rate (Deguen et al. 2018). This is pre-
cisely the situation explored in the coupled Earth model, and the
present inverse geodynamo modelling results then provide a con-
sistent buoyancy-driven explanation of the eccentric gyre and high-
latitude jet. As we have seen in the cases when we strongly enforce
the QG-MAC dynamic constraint in our inversions, this explanation
however still leaves room for improvement. In this situation indeed,
the coupled earth model typically favours strong upwellings in the
Eastern Hemisphere, which are not entirely consistent with the re-
cent secular variation data (Fig. 2). Furthermore, the possibility still
remains that the hemispherical circulation spontaneously arises in a
homogeneously forced system, as shown by the recent simulations
of Schaeffer et al. (2017) at extreme conditions. The tool presented
here opens interesting prospects towards further investigation of
this issue, that could for instance be explored by changing the prior
model underlying the inversions in order to assess the compatibility
of each scenario with the available data. It is also important to pro-
mote the acquisition of additional archeomagnetic information on
the historical geomagnetic field in order to assess the persistence of
the eccentric gyre over several centuries.

4.3 Towards predictions of geomagnetic jerks

We have seen that enforcing the QG-MAC balance is an essential
prerequisite to accurately render the geomagnetic field evolution
at subdecadal to decadal timescales. Once the inertial residuals of
this balance have been sufficiently decreased indeed, the informa-
tion brought by the numerical dynamo prior leads to relevant par-
tial estimates of the geomagnetic acceleration and to forecasts that
can slightly improve over the mathematical linear extrapolations
(Figs 8–11). While the present approach therefore represents a step
towards better geomagnetic forecasts, it remains limited as we have
only achieved a moderate reduction of the inertial residuals com-
pared to the unconstrained situation (Fig. 3). In the present scheme,
the QG-MAC balance is also enforced only at the core surface. An-
other problem is that the estimation of the internal magnetic field
and the associated Lorentz force remains of statistical nature, and
its compatibility with the other force components (buoyancy, Cori-
olis) is not guaranteed, leading to an increase of the misfits in the
constrained situation (Table 2). Co-estimation of the magnetic field,
flow and buoyancy anomaly, possibly in an iterative scheme, repre-
sents a viable avenue for further developing the inverse geodynamo
modelling framework.

With inertial forces at least five orders of magnitude below the
MAC forces (Aubert et al. 2017; Aubert 2019) in Earth’s core,
achieving a realistic level of the QG-MAC balance and relevant
geomagnetic forecasts including Alfvén-wave driven dynamics is
a very delicate task. It is however essential to reach this level of
accuracy if one wishes to be able to predict geomagnetic jerks,
which may result from tiny magneto-inertial deviations to the QG-
MAC balance that propagate as quasi-geostrophic Alfvén waves

and undergo an amplification effect as they reach the core surface
(Aubert & Finlay 2019). In that sense, future progress towards this
fundamental goal of geomagnetism should come from parallel im-
provements in the three pillars of geomagnetic prediction: additional
satellite geomagnetic data providing insight into a larger number of
rapid geomagnetic acceleration events, better direct numerical mod-
els that operate at the correct level of inertial forces, and refinements
in data assimilation frameworks able to infer core states with a finer
level of dynamic balance.
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