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Convective dynamos in a rotating spherical shell feature steady zonal flows. This
process is studied numerically for Prandtl numbers of 0.1 and 1, Ekman numbers
in the range E = 10−4–10−5, magnetic Prandtl number from 0.5 to 10 and Rayleigh
numbers up to 100 times supercritical. The zonal flow is mainly of thermal wind
origin, and minimizes the shear of the axisymmetric poloidal magnetic field lines,
according to Ferraro’s law of corotation. The dissipation in the interior of the fluid is
mainly ohmic, while the introduction of rigid velocity boundary conditions confines
viscous dissipation in the Ekman boundary layers. The root-mean-square amplitude
Uϕ of the zonal flow in the spherical shell scales as Uϕ = (F/Ω)0.5, F being the
buoyancy flux through the shell and Ω the rotation rate. As a consequence of the
corotation law, this scaling relationship is remarkably independent of the magnetic
field amplitude. It does not depend on thermal, kinematic and magnetic diffusivities,
owing to the large-scale and steady nature of forcing and dissipative processes. The
scaling law is in agreement with the zonal-flow amplitude at the external boundary
of the Earth’s liquid core.

1. Introduction
Steady azimuthal flows are common in the fluids of planetary systems and stars.

They can be observed, for instance, in the atmosphere, the oceans, in the liquid iron
core of the Earth, as well as on the surface, and possibly the interior of large fluid
planets like Jupiter and Saturn. A fluid initially at rest in a rotating frame (in solid-
body rotation in a Galilean frame) and subject to thermal convection can gain mean
angular momentum in two ways. The first mode is purely axisymmetric: baroclinic
flows can couple with the Coriolis force to create a zonal thermal wind. This occurs
where iso-density lines cross iso-gravity lines, i.e where density varies in the lateral
direction, in thin or thick spherical shells (see for instance Aurnou et al. 2003). As
identified by Busse (1970), the second mode involves nonlinear effects: small-scale,
turbulent convective eddies can excite the zonal flow if the associated Reynolds
stresses have a non-vanishing axisymmetric component. In thin shells such as the
Earth’s atmosphere, the effect of the Reynolds stresses can be understood through the
inertial mixing of potential vorticity, which creates axisymmetric shear and therefore
zonal flow (see Rhines & Young 1982; Hide & James 1983 and, more recently,
the experiments of Aubert, Jung & Swinney 2002). To obtain a sizeable Reynolds
stress effect in thick spherical shells, a high degree of correlation is required between
the cylindrically radial and azimuthal velocity components of the small-scale eddies
(Busse & Hood 1982; Christensen 2002). The dominant Coriolis force organizes the
flow in columns parallel to the rotation axis (Proudman–Taylor constraint). Where
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the columns hit the sloping spherical boundaries, the non-penetration condition forces
the two velocity components to correlate.

In rotating conducting fluids and plasmas, the convective motions can sustain a
magnetic field. The Coriolis force is balanced by the Lorentz force (magnetostrophic
balance), by a pressure gradient and, to a lesser extent, by buoyancy forces. Zonal flows
interact strongly with magnetic fields: they are responsible for the omega dynamo
effect which produces toroidal magnetic field from an initial poloidal field. This effect
is essential for stellar alpha-omega dynamos, where differential rotation is strong. On
the other hand, poloidal magnetic field lines carry magnetic tension and can oppose
the development of an azimuthal flow in planetary alpha-squared dynamos such as the
geodynamo, where differential rotation is weaker.

Numerous observations of the geomagnetic field suggest the existence of zonal
flows in the Earth’s liquid iron core (see for instance Pais & Hulot 2000; Finlay &
Jackson 2003). The complexity of the relations that tie zonal flows to magnetic
fields motivates the present study. I use numerical models of self-sustained convective
dynamos to analyse the time-averaged zonal flow, in comparison with non-magnetic
convection. In that respect, the present paper is an extension of the numerical study
of Christensen (2002) to cases where dynamo action is present. The use of rigid
boundary conditions also provides a numerical test to experimental results acquired
by Aubert et al. (2001) and Aurnou et al. (2003). For non-magnetic convection, the
nonlinear Reynolds stresses are the preferred forcing mode for zonal flow. In the
presence of a dynamo, the Proudman–Taylor constraint is relaxed by the magnetic
forces, the highly columnar organization of the flow is destroyed and the thermal
wind forcing of zonal flow becomes dominant.

2. Equations and numerical method
2.1. General formulation

A spherical coordinate system (r, θ, ϕ) with unit vectors (er , eθ , eϕ) is chosen. The
magnetohydrodynamic equations for the velocity u, magnetic induction B and
temperature T are solved for a conducting and convecting Boussinesq fluid within
a spherical shell, rotating about the ez-axis of rotation. In the dimensionless form
chosen by Christensen (2002) they are

∂u
∂t

+ u · ∇u + 2ez × u + ∇P = Ra∗ r
ro

T +
E

Pm

(∇ × B) × B + E∇2u, (2.1)

∂ B
∂t

= ∇ × (u × B) +
E

Pm
∇2 B, (2.2)

∂T

∂t
+ u · ∇T =

E

Pr
∇2T , (2.3)

∇ · u = 0, (2.4)

∇ · B = 0. (2.5)

The inverse of the rotation rate Ω−1 is chosen as the time scale. The length scale
is the shell thickness D. The magnetic induction is scaled by (ρµλΩ)1/2, where ρ is
the fluid density, λ is the magnetic diffusivity, and µ the magnetic permeability of
the fluid. The temperature is scaled by the difference �T between the inner and the
outer boundary. The radial coordinate is denoted by r , ri and ro are respectively
the inner and outer radii of the shell. The four dimensionless parameters are the
modified Rayleigh number Ra∗, the Ekman number E, the Prandtl number Pr and
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the magnetic Prandtl number Pm:

Ra∗ =
αgo�T

Ω2D
, (2.6)

E =
ν

ΩD2
, (2.7)

Pr =
ν

κ
, (2.8)

Pm =
ν

λ
. (2.9)

Here α is the thermal expansion coefficient, go the gravity at the outer boundary, ν

is the kinematic viscosity, and κ is the thermal diffusivity of the fluid. The modified
Rayleigh number Ra∗ is used and can be related to the traditional Rayleigh number
Ra = αgo�T D3/κν by:

Ra∗ = Ra E2 Pr−1. (2.10)

The main advantage of choosing Ω−1 as the time scale is to introduce the modified
Rayleigh number Ra∗. Unlike the traditional Rayleigh number, Ra∗ does not depend
on the fluid diffusivities ν and κ . It is the natural parameter to express scaling laws
in a regime where these diffusivities do not play a major role.

The heat-flux based Rayleigh number will also be used in this study:

Ra∗
q = Nu∗Ra∗ =

ro

ri

αgoq

ρCpΩ3D2
, (2.11)

where q is the convective heat flux per unit surface at the outer boundary and Cp is
the specific heat.

Nu∗ =
ro

ri

q

ρCp�T ΩD
(2.12)

is a modified Nusselt number, which can be related to the traditional Nusselt number
Nu = (ro/ri)qD/ρCpκ�T D by:

Nu∗ = Nu E Pr−1. (2.13)

The vector fields u and B are decomposed into poloidal and toroidal potentials.
These potentials and the temperature T are expanded into spherical harmonics in
the lateral direction, with maximum degree and order lmax , and into Chebyshev
polynomials in the radial direction, up to degree Nr − 2 where Nr is the number
of radial grid points. An azimuthal symmetry parameter ms is introduced: the
computation time can be reduced by solving only for modes or order m =0,
ms, 2ms, 3ms, . . . .

The velocity field u satisfies rigid boundary conditions. The inner core is freely
rotating under the influence of magnetic and viscous torques, and has the same
conductivity as the outer core. The outer boundary is insulating. In most calculations,
the temperature difference between the boundaries is fixed. Some calculations have a
fixed heat flux at the outer boundary, while the temperature at the inner boundary
is fixed. In the former case, Ra∗

q is not really an input parameter, since it requires
knowledge of the Nusselt number which is an output of the calculation. In the latter
case, Ra∗

q is entirely an input parameter.
The numerical implementation MAGIC by Wicht (2002) is used.
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2.2. Equations for the zonal flow

Let the square brackets [ ] be the azimuthal averaging operator, and the angle
brackets 〈 〉 be the time averaging operator. The derivative of the zonal flow velocity
uϕ = [u]ϕ = [u] · eϕ along the axis of rotation is given by the classical thermal wind
balance, obtained by retaining the three largest terms (buoyancy, Lorentz force and
Coriolis force the viscous and inertial terms being presumably lower by a factor E)
in [∇ × (2.1)]ϕ:

1

E

∂uϕ

∂z
=

Ra∗

2Ero

∂[T ]

∂θ
− 1

2Pm
(∇ × [(∇ × B) × B])ϕ. (2.14)

Once ∂uϕ/∂z is known, The description of uϕ can be completed by the knowledge
of its value at the outer boundary. Applying the operator [ ] to (2.1) and projecting
onto the azimuthal unit vector eϕ yields:

∂uϕ

∂t
+ [(u · ∇)u]ϕ + 2[u]s = E[∇2u]ϕ +

E

Pm
[(∇ × B) × B]ϕ, (2.15)

where the s coordinate is the cylindrical radius. The equation governing the column-
averaged zonal flow can be obtained by integrating (2.15) in the ez-direction of the
rotation axis:

∂

∂t

∫
L

uϕdz +

∫
L

[(u · ∇)u] dz

︸ ︷︷ ︸
IR

+ 2

∫
L

[u]s dz

︸ ︷︷ ︸
IC

=

∫
L

E[∇2u]ϕ dz

︸ ︷︷ ︸
IV

+

∫
L

E

Pm
[(∇ × B) × B]ϕ dz

︸ ︷︷ ︸
IL

,

(2.16)

where L is a fluid column parallel to ez , excluding the viscous layer at the external
spherical boundary. Applying the time averaging operator yields:

〈IC〉 = 〈IL〉 + 〈IV 〉 − 〈IR〉. (2.17)

If the outer viscous boundary layer behaves as an Ekman layer, then the integral
〈IC〉 can be related to the zonal velocity close to the outer boundary (Greenspan
1968), outside the tangent cylinder:

〈IC〉 =
2E1/2√
| cos θ |

〈uN〉, (2.18)

where 〈uN〉 is the steady zonal flow observed at both ends of fluid column L (all
the calculations presented in this study have equator-symmetric steady zonal flows).
The validity of (2.18) will be checked in detail in the results section. Equations (2.17)
and (2.18) directly relate the steady core surface flow 〈uN〉 to the integrals of Lorentz
force, divergence of the Reynolds stresses and viscous forces within the fluid shell.
Together with the time average of (2.14), they allow for a complete description of the
time-averaged zonal flow in the shell.

A power budget for the zonal flow will be used to clarify the sources and sinks of
energy. Multiplying (2.15) by uϕ yields:

1

2

∂u2
ϕ

∂t
= −[(u · ∇)u]ϕ · uϕ︸ ︷︷ ︸

PR

− 2[u]s · uϕ︸ ︷︷ ︸
PC

+
E

Pm
[(∇ × B) × B]ϕ · uϕ︸ ︷︷ ︸

PL

+ E[∇2u]ϕ · uϕ︸ ︷︷ ︸
PV

(2.19)

Here PR is the power transferred to zonal flow through the divergence of the Reynolds
stresses, and PC is the power exchanged between zonal and meridional flows by the
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Coriolis force. Since the Coriolis force does no work, but exchanges work between
components of the flow, −PC appears in a power budget written for the meridional
flow. The remaining power terms PL and PV are, respectively, the power transferred
to the zonal flow by the Lorentz and viscous forces.

2.3. Set of numerical models

The radius ratio is fixed to ri/ro = 0.35. The control parameters Ra∗, E, Pm and
Pr are variable and 43 numerical simulations of rotating convection and convective
dynamo are analysed. The temperature boundary conditions are of type �T (both
boundaries at fixed temperature) or Φ (the inner boundary has fixed temperature, the
heat flux is fixed at the outer boundary). Although no particular symmetry has been
assumed, the time-averaged zonal velocity field is always found to be symmetric with
respect to the equator.

A model is dipole-dominated if more than half of the magnetic energy is in the
magnetic dipole. The parameters and results for all simulations are summarized in
table 1. Some cases draw particular attention: case D is the basic dipole-dominated
dynamo case, case C is the corresponding convection case. Case D′ (ms = 1) is used
together with case D (ms = 2) to verify that assuming ms �= 1 has little impact on the
solution. Cases D1 to D5 explore the effect of a varying magnetic Prandtl number.
Case DR is not dipole-dominated, in contrast with case D which is.

The critical Rayleigh number Rac is determined by time-stepping the linear part of
the simulation and determining the growth rate of each mode.

The state of the system is diagnosed using the zonal kinetic energy Eϕ , as well as
the magnetic energy Em:

Eϕ =
1

2Vs

∫
Vs

u2
ϕ dV, (2.20)

Em =
E

2PmVs

∫
Vs

B2 dV, (2.21)

where Vs is the volume of the spherical shell. The root-mean square time-averaged
zonal flow Uϕ and Elsasser number Λ are defined as

Uϕ =
√

2〈Eϕ〉, (2.22)

Λ =
2Pm

E
〈Em〉. (2.23)

3. Results
3.1. Zonal flows in convection and dynamo models

Figure 1 compares the time-averaged zonal flow of cases C (non-magnetic convection)
and D (self-sustained dynamo). Cases C and D have been selected for analysis because
they are numerically the least costly cases presenting a typical behaviour. The large-
scale zonal flow structure of cases C and D is indeed robust against variation of E

when the thermal forcing is large enough (Ra a few times critical). The large-scale
zonal flow structure of case D, as well as the flow amplitude (see constant Uϕ in cases
D, D2, D3, D4 and D5) are almost independent of the magnetic Prandtl number
once the Lorentz force has reached sufficient strength to equilibrate the Coriolis force,
i.e. once Λ > 1. The zonal flow structure is robust against variations of Ra until
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dipole-
Case Ra/Rac Pm Nu Λ Uϕ lmax Nr ms dominated

E = 10−4, Pr = 1, (Rac = 6.95 × 105), �T

1.29 0 1.06 0 1.3 × 10−4 64 33 1
1.44 0 1.08 0 2.03 × 10−4 64 33 1
2.88 0 1.27 0 1.07 × 10−3 64 41 1
4.32 0 1.49 0 2.11 × 10−3 64 41 1
4.32 2 1.63 0.74 8.23 × 10−4 64 41 1 Y
7.20 0 2.20 0 2.62 × 10−3 64 41 1
7.20 2 2.38 4.21 1.62 × 10−3 64 41 1 Y

C 10.8 0 3.03 0 3.91 × 10−3 84 41 2
D2 10.8 0.5 3.33 0.67 2.3 × 10−3 84 41 2 Y
D3 10.8 1 3.29 2.4 2.25 × 10−3 84 41 2 Y
D 10.8 2 3.33 6.70 2.17 × 10−3 84 41 2 Y
D′ 10.8 2 3.37 6.62 2.25 × 10−3 84 41 1 Y
D4 10.8 6 3.51 28.3 2.25 × 10−4 84 41 2 Y
D5 10.8 10 3.51 63 2.3 × 10−4 84 41 2 Y

21.6 0 5.96 0 1.2 × 10−2 128 65 4
21.6 2 5.47 7.62 5.3 × 10−3 128 65 4 Y
43.2 0 9.01 0 2.6 × 10−2 128 65 4
43.2 2 8.15 9.72 1.0 × 10−2 128 65 4 N
86.4 2 11.03 20.3 1.67 × 10−2 170 65 4 N

E = 10−4, Pr = 0.1, (Rac = 2.85 × 105), �T

10.9 2 2.1 60 1.08 × 10−2 84 41 2 Y
DR 26.3 2 3.5 51 4.01 × 10−2 128 65 4 N

52.6 2 5.0 110 5.55 × 10−2 128 65 4 N
105 2 6.4 189 9.75 × 10−2 128 65 4 N

E = 10−5, Pr = 1, (Rac = 1.06 × 107), �T

1.42 0 1.08 0 2.7 × 10−5 64 41 1
2.83 0 1.24 0 1.58 × 10−4 64 41 1
4.72 0 1.77 0 3.2 × 10−4 64 41 1
4.72 2 1.72 0.56 1.65 × 10−4 64 41 1 Y
7.08 0 1.92 0 3.9 × 10−4 128 65 4
7.08 2 2.38 2.42 2.94 × 10−4 128 65 4 Y
9.43 0 2.5 0 5.6 × 10−4 128 65 4
9.43 2 3.54 6.36 4.07 × 10−4 128 65 4 Y

14.2 0 3.61 0 9.8 × 10−4 170 65 4
14.2 2 5.13 15.2 5.84 × 10−4 170 65 4 Y
18.9 0 5.5 0 1.68 × 10−3 170 65 4
18.9 2 6.5 18.5 8.5 × 10−4 170 81 4 Y
37.7 0 12.4 0 6.62 × 10−3 256 97 8
37.7 2 11. 27.7 1.6 × 10−3 212 81 4 Y

RaQ/RaQc E = 10−4, Pr = 1, (RaQc = 6.95 × 105), Φ

10.8 2 2.09 1.8 × 10−3 84 41 2 Y
21.6 2 8.64 2.8 × 10−3 84 41 2 Y
43.2 2 10.28 3.6 × 10−3 84 41 2 Y
86.4 2 11.44 4.7 × 10−3 84 41 2 Y

172.8 2 7.52 7.3 × 10−3 128 65 4 N
345.6 2 8.48 1.4 × 10−3 128 65 4 N

Table 1. Numerical simulations and results for ri/ro = 0.35. Temperature boundary conditions
are: �T for fixed temperature at both boundaries, Φ for fixed temperature at inner boundary
and fixed heat flux at outer boundary.
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the regime identified by Kutzner & Christensen (2002) where the magnetic dipole
collapses.

The columnar structure of the zonal flow in case C (figure 1a) is a consequence of
the geostrophic equilibrium between the Coriolis and pressure forces in (2.1). Taking
the curl of (2.1) indeed yields the Proudman–Taylor constraint ∂u/∂z ≈ 0 when the
two forces dominate the others. The zonal flow takes its energy from the non-
axisymmetric scales of the flow through the divergence [(u · ∇)u]ϕ of the nonlinear
Reynolds stresses in (2.15) (Busse 1970; Busse & Hood 1982; Aubert et al. 2001;
Christensen 2002). A columnar flow usually increases the efficiency of the energy
transfer between non-axisymmetric and axisymmetric scales.

Figures 1(b) and 1(c) show that in case D the structure of uϕ is very different.
The geostrophic, z-independent part does not dominate. Indeed the Elsasser number
is of order 1, which means that the Lorentz force equilibrates the Coriolis force in
amplitude and the Proudman–Taylor constraint on geostrophy is relaxed.

The magnetic field and the zonal flow co-exist under a principle of minimal
interaction known as Ferraro’s law of corotation (Ferraro 1937): the time-averaged
axisymmetric magnetic field lines follow the iso-contours of the time-averaged uϕ/s,
where s is the cylindrical radius. Where this is not the case, an axisymmetric
azimuthal magnetic field is created from the axisymmetric meridional field at a rate
pω = s∇(uϕ/s) · B due to the omega effect. The production of azimuthal magnetic field
increases the magnetic tension along the meridional field lines, and is proportional
to B2. In agreement with the Lenz law, the resulting Lorentz force tends to
oppose the forces that increased the magnetic tension, i.e. reduce pω and therefore
align contours of uϕ/s with magnetic field lines. The white lines on figures 1(b)
and 1(c) represent this restoring action (contours of (1/Pm)∇ × [(∇ × B) × B)]ϕ),
and correlate indeed with places where zonal flow contours cross the magnetic
field lines. In a time snapshot (figure 1(b), the restoring action is typically much
stronger than in the time average (figure 1c), where the minimal interaction is
found.

Since the dynamo zonal flow is not geostrophic, it makes sense to look at the thermal
wind balance (2.14). The residues on figure 2 show that this balance is verified in
the time average, as well as at any moment in time, i.e. that the viscous and inertial
terms neglected in (2.14) are negligible here. For a time average, as already seen in
figure 1, the restoring contribution of the Lorentz force (1/Pm)∇ × [(∇ × B) × B)]ϕ
is much smaller than in any snapshot, and is negligible when compared to the
other terms in (2.14). The magnetic tension indeed grows with a decreasing radius
of a magnetic loop. The time-averaged structure of the magnetic field is large-scale,
and along these large magnetic loops the magnetic tension is weak. A stronger
tension is carried by smaller loops on figure 2(a), but these loops vanish in the time
average.

The magnetic field has therefore no direct influence on the variations of the zonal
flow along ez . It does however influence the parameter Ra∗

q since the relaxation of the
Proudman–Taylor constraint allows an enhanced transport of heat. Figure 3 shows
that the isothermal lines of case D stack up near the boundaries, while the Nusselt
numbers reported in table 1 are higher for dynamos.

In figure 4, the time-averaged zonal flow of a non dipole-dominated model (case
DR) is now compared to case D. Outside the tangent cylinder the zonal flow in case
DR is closer to the non-magnetic case C. Inside the tangent cylinder, the thermal
wind structure is more pronounced in case DR than in in case C. The alignment of
magnetic lines with zonal flow contours is broken.
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Figure 1. Meridional sections (a) of the time-averaged zonal flow in the convection case C
(blue is westwards, red eastwards); (b). a snapshot in time of the zonal flow in dynamo case
D, with, in black, superimposed lines of the axisymmetric meridional magnetic field. In white,
isolines −100 and 100 of (1/Pm)∇ × [(∇ × B) × B)]ϕ; (c) the time-averaged zonal flow in case
D, same conventions as (b), isolines −20 and 20 of (1/Pm)∇ × [(∇ × B) × B]ϕ .
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Figure 4. Meridional sections of the time-averaged zonal flow (blue is westwards) and
axisymmetric poloidal magnetic field lines for cases D and DR.

3.2. Power budget

The presence of the magnetic field dramatically changes the structure of the zonal
flow, but does not seem to power it directly. To clarify this point, the time-average of
the power budget (2.19) is analysed in figure 5.
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1
E

∂u�

∂z ∂θ
=

Ra*

2Ero

∂[T ]
–

1

2Pm
�× [(�× B) × B]� Residue
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Figure 2. The thermal wind balance (2.14) for case D in (a) a snapshot in time, and (b) the
time-average. Plain contours: positive values; dashed contours: negative values.

0.1

0.2

0.3

0.4

0.5

Case C Case D

Figure 3. Meridional cuts of 〈[T ]〉. The magnetic fields allows for an enhanced heat flux
through the relaxation of the Proudman–Taylor constraint.
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Figure 5. Time-averaged power budget of cases (a) C and (b) D (plain contours: power
sources; dashed contours: power sinks). The shell integral of the time-averaged power is
reported below each diagram.

In case C, the flow is driven mainly by the divergence of the Reynolds stresses. This
forcing mode is efficient because of the columnar structure of the non-axisymmetric
flow. The shell integral of 〈PR〉 is almost entirely balanced by 〈PV 〉. The power is
therefore dissipated through Ekman friction in the viscous boundary layers.

In case D, the power source is now 〈PC〉, with strong contributions where lateral
buoyancy variations are important. A baroclinic meridional flow is first created,
which couples with the Coriolis force to create a thermal wind zonal flow. The
power dissipation is equally distributed between Ohmic dissipation in the interior of
the fluid (〈PL〉) and viscous dissipation in the Ekman boundary layers (〈PV 〉). The
Reynolds stresses are not significant in this case. From an energetic point of view, the
Lorentz force therefore enters the dynamics of the zonal flow only as a dissipative
mechanism.

In figure 6, the time-averaged power budget of case DR is analysed. In this case the
forcing is almost equally distributed between the Reynolds stresses and the thermal
wind. This is compatible with the shape observed in figure 4, where geostrophic
flow and thermal wind are mixed. Dissipation is still equally distributed between
the Lorentz force in the interior and the viscous friction in the Ekman boundary
layers.
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Figure 6. Time-averaged power budget of case DR, same conventions as figure 5.

3.3. Value of the zonal flow at the outer boundary

The time-average of (2.15) is analysed in figure 7(a). In the interior of the fluid
the axisymmetric ϕ components of the Coriolis and Lorentz forces (first and second
sections in figure 7a) dominate the inertial and viscous effects. The column-integrated
terms of (2.17) are represented in figure 7(b). The upper panel is a check for formula
(2.18). It shows that this formula holds outside the tangent cylinder, but also inside
the tangent cylinder. This is due to the co-rotation of the inner core, which minimizes
the viscous boundary-layer effects at the inner boundary. The fact that (2.18) holds
shows that magnetic effects are negligible on the Ekman layers.

The lower panel highlights the dominant role of 〈IL〉 for balancing 〈IC〉, the Ekman
friction of the surface zonal flow. However, IL is not controlled by the local strength
of the Lorentz force. This is a consequence of the partial enforcement of Taylor’s
constraint (see for instance Hollerbach 1996): there is some cancellation when the
Lorentz force is integrated in the direction ez to compute IL. Indeed, figure 7 shows
that 〈IL〉 is roughly seven times smaller than the maximum value of the Lorentz force
in the shell.

3.4. Scaling of the zonal flow amplitude

The magnetic field does not control directly the variations of the zonal flow in the
direction of ez , neither does it control the value of the zonal flow at the outer
boundary owing to the partial cancellation of the Lorentz force integral. Its main role
is as a source of dissipation in the interior of the fluid. Therefore a scaling relation
can be sought for the root-mean-square amplitude Uϕ that does not depend on the
magnetic field amplitude. The similarity between non-magnetic and magnetic thermal
winds leads to consideration of the scaling proposed by Aurnou et al. (2003): using
dimensional analysis, the local buoyancy available to drive the baroclinic flow can be
estimated. Considering the thermal wind balance we then obtain:

Uϕ = (Ra∗
q)

0.5. (3.1)

Ra∗
q appears here as a measure of the available buoyancy. The numerical data set

for dynamo cases in figure 8 supports an asymptote described well by (3.1) when
the forcing is large. This proves the validity of the results acquired by Aurnou et al.
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Figure 7. Case D. (a) Meridional cuts of the terms involved in the time average of (2.15).
Plain contour lines are positive values, dashed contour lines are negative values. (b) Upper
panel: test of the boundary-layer formula (2.18) showing its validity throughout the shell.
Lower panel: z-integrals of the Lorentz, viscous forces and of the divergence of the Reynolds
stresses.

(2003) when a self-sustained magnetic field is present. Note that the scaling applies
irrespectively of the thermal boundary conditions used. The scaling also applies when
high inertia and a non-dipole-dominated magnetic field are present such as in the
models with Pr = 0.1.

Aubert et al. (2001) proposed a scaling for the amplitude Uϕ of the zonal flow in
their experiments of non-magnetic rotating convection. First, the non-axisymmetric
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Figure 8. u∗ = E0.5Uϕ (convection) and u∗ = Uϕ (dynamo) as a function of Ra∗
q . Upper

black line: theoretical scaling (3.1). Lower black line: scaling (3.2).

convective flow is scaled as (Ra∗
q)

0.4 using an argument involving columnar flow and
the conservation of potential vorticity. This scaling holds far from the convective onset.
Then the amplitude of the divergence of the Reynolds stresses is supposed to scale as
the squared convective flow, i.e. as (Ra∗

q)
0.8, owing to the good correlations between us

and uϕ of the convective eddies. Finally, the Reynolds stresses are balanced by Ekman
friction of the zonal flow on the outer boundary, which is exactly the mechanism
identified in the power budget of the previous section. The resulting scaling relation
is:

E0.5Uϕ = (Ra∗
q)

0.8. (3.2)

This relation has been successfully tested against experimental data. The numerical
values for non-magnetic convection in figure 8 approach an asymptote described well
by (3.2) when the forcing is large, and this provides the first numerical confirmation
of this scaling.

The difference in slope between asymptotes (3.2) and (3.1) is obvious in the
numerical data set of figure 8. The behaviour of Uϕ at large forcing reflects the
change in the forcing and dissipation mechanisms, from convection to dynamo cases.

4. Discussion
In the models presented here, the thermal wind is forced at a large scale (the scale

of the spherical shell), and the main part of the dissipation in the interior of the fluid
is of ohmic nature, occurring at a large scale. The zonal flow is also time-averaged.
Therefore the scaling relationship (3.1) does not depend on the diffusivities κ , ν and
λ which, if they were present, would introduce a notion of scale and of dissipation
rate in time. The simple form of (3.1) accounts for a simple geometry of zonal flow
where small scales do not play a role in the time average.

The parameters of a real object such as the Earth’s core are remote from those of
the model. In particular, the magnetic Prandtl number is of order 10−6 and the Ekman
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number 10−14, two values which are much lower than those used in the models. This
raises questions as to the validity of the scaling relationship in the regime of the
Earth. However, it has been noted that the underlying mechanism in (3.1) does not
rely on any diffusive process in the system, and hence (3.1) does not depend on E,
Pm and Pr. This suggests that the numerical computations in this study have reached
an asymptotic regime where these processes do not play a role, and this allows for
extrapolation to planetary objects. In dimensional form, the scaling relationship (3.1)
writes Uϕ = (F/Ω)0.5 where F = αgq/ρCp is the buoyancy flux through the spherical
shell. The measured value of Uϕ = 10−4 m s−1 for the polar vortex at the core–mantle
boundary (Olson & Aurnou 1999) yields a buoyancy flux of F = 10−12 m2 s−3, a value
which is in agreement with inner-core growth models of Aurnou et al. (2003).

It is generally believed that in the limit of vanishing Ekman number, the results
of simulations with rigid and stress-free boundaries should converge. At a moderate
Ekman number, the models presented in this study have several key differences with
the dynamo calculations made by Grote & Busse (2001) with stress-free boundaries.
In the computations of this study, the zonal flow has a low geostrophic part, is
dominated by the thermal wind part and coexists with a dipole-dominated magnetic
field. In the stress-free calculations of Grote & Busse (2001) the zonal flow has a
dominant geostrophic part and coexists with a less, or non-dipole-dominated magnetic
field. Indeed, with stress-free boundaries, the only limiting process for the geostrophic
zonal flow is viscous friction in the interior of the fluid, which at high Ekman
number allows for high values of this flow. Ferraro’s law of corotation then makes
the co-existence of a geostrophic zonal flow and a dominant dipole created by the
dynamo difficult. This point is confirmed by the parameter-space study of dynamos
with stress-free boundaries made by Busse & Simitev (2005). They found no dipolar
dynamo at a Prandtl number of 0.1, where the geostrophic zonal flow dominates. At
a Prandtl number of order one, dipolar dynamos can be found in a limited range of
the convective forcing, where the geostrophic zonal flow competes with the thermal
wind zonal flow. This range extends with decreasing Ekman number, suggesting a
tendency of results acquired with rigid and stress-free boundaries to converge.

Dynamos with stress-free boundaries often exhibit magnetic fields having a strong
asymmetry between the northern and the southern hemispheres, with an oscillatory
time behaviour (Grote & Busse 2001), while the underlying flow components, and
in particular the zonal flow, are as equator-symmetric as the flows shown in the
present study. This can be understood using Ferraro’s law of isorotation: a zonal flow
shearing the axisymmetric poloidal magnetic field lines tends to create a field of the
opposite polarity, thus leading to an oscillatory alpha–omega dynamo action. In the
present study, the omega effect is small because the geostrophic zonal flow is weak,
the dynamos have an alpha-squared mechanism and the oscillatory behaviour is not
observed.

It is also interesting to compare stress-free and rigid boundaries in the case of non-
magnetic convection (this study uses rigid boundaries whereas Christensen (2002) uses
stress-free boundaries). At a moderate Ekman number, in both cases the geostrophic
zonal flow is the dominant component, but this flow is stronger when stress-free
boundaries are used. In the present rigid case indeed the zonal flow amplitude
Uϕ is limited by viscous friction in the Ekman boundary layers and scales like
Uϕ = (Ra∗

q)
0.8E−0.5 (equation (3.2)). In the stress-free case, Christensen (2002) found

Uϕ ∝ (Ra∗
q)

0.4, with no apparent dependence on the Ekman number but with a
saturation level at high values of Ra∗

q due to a loss of correlation in the small scales
of the convection flow. At lower Ekman numbers it is expected that the rigid case
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matches the stress-free case because a decreasing friction in the Ekman layer requires
a stronger zonal flow.

Kutzner & Christensen (2002) have identified a regime boundary between dipole-
dominated, and non-dipolar, reversing numerical dynamos. Ferraro’s law of corotation
prevents the coexistence of a strong columnar zonal flow and of a dominant magnetic
dipole. Since the Reynolds stresses tend to force columnar zonal flows, it can be
speculated that inertia plays a major role in the selection of a dominant dipole in the
dynamo solution.
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