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The geomagnetic westward drift and the inner core differential rotation relative to the mantle are two 
components of the Earth’s core rotational dynamics. We present a systematic study of their long-term 
relationship in convective numerical simulations of the geodynamo. All models comprise gravitational 
coupling between the inner core and the mantle, in addition to electromagnetic coupling at the inner 
core and core–mantle boundaries. We show that the strength of these couplings has no influence on 
the global shear available in the fluid shell, the amount of which is entirely governed by the vigor of 
convection. This shear is distributed between the long-term westward drift and the long-term differential 
rotation of the inner core, in proportions controlled by the relative magnitudes of the electromagnetic 
and gravitational couplings. A present-day estimate of this available shear predicts a magnitude of the 
westward drift close to that observed on average during the last 400 yrs, which then implies a non-
existent long-term inner core differential rotation. Assuming a lower mantle conductance of order 108 S, 
this in turn sets a constraint on the minimum stiffness of the inner core, the viscosity of which should 
be larger than 2 × 1017 Pa s for the westward drift to dominate.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The geomagnetic westward drift and the inner core super-
rotation are two apparently distinct signatures of rotational dy-
namics in the Earth’s core. The understanding of their behavior is 
of interest to several disciplines: geomagnetism, seismology, geo-
dynamics and geodesy. However, their possible relationship has so 
far received little attention.

One of the striking results of the pioneering geodynamo sim-
ulation of Glatzmaier and Roberts (1996) was the observation of 
a differential rotation of the inner core respectively to the man-
tle of about 2◦ per year. This was obtained by taking into account 
the electromagnetic coupling between the electrically conducting 
fluid outer core and solid inner core. Since the inner core is elec-
trically conducting, it can indeed be permeated by a toroidal mag-
netic field which creates an axial electromagnetic torque (Gubbins, 
1981). This generally promotes co-rotation between the inner core 
and the overlying fluid in the outer core, but local induction effects 
at the inner core boundary (ICB) allow for a residual angular veloc-
ity jump (Aurnou et al., 1996), with the angular velocity difference 
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at the ICB opposing the shear in the outer core. The situation is 
hence similar to that occurring in an asynchronous motor.

Initial numerical reports of the inner core differential rotation 
(Glatzmaier and Roberts, 1996) gave rise to numerous seismolog-
ical studies. Using differential travel-time between PKP(BC) and 
PKP(DF) waves, Song and Richards (1996) inferred a rotation rate 
of the inner core of 1.1 ±0.7◦ yr−1 in the eastward direction. Since 
then, many authors have revised downwards the initial estimates 
to a maximum rotation rate of about 0.3◦ yr−1, for instance by 
using temporal variations in seismic waves travel-time (Creager, 
1997; Song, 2000). Using normal modes, Laske and Masters (1999)
concluded there was an absence of inner core super-rotation, and 
this is the accepted scenario at the present time (see Souriau and 
Calvet, 2015, for a review). Therefore, the seismologically inferred 
super-rotation may correspond to decadal fluctuations (Tkalčić et 
al., 2013) around an average zero differential rotation, as initially 
suggested by Song and Poupinet (2007).

The geomagnetic westward drift is, in contrast, much better 
constrained. It was first described by Halley (1692), as a west-
ward drift of agonic lines of the Earth’s magnetic field over time. 
It is nowadays well imaged over the last four centuries in mod-
els accounting for data acquired by mariners, observatories and 
satellites, as the westward drift of magnetic flux patches at the 
core surface (Jackson et al., 2000; Finlay and Jackson, 2003). Con-
centrated at the equator in the Atlantic hemisphere, these patches 
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have an average longitudinal velocity of 17 km per year over the 
epochs investigated by Finlay and Jackson (2003), which corre-
sponds to an angular velocity of 0.28◦ yr−1.

Since Roberts and Scott (1965), it is admitted that this secu-
lar variation pattern reflects advection by an underlying azimuthal 
flow below the core–mantle boundary (CMB). At this point, it 
is thus natural to imagine that the westward drift and the in-
ner core super-rotation are the top and bottom signatures of a 
global radial shear in azimuthal velocities. The dynamic origin of 
such a global shear may reside in core polar vortices. These vor-
tices result from the interaction between convective upwellings 
and Coriolis forces inside the tangent cylinder (the imaginary 
cylinder aligned with the rotation axis and circumscribing the in-
ner core). They are cyclonic close to the ICB and anti-cyclonic 
when approaching the CMB. These polar vortices are ubiquitous 
features in numerical geodynamo simulations (e.g. Aubert, 2005;
Sreenivasan and Jones, 2006), and appear to be in agreement with 
flows estimated from the geomagnetic secular variation (Olson 
and Aurnou, 1999), though they should be interpreted with cau-
tion as they are poorly resolved in polar regions (Eymin and 
Hulot, 2005). Polar vortices can provide the shear that links the 
inner core rotation and the westward drift, but the absolute ve-
locities of these quantities in the frame rotating with the Earth 
are ultimately determined by the state of coupling between the 
inner core, the outer core and the mantle (Dumberry, 2007;
Aubert et al., 2013).

The key ingredient here is the possibility of a gravitational 
torque, coupling the inner core and the mantle (Buffett, 1996). The 
mechanism involves density anomalies in the mantle (see Davies 
et al., 2014 for recent estimates) which deform the equipoten-
tial gravity surfaces by about a hundred meters close to the ICB 
(Buffett, 1997). The shape of the inner core adjusts to the grav-
ity equipotential, in which case a slight misalignment between 
the mantle and the inner core results in a strong restoring force. 
If the inner core is allowed to viscously deform, though, then a 
super-rotation is still worth considering while creating a moder-
ate restoring force (Buffett, 1997). A second crucial component is 
the coupling between the outer core and the mantle at the CMB. 
A primary candidate for a such coupling is again electromagnetic 
forces (Buffett, 1992; Holme, 1998; Buffett and Christensen, 2007). 
The basic idea is that there is an electrically conducting layer 
on the mantle side of the CMB, which again can be permeated 
by toroidal magnetic fields and hence can experience an electro-
magnetic torque (Rochester, 1960, 1962). Evidence for the exis-
tence of this layer can be obtained by looking at the out-of-phase 
component of the forced nutations of the Earth (Buffett, 1992;
Buffett et al., 2002), which constrains the conductance of this layer 
to be at least 108S. This is supported by recent mineral physics ex-
periments, inferring a thick post-perovskite layer (Murakami et al., 
2004) of quite high conductivity (Ohta et al., 2008) or a thin layer 
of metallic FeO with a conductivity close to that of the core (Ohta 
et al., 2012).

From this discussion, it becomes obvious that the rotational 
state of the core is the result of a complex combination of phys-
ical effects. For example, the angular velocity jump at the ICB 
will be influenced by the strength of the gravitational torque ex-
erted on the inner core and the amount of westward drift will 
crucially be determined by the amplitude of electromagnetic cou-
pling at the CMB. We can however anticipate that the global 
amount of shear available in the outer core will be insensitive 
to both effects described above, as it should only be dictated by 
the strength of convection (Aubert, 2005). It thus appears timely 
to elaborate numerical geodynamo models encompassing all these 
effects and derive the scaling laws governing the long-term ro-
tation components of Earth’s coupled core–mantle system. From 
a practical standpoint, this is an incremental study adding the 
CMB electromagnetic coupling to the coupled Earth dynamo sys-
tem which neglected its impact (Aubert et al., 2013). From a 
theoretical point of view, we rely on the theory developed by 
Dumberry (2007) in order to derive the scaling laws. We frame 
our analysis within the thermal wind theory (Aurnou et al., 2003;
Aubert, 2005) to explain the geomagnetic westward drift. This the-
ory is able to reproduce several observations of the Earth’s mag-
netic field and its secular variation, such as the equatorial field 
patch trains of normal polarity, their wave like patterns and their 
inferred underlying core flows, all within a self-consistent convec-
tive model (see e.g. Aubert et al., 2013). There are alternative the-
ories to explain the geomagnetic westward drift: magnetic winds 
(Livermore et al., 2013), magnetic Rossby waves (Hori et al., 2015)
and mantle control (Christensen and Olson, 2003); however, these 
have yet to give birth to dynamical models capable of generat-
ing spontaneously the salient features of the geomagnetic secular 
variation we just recalled. We also restrict our analysis to electro-
magnetic and gravitational torques only, and do not consider other 
sources of coupling between the mantle and the core, such as 
the topographic torque, which remains poorly constrained (Roberts 
and Aurnou, 2012). The key geophysical questions we have in mind 
are the following ones: are the inner core super-rotation and the 
westward drift long-term features of the geodynamo? What is the 
physical link between these two components of the rotational dy-
namics of the Earth? Under what conditions does the coupled 
Earth dynamo model match the observed westward drift? To ad-
dress these questions, we dedicate the second section to the de-
scription of our physical model, its numerical implementation, and 
a theoretical analysis of its long-term rotational state. That theory 
is successfully tested against the outputs of numerical simulations 
in section 3, and its geophysical implications are finally discussed 
in section 4.

2. Model

2.1. Conservation laws

We consider the flow of an electrically conducting, incompress-
ible fluid of density ρ and viscosity ν , driven by convection in a 
spherical shell of thickness D = ro − ri , where ri is the inner core 
radius and ro is the core–mantle boundary radius. A set of spher-
ical coordinates is chosen as (r, θ , ϕ), with associate unit vectors 
(er,eθ , eϕ ). The shell is rotating at an angular velocity � about an 
axis ez, and its aspect ratio ri/ro = 0.35 is that of the present-day 
Earth’s core. As the fluid is assumed to be incompressible, the con-
tinuity equation describes the velocity field u as solenoidal,

∇ · u = 0. (1)

Thermochemical convection is modeled by the codensity C (Bra-
ginsky and Roberts, 1995) in the Boussinesq approximation, such 
that

C = αT ρT ′ + �ρξ ′, (2)

with αT the thermal expansion coefficient, T ′ the deviation of the 
temperature field about the isentropic temperature, �ρ the den-
sity difference between light elements and pure iron and ξ ′ the 
light element mass fraction with respect to a well-mixed outer 
core. We assume that thermal and chemical diffusivities are both 
equal to κ , the codensity diffusivity, due to turbulent mixing in the 
outer core. Thus, the codensity field C is given by a single trans-
port equation,

∂C

∂t
+ u · ∇C = κ∇2C + ST /ξ , (3)

where ST /ξ is a volumetric correction term ensuring mass conser-
vation (Aubert et al., 2009). To obtain the velocity u, codensity C
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and magnetic fields B we solve equations (1) and (3) together with 
the electromagnetic induction equation in the magnetohydrody-
namic approximation and the Navier–Stokes equation accounting 
for the back reaction of the solenoidal magnetic field on the flow:

∂B

∂t
= ∇ × (u × B) + η∇2B, (4)

ρ

(
∂u

∂t
+ u · ∇u

)

= −∇P − 2ρ (� × u) + ρν∇2u + 1

μ0
(∇ × B) × B + gC, (5)

∇ · B = 0. (6)

This set of equations is solved in the planetary reference frame and 
gravitational acceleration g is directed along er. The magnetic dif-
fusivity of the fluid is defined as η and its magnetic permeability 
as μ0.

We adopt stress-free conditions at both ICB and CMB, to miti-
gate the influence of viscosity on the fluid outer core boundaries. 
The viscosity is the least realistic parameter in numerical dynamo 
models, being overestimated by several orders of magnitude. This 
condition can be written

ur

∣∣∣∣
r=ri,ro

= 0, and (7)

∂

∂r

(uθ

r

) ∣∣∣∣
r=ri,ro

= ∂

∂r

(uϕ

r

) ∣∣∣∣
r=ri,ro

= 0. (8)

The mass anomaly flux F is spatially homogeneous and remains 
constant over time at the inner core surface S ICB and is taken as 
zero at the CMB so that

F =
∫

S ICB

κ∇C · dS, and (9)

0 =
∫

SCMB

κ∇C · dS, (10)

with SCMB the core–mantle boundary surface. This simulates a sit-
uation where convection is entirely bottom-driven, as would be 
the case if the CMB total heat flux were exactly adiabatic. The in-
ner core is modeled as a rigid body, free to rotate at an angular 
velocity �ic under the influence of electromagnetic and gravita-
tional torques. We assume that the electrical conductivities of the 
fluid and the solid parts of the core are equal, and we denote them 
by σc. This greatly simplifies our model and appears a reason-
able assumption in light of mineral physics estimates (Pozzo et al., 
2012; de Koker et al., 2012; Gomi et al., 2013). The mantle is con-
sidered as conductive in a layer of thickness � and conductivity 
σm directly above the CMB. At radii greater than ro + �, the man-
tle is considered as insulating and the magnetic field is a potential 
field.

The angular momentum evolution in both inner core and man-
tle is determined by the torque balance between electromagnetic 
and gravitational coupling

Im
d�m

dt
= −�G + �CMB, (11)

Ii
d�ic

dt
= �G + �ICB, (12)

with Im and Ii respectively the moments of inertia of the mantle 
and the inner core. For the fluid outer core, the evolution of angu-
lar momentum can be written

d

dt

∫
ρ(r sin θ)2ωfdV = −�CMB − �ICB, (13)
V

where V is the volume of the outer core and ωf the local rotation 
rate of fluid parcels.

The electromagnetic torques acting on the mantle and the in-
ner core, respectively �CMB and �ICB, can be evaluated following 
the formalism developed by Rochester (1960, 1962). The moment 
of the Lorentz force integrated over a given volume is thereby re-
duced to the integral of the product of the radial and azimuthal 
magnetic field, Br and Bϕ , over the surface of the core–mantle 
boundary for �CMB and the surface of the inner core for �ICB. The 
electromagnetic torques can then be written

�CMB = − ro

μ0

∫
SCMB

Br Bϕ sin θdS, and (14)

�ICB = ri

μ0

∫
S ICB

Br Bϕ sin θdS, (15)

respectively. The restoring gravitational torque �G exerted on the 
inner core is proportional to its misalignment angle φ relative to 
the mantle, and a gravitational coupling constant � (Buffett, 1997;
Buffett and Glatzmaier, 2000) as

�G = −φ�. (16)

At any given time, the evolution of this misalignment angle is gov-
erned by

dφ

dt
= �ic − �m − φ

τ
, (17)

with �ic and �m, respectively the solid-body rotation rates of the 
inner core and the mantle, and τ the viscous relaxation time of 
the inner core. Our focus on the long-term behavior of the geo-
dynamo in this study allows us to adopt a simpler expression 
for φ. When the fluctuations of φ occur on time scales longer than 
the inner core relaxation time this gives dφ/dt � φ/τ , and thus 
φ = (�ic − �m) τ (Aubert and Dumberry, 2011). Introducing this 
expression into (16) leads to

�G = − (�ic − �m) τ�. (18)

2.2. Dimensionless equations and numerical implementation

Since our study relies on the rotational dynamics of the geody-
namo we choose �−1, the inverse of the planetary rotation rate, 
as the relevant timescale. The length scale is D , the thickness of 
the fluid shell. Magnetic induction B is scaled by (ρμ0)

1/2 �D
and the non-hydrostatic pressure by ρ�2 D2, following the study 
of Christensen and Aubert (2006). Finally, the codensity C is scaled 
with F/4π D3� (Aubert et al., 2009). For simplicity, we adopt in 
the following sections the same notation for dimensionless vari-
ables as for our previously defined dimensional variables. From 
herein, equations and results will be presented in dimensionless 
form. Governing equations can then be written as

∂u

∂t
+ u · ∇u + ∇P + 2ez × u

= E∇2u + (∇ × B) × B + r

ro
RaF C, (19)

∂C

∂t
+ u · ∇C = Eκ∇2C + ST /ξ , (20)

∂B

∂t
− ∇ × (u × B) = Eη∇2B. (21)

The four non-dimensional parameters are the Ekman number,

E = ν

�D2
, (22)

the thermochemical Ekman number,
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Eκ = κ

�D2
, (23)

the magnetic Ekman number,

Eη = η

�D2
, (24)

and the modified Rayleigh number,

RaF = go F

4πρ�3 D4
, (25)

accounting for a fixed-flux boundary condition at the inner core 
surface, with go the gravitational acceleration at the CMB. Values 
of the input parameters for the 45 models considered in this study 
are summarized in Tables 1 and 2.

In dimensionless form, equations (11) and (12) now become

Im
d�m

dt
= ζ (�ic − �m) + �CMB

ρD5�2
, (26)

Ii
d�ic

dt
= −ζ (�ic − �m) + �ICB

ρD5�2
, (27)

with �CMB and �ICB as defined by equations (14) and (15). This 
system includes a new dimensionless parameter, ζ , representing 
the strength of the gravitational coupling between the inner core 
and the mantle. As moments of inertia are scaled using ρD5 and 
electromagnetic torques using ρD5�2, this gives

ζ = τ�

ρD5�
. (28)

Given our choice of characteristic scales, ζ is normalized by the 
fluid core angular momentum, it thus compares the relative im-
portance of gravitational coupling and core inertia.

Finally, it is important to mention one last dimensionless pa-
rameter that does not directly appear in the equations but which 
enters the formulation of the CMB magnetic boundary condition, 
namely the parameter

� = �σm

Dσc
. (29)

The parameter � compares the relative importance of mantle and 
core conductances. It should be kept in mind that while values of 
ζ of O(1) are geophysically admissible, values of � of the same 
order are clearly unrealistic such that in general � � 1. The man-
tle is indeed a poor electrical conductor (see e.g. Civet et al., 2015
and references therein), at the exception (already discussed in the 
introduction) of a thin layer above the CMB (Ohta et al., 2008;
Ohta et al., 2012) whose conductance may reach the value of 108 S
inferred by Buffett (1992). This last value is four orders of mag-
nitude lower than the fluid core conductance. We can therefore 
anticipate that the geophysically relevant range for � does not 
extend beyond 10−3. For the sake of completeness, however, the 
range we shall consider in this study covers 7 orders of magni-
tude, with � varying from 10−8 to 10−1.

We performed numerical 45 simulations of the system
(19)–(29) using the PARODY-JA numerical implementation (Dormy 
et al., 1998; Aubert et al., 2008), the latest version of which uses 
the spectral transform library SHTns (Schaeffer, 2013). Tables 1
and 2 summarize the input and output parameters of the parame-
ter space survey. Among the outputs not yet defined, we mention 
here: AD/(AD + NAD), the relative axial dipole power defined by 
Christensen et al. (2010), Lmax, the maximum degree and order 
of the spherical harmonic decomposition in the horizontal direc-
tions, the number of grid points in the radial direction NR, and 
the mean squared magnetic field respectively at ICB and CMB, 
B2

ri
and B2

ro
. Most dynamos exhibit a strong dipolar component, 

i.e. AD/(AD + NAD) ≥ 0.6. Since we are mainly interested in the 
long-term (time-average) behavior of the system, simulations were 
time-integrated as to ensure convergence of time-averages for the 
values of interest (see Tables 1 and 2).

2.3. Theoretical analysis of the long-term rotational state

Before inspecting the results of our set of 45 simulations, we 
dedicate this section to the theoretical description of the long-term 
rotational dynamics of our system, the predictions of which will be 
tested against numerical results in section 3. As shown in Fig. 1, 
this long-term dynamics can be described using 4 rotation rates: 
�ic, �m, �ficb and �fcmb, respectively the solid-body angular ro-
tation rates of the inner core, the mantle, the fluid at the ICB and 
the fluid at the CMB. Recall indeed that stress-free boundary con-
ditions allow for velocity jumps at the fluid outer core boundaries. 
At the ICB, this velocity jump is denoted as

Cicb = 〈�ficb − �ic〉, (30)

the angle brackets 〈 〉 meaning time-average quantities. Similarly,

D = 〈�fcmb − �m〉, (31)

denotes the equivalent at the CMB, the long-term geomagnetic 
westward drift. In addition, we define

S = 〈�ic − �m〉, (32)

the long-term inner core super-rotation, and

Cf = 〈�ficb − �fcmb〉, (33)

the long-term global convective shear linking the two boundaries. 
The formal link between the four quantities is then

Cf = Cicb + S −D. (34)

To derive the link between the long-term geomagnetic west-
ward drift D and the long-term differential rotation of the inner 
core S , the intuitive first step is then to relate the four components 
of the rotational dynamics expressed above to the strengths of the 
electromagnetic and gravitational torques (Eqs. (14), (15), (18)), 
and use the fact that these torques should balance when consider-
ing the long-term conservation of angular momentum. Therefore, 
we approximate the time-average electromagnetic torques, 〈�CMB〉
and 〈�ICB〉, using the theoretical approach developed by Dumberry
(2007). At the CMB, this theory relies on a thin layer approxima-
tion (Stewart et al., 1995; Holme, 1998) and the torque thus results 
from a simple shear of the poloidal field by the westward drift. 
The torque is then directly proportional to the lower mantle con-
ductance �σm, to the mean squared magnetic field at CMB 

(
B2

ro

)
and to D. In dimensional form this leads to

〈�CMB〉 	 K1r4
o B2

ro
�σmD, (35)

with K1 a numerical constant to be determined (see section 3.3). 
In dimensionless form this gives

〈�CMB〉 	 K1

Eη
r4

o B2
ro

�D. (36)

In contrast to the situation at the CMB, modeling the electromag-
netic torque at the ICB is more complex, in particular because 
the inner core is not a thin flat layer. Aurnou et al. (1996, 1998)
highlighted that the consequence of this thick-layer configuration 
is that the azimuthal magnetic field initiating the torque is now 
made of two contributions: one due to the local shear at the ICB, 
and the other due to the shear in the tangent cylinder, resulting 
from the thermal wind balance. This idea was further explored by 
Dumberry (2007) through an analytical solution, allowing an esti-
mate of the ratio between these two contributions from the shear 
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ns displayed in Figs. 2 and 3.

B2
ro

AD
AD+NAD NR Lmax

1.01 × 10−5 0.66 120 85
9.42 × 10−6 0.65 120 85
1.04 × 10−5 0.67 120 85
1.01 × 10−5 0.66 120 85
9.75 × 10−6 0.65 120 85
1.07 × 10−5 0.67 120 85
1.39 × 10−5 0.63 120 85
6.19 × 10−5 0.58 120 85
1.21 × 10−4 0.50 120 85
4.38 × 10−4 0.21 120 85
5.64 × 10−4 0.05 120 85
1.03 × 10−5 0.67 120 85
9.89 × 10−6 0.66 120 85
1.05 × 10−5 0.66 120 85
1.04 × 10−5 0.66 120 85
1.02 × 10−5 0.66 120 85
9.75 × 10−6 0.64 120 85
9.70 × 10−6 0.65 120 85
1.05 × 10−5 0.66 120 85
1.02 × 10−5 0.65 120 85
9.92 × 10−6 0.66 120 85
9.92 × 10−6 0.65 120 85
9.66 × 10−6 0.64 120 85
9.90 × 10−6 0.65 120 85
9.90 × 10−6 0.79 120 85
1.03 × 10−5 0.74 120 85
1.01 × 10−5 0.71 120 85
1.03 × 10−5 0.68 120 85
1.05 × 10−5 0.68 220 85
1.08 × 10−5 0.71 220 85
1.11 × 10−5 0.73 220 85
1.09 × 10−5 0.76 220 85
1.02 × 10−5 0.79 220 85
1.29 × 10−5 0.62 220 85
1.49 × 10−5 0.65 220 85
9.69 × 10−6 0.65 140 85
1.09 × 10−5 0.67 160 85
1.03 × 10−5 0.67 180 85
1.05 × 10−5 0.67 200 85
1.03 × 10−5 0.66 220 85
9.84 × 10−6 0.66 240 85
9.70 × 10−6 0.67 220 85
Table 1
Parameters of the numerical simulations. All runs were performed with E = Eκ = 3 × 10−5 and Eη = 1.2 × 10−5. Labels A, B, C and D correspond to numerical simulatio

RaF � ζ D Cf Cicb S B2
ri

2.70 × 10−5 1.00 × 10−8 0.75 −5.30 ×10−3 0.01 5.02 × 10−3 2.76 × 10−6 4.40 × 10−4

2.70 × 10−5 1.00 × 10−7 0.75 −5.04×10−3 0.01 5.20 × 10−3 2.78 × 10−6 4.59 × 10−4

2.70 × 10−5 1.00 × 10−6 0.75 −5.49×10−3 0.01 4.75 × 10−3 2.77 × 10−6 4.65 × 10−4

2.70 × 10−5 1.00 × 10−5 0.75 −5.27×10−3 0.01 5.27 × 10−3 3.54 × 10−6 4.72 × 10−4

2.70 × 10−5 5.00 × 10−5 0.75 −4.36×10−3 0.01 5.76 × 10−3 5.75 × 10−6 4.62 × 10−4

2.70 × 10−5 1.00 × 10−4 0.75 −3.99×10−3 9.93 × 10−3 5.93 × 10−3 8.82 × 10−6 4.51 × 10−4

2.70 × 10−5 1.00 × 10−3 0.75 −1.50 ×10−3 9.41 × 10−3 7.89 × 10−3 1.97 × 10−5 4.75 × 10−4

2.70 × 10−5 5.00 × 10−3 0.75 −8.17×10−4 0.01 9.22 × 10−3 2.49 × 10−5 4.54 × 10−4

2.70 × 10−5 0.01 0.75 −7.58×10−4 0.01 0.01 2.29 × 10−5 3.95 × 10−4

2.70 × 10−5 0.05 0.75 −4.36×10−4 0.01 0.01 2.09 × 10−5 3.22 × 10−4

(D) 2.70 × 10−5 0.10 0.75 −2.10 ×10−4 0.01 0.01 1.75 × 10−5 3.08 × 10−4

2.70 × 10−5 1.00 × 10−4 0 1.23 ×10−3 0.01 4.22 × 10−3 7.40 × 10−3 4.66 × 10−4

2.70 × 10−5 1.00 × 10−4 3.00 × 10−4 −7.27×10−5 0.01 4.84 × 10−3 5.49 × 10−3 4.55 × 10−4

2.70 × 10−5 1.00 × 10−4 1.50 × 10−3 −2.02×10−3 0.01 5.57 × 10−3 2.75 × 10−3 4.84 × 10−4

2.70 × 10−5 1.00 × 10−4 3.00 × 10−3 −2.78×10−3 0.01 5.66 × 10−3 1.67 × 10−3 4.85 × 10−4

2.70 × 10−5 1.00 × 10−4 7.50 × 10−3 −3.31×10−3 0.01 5.96 × 10−3 7.45 × 10−4 4.60 × 10−4

2.70 × 10−5 1.00 × 10−4 0.02 −3.63×10−3 0.01 6.33 × 10−3 3.88 × 10−4 4.51 × 10−4

2.70 × 10−5 1.00 × 10−4 0.03 −3.62×10−3 0.01 6.19 × 10−3 1.93 × 10−4 4.53 × 10−4

2.70 × 10−5 1.00 × 10−4 0.05 −3.80 ×10−3 0.01 6.08 × 10−3 1.20 × 10−4 5.01 × 10−4

2.70 × 10−5 1.00 × 10−4 0.07 −3.77×10−3 9.87 × 10−3 6.01 × 10−3 8.23 × 10−5 4.57 × 10−4

2.70 × 10−5 1.00 × 10−4 0.15 −3.90 ×10−3 0.01 6.21 × 10−3 4.16 × 10−5 4.70 × 10−4

2.70 × 10−5 1.00 × 10−4 0.30 −3.89×10−3 0.01 6.29 × 10−3 2.06 × 10−5 4.20 × 10−4

2.70 × 10−5 1.00 × 10−4 0.45 −3.75×10−3 9.99 × 10−3 6.24 × 10−3 1.30 × 10−5 4.78 × 10−4

2.70 × 10−5 1.00 × 10−4 0.60 −3.91×10−3 0.01 6.34 × 10−3 1.03 × 10−5 4.35 × 10−4

9.00 × 10−6 1.00 × 10−4 3.00 × 10−3 −2.34×10−3 5.97 × 10−3 2.54 × 10−3 1.09 × 10−3 3.75 × 10−4

1.35 × 10−5 1.00 × 10−4 3.00 × 10−3 −2.63×10−3 7.72 × 10−3 3.79 × 10−3 1.29 × 10−3 4.13 × 10−4

1.80 × 10−5 1.00 × 10−4 3.00 × 10−3 −2.80 ×10−3 8.88 × 10−3 4.67 × 10−3 1.41 × 10−3 4.32 × 10−4

2.25 × 10−5 1.00 × 10−4 3.00 × 10−3 −2.75×10−3 9.58 × 10−3 5.31 × 10−3 1.52 × 10−3 4.55 × 10−4

(A) 2.70 × 10−5 1.00 × 10−4 0 −5.68×10−5 0.01 4.14 × 10−3 6.41 × 10−3 4.82 × 10−4

2.25 × 10−5 1.00 × 10−4 0 −1.55×10−4 9.95 × 10−3 3.91 × 10−3 5.88 × 10−3 4.79 × 10−4

1.80 × 10−5 1.00 × 10−4 0 −1.78×10−4 8.91 × 10−3 3.29 × 10−3 5.45 × 10−3 4.65 × 10−4

1.35 × 10−5 1.00 × 10−4 0 −2.10 ×10−4 7.67 × 10−3 2.77 × 10−3 4.69 × 10−3 4.36 × 10−4

9.00 × 10−6 1.00 × 10−4 0 −2.67×10−4 6.03 × 10−3 1.93 × 10−3 3.84 × 10−3 3.84 × 10−4

6.30 × 10−5 1.00 × 10−4 0 1.50 ×10−3 8.39 × 10−3 3.11 × 10−3 6.78 × 10−3 6.21 × 10−4

7.20 × 10−5 1.00 × 10−4 0 1.96 ×10−3 5.95 × 10−3 1.95 × 10−3 5.95 × 10−3 6.97 × 10−4

2.70 × 10−5 1.00 × 10−4 0.75 −4.14×10−3 0.01 6.22 × 10−3 7.45 × 10−6 4.57 × 10−4

2.70 × 10−5 1.00 × 10−4 0.75 −4.25×10−3 9.95 × 10−3 5.69 × 10−3 7.97 × 10−6 4.88 × 10−4

2.70 × 10−5 1.00 × 10−4 0.75 −4.33×10−3 0.01 5.78 × 10−3 7.22 × 10−6 4.76 × 10−4

2.70 × 10−5 1.00 × 10−4 0.75 −4.36×10−3 0.01 5.69 × 10−3 7.31 × 10−6 4.79 × 10−4

(C) 2.70 × 10−5 1.00 × 10−4 0.75 −4.40 ×10−3 0.01 5.94 × 10−3 6.91 × 10−6 4.76 × 10−4

2.70 × 10−5 1.00 × 10−4 0.75 −4.40 ×10−3 0.01 5.88 × 10−3 6.48 × 10−6 4.68 × 10−4

(B) 2.70 × 10−5 1.00 × 10−8 0.75 −5.92×10−3 0.01 4.72 × 10−3 4.93 × 10−7 4.59 × 10−4
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Table 2
Parameters of the numerical simulations with E = Eκ = 1 × 10−5.

Eη RaF � ζ D Cf Cicb S B2
ri

B2
ro

AD
AD+NAD NR Lmax

4.00 × 10−6 3.00 × 10−6 1.00 × 10−4 0 2.06× 10−5 3.50 × 10−3 1.72 × 10−3 1.80 × 10−3 2.34 × 10−4 7.07 × 10−6 0.70 240 133
6.67 × 10−6 9.00 × 10−6 1.00 × 10−4 0 −2.59× 10−4 7.47 × 10−3 3.42 × 10−3 3.80 × 10−3 2.24 × 10−4 4.71 × 10−6 0.64 240 170
6.67 × 10−6 2.00 × 10−5 1.00 × 10−4 0 7.47 × 10−4 7.69 × 10−3 3.89 × 10−3 4.55 × 10−3 2.19 × 10−4 2.69 × 10−6 0.45 240 170
Fig. 1. Rotational state of our system. Black arrowed lines define rotation rates: �m

is the angular velocity of the solid mantle, �fcmb (resp. �ficb) is the rotation rate of 
the fluid outer core in the vicinity of the CMB (resp. the ICB), and �ic is the angular 
velocity of the solid inner core. Dashed lines represent the various time-average 
shears: D is the long-term westward drift (Eq. (31)), S is the long-term inner core 
differential rotation (Eq. (32)), Cf is the long-term shear available in the fluid outer 
core (Eq. (33)), and Cicb denotes the long-term shear at the ICB (Eq. (30)). Green 
lines indicate torques. �CMB (resp. �ICB) is the electromagnetic torque at the CMB 
(resp. the ICB), and �G is the gravitational torque exerted by the mantle on the 
inner core. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

at the ICB, Cicb, and in the fluid, Cf . This enables the formulation 
of the following dimensional model of the electromagnetic torque 
acting on the inner core,

〈�ICB〉 	 K2σcr5
i B2

ri
(Cicb − αCf) (37)

with α representing the relative amplitude between the two con-
tributions and K2 another numerical constant to be determined 
(see section 3.3). The dimensionless form of this model is then

〈�ICB〉 	 K2

Eη
r5

i B2
ri

(Cicb − αCf) . (38)

Equation (38) reflects that in a situation where there is no restor-
ing torque to balance 〈�ICB〉, so that 〈�ICB〉 = 0, the local and re-
mote contributions to the electromagnetic torque cancel and

α = Cicb

Cf
. (39)

Finally, the time-average dimensionless gravitational torque ex-
erted on the inner core is directly proportional to the long-term 
inner core super-rotation (Eq. (32)),

〈�G〉 = −Sζ. (40)

Assuming that the laws described by equations (36) and (38)
hold in numerical models of the geodynamo (see section 3.3 below 
for a detailed analysis), the long-term conservation of the angular 
momentum of the mantle and inner core (Eqs. (26), (27)) now be-
come

0 = ζS + K1

E
r4

o B2
ro

�D, and (41)

η

0 = −ζS + K2

Eη
r5

i B2
ri

(Cicb − αCf) , respectively. (42)

Equation (41) can lead to a first statement of the inner core super-
rotation. We have

S = − 1

ε1
D, with (43)

ε1 = ζ Eη

K1r4
o B2

ro�
. (44)

Another expression of S can be obtained using the ICB torque bal-
ance (42):

S = 1

ε2
(Cicb − αCf) , with (45)

ε2 = ζ Eη

K2r5
i B2

ri

. (46)

The meaning of the two parameters ε1 and ε2 is the following: ε1
is the ratio between the gravitational and the electromagnetic cou-
pling strength exerted on the mantle, and ε2 describes the same 
ratio applied to the inner core. We re-express equations (43) and 
(45) using the global convective shear Cf as a control parameter. 
Then, from the decomposition of equation (34) we can express the 
westward drift and the inner core super-rotation as

D = −ε1 (1 − α)Cf

1 + ε1 + ε2
, and (47)

S = (1 − α)Cf

1 + ε1 + ε2
. (48)

Finally, we can formulate the link between S and D through an 
equation describing the repartition of the total shear of the sys-
tem:

S −D = (1 − α)Cf
1 + ε1

1 + ε1 + ε2
. (49)

Recall that the validity of this model will be checked against nu-
merical simulations in section 3, where we will determine the 
values of the numerical constants K1, K2, and α.

2.4. Thermal wind scaling of the convective shear Cf

Equations (47)–(49) suggest that the strengths of both S and 
D are controlled by the state of coupling (i.e. ε1 and ε2), and by 
Cf , the mean shear in the fluid outer core. This shear is a con-
trol parameter because it should only depend on the vigor of the 
convection, embodied by the Rayleigh number RaF (Eq. (25)). This 
assumption stems from the thermal wind balance between Cori-
olis, buoyancy and pressure forces. Considered inside the tangent 
cylinder, this balance is thought to control the average inner core 
super-rotation (Aurnou et al., 1996, 1998) and more generally the 
convective shear Cf . Taking [∇ × (5)] ·eϕ , the thermal wind steady-
state azimuthal velocity obeys

∂uϕ

∂z
= g

2rρ�

∂C

∂θ
, (50)

in dimensional form. Introducing a typical velocity U 	 Cf D , a typ-
ical advective co-density perturbation can then be evaluated as 
C 	 F/4π D2U . Dimensional analysis of equation (50) then yields
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Fig. 2. Meridional sections of the time and longitude-averaged azimuthal velocity Vϕ (top-panel) and the azimuthal magnetic field Bϕ (bottom-panel) of the numerical 
simulations highlighted in Table 1 (rows A, B, C and D). Black lines represent the axisymmetric poloidal magnetic field lines. The WD acronym stands for Westward Drift.
C2
f 	 1

2θ

g F

4πρ�D4
. (51)

Using the tangent cylinder angle θ = 0.36 rad, this gives in dimen-
sionless form

Cf 	 1.2Ra
1
2
F , (52)

the classical thermal wind scaling (Aurnou et al., 2003; Aubert, 
2005), the validity of which will be examined in section 3.2.

3. Results

We analyze now the long-term rotational state of our set of 45 
simulations (see Tables 1 and 2), and in particular the influence of 
the two control parameters � and ζ . In order to obtain a satisfying 
parameters survey and end-member cases, we first present the re-
sults of numerical simulations with � varying from 10−8 to 10−1, 
corresponding to a lower mantle conductance up to one order of 
magnitude below the fluid core conductance, and simulations with 
ζ varying from 0 to 0.75, this last value being sufficient to lock the 
whole system by gravitational coupling (Aubert et al., 2013).
3.1. Typical long-term state of differential rotations

The purpose of this section is to examine the behavior of our 
system, in terms of the intensity and geometry of both the field 
and flow. We first focus on four typical cases presented in Fig. 2. 
Fig. 2 (top-panel) shows the long-term patterns of the average 
azimuthal velocities which shear the ambient meridional mag-
netic field lines to produce the azimuthal field presented in Fig. 2
(bottom-panel). At both the ICB and the CMB, this interaction is 
the source of electromagnetic torques. The long-term rotational 
state (D, S, Cicb, Cf) corresponding to cases A, B, C and D pre-
sented in Fig. 2 is further detailed in Fig. 3. In case A (Fig. 2), the 
gravitational coupling between the inner core and the mantle is 
set to zero. Thus, the inner core is free to rotate and the inner core 
super-rotation is at its peak (see Fig. 3b). Moreover, the westward 
drift of fluid close to the CMB is small. For the other cases B, C 
and D (Fig. 2), the gravitational coupling is comparable to core in-
ertia and the inner core rotation is braked such that, on average, 
S is almost zero (see Fig. 3a). We can thus focus on the influence 
of the lower mantle conductivity. Case B has a strong westward 
drift since the lower mantle conductance is almost insignificant 
(� � 1). As � is increased, the westward drift is significantly low-
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Fig. 3. Time-average differential rotations Cicb, D, S and Cf (see Eqs. (30), (31), (32), (33)) as functions of the mantle conductance � (with ζ = 0.75) (a) and the gravitational 
coupling strength ζ (with � = 10−4) (b), in a set of numerical simulations where RaF = 3 ×104, E = 3 ×10−5 and Eη = 1.2 ×10−5. Labels A, B, C and D refer to simulations 
of Fig. 2 (see also Table 1).
ered (case C), down to a point where the fluid close to the CMB is 
completely locked to the mantle through electromagnetic coupling 
(case D). The increase of � also triggers an increase of the shear 
close to the ICB, mostly occurring in the tangent cylinder. Finally, 
comparing cases A and C, we can already envision a link between 
S and D. As a matter of fact, for the same lower mantle conduc-
tance, a change in the mean differential rotation of the inner core 
caused by a variation of the gravitational torque also induces a pro-
nounced change in the azimuthal velocity of the fluid close to the 
CMB. This is achieved while preserving the thermal wind shear be-
tween the CMB and the ICB within the tangent cylinder (see shear 
patterns in Fig. 2, top-panel, and the stability of Cf in Fig. 3a, b).

The systematic impact of the mantle conductance � and the 
gravitational coupling strength ζ is further explored in Fig. 3. 
Fig. 3a presents the results of the time-average characteristic ro-
tation rates of our system, in a situation where the inner core 
and the mantle are strongly gravitationally coupled. In that case, 
the inner core is indeed completely locked to the mantle, so that 
S is vanishingly small. At low values of mantle conductance, the 
fluid below the CMB reaches its peak westward rotation rate (D is 
maximum), whereas the fluid close to the ICB is rotating east-
ward (Cicb > 0). For increasing values of mantle conductance, the 
strength of the electromagnetic coupling between the mantle and 
the fluid core increases as well. This results in a decrease of D, as 
the fluid close to the CMB tends to be more and more locked to 
the mantle, as observed already in Fig. 2. Remarkably, the shear Cf
in the whole fluid core is confirmed to be roughly constant, over 
a wide range of mantle conductance. A decreasing D is thus ac-
companied by an increasing eastward rotation of the fluid close 
to the ICB, and therefore a higher local shear Cicb, since the in-
ner core differential rotation rate S remains close to zero. Fig. 3b 
displays the effects of the strength of gravitational coupling be-
tween the mantle and the inner core, on the rotational dynamics 
of the system. At low ζ , the inner core is free to rotate. It is there-
fore entrained in a substantial eastward rotation by the fluid close 
to the ICB, through electromagnetic coupling. As ζ is increased, 
the inner core rotation is progressively braked until a situation of 
gravitational locking with the mantle, so that S almost vanishes 
(Fig. 3b). Just as previously (Fig. 3a), the shear in the fluid Cf re-
mains constant. As a consequence, the increase of the shear at the 
ICB, triggered by the braking of the inner core super-rotation, is 
balanced by an increase of the westward motion of the fluid close 
to the CMB. The key observation in Figs. 2 and 3 is the stability 
of the global shear Cf available in the fluid core. Consequently, any 
modification of a physical control parameter or directly of fluid 
flow close to the CMB directly impacts the fluid close to the ICB 
and the inner core axial rotation rate. This observation is thus cru-
cial to formulate the link between S and D (Eqs. (47)–(49)), and 
their respective dependency on the global convective shear Cf .

3.2. Thermal wind scaling of Cf

We have seen that Cf is largely independent on the state of 
coupling at the boundaries. The leading control of the convection 
vigor on Cf (Eq. (52)) is now tested against our numerical dataset 
in Fig. 4. Equation (52) is found to be valid at low values of RaF

with a prefactor rather close to the theoretical value of 1.2,

Cf = 2.01Ra
1
2
F . (53)

The thermal wind scaling is expected to no longer hold at high 
values of RaF because inertia starts to disrupt the force balance. 
In our numerical simulations, this occurs rather quickly, due to 
the modest values of the Ekman number, leading to high Rossby 
numbers, at which our simulations are calculated. Lower Ekman 
numbers should presumably allow for more inertia before the ther-
mal wind balance is disrupted, thus extending the range of validity 
of equation (52).

3.3. Long-term electromagnetic torques

We next turn to the analysis of the CMB electromagnetic torque 
〈�CMB〉. In Fig. 5, we verify first that the linear relationship sug-
gested by equation (36) is valid in the range 0 < � < 3.07 × 10−4, 
with K1 = 2.3, determined by least-squares regression. For values 
of � beyond �c, we observe a saturation of the electromagnetic 
torque. This is due to the fact that this torque, as defined by equa-
tion (36), is necessarily limited in a self-sustained, power-limited 
dynamo where the magnetic field strength itself is bounded. For 
� > �c also, the saturation of the CMB electromagnetic torque 
then implies a decreasing amplitude for the westward drift D. 
From here, we thus exclude these numerical simulations for which 
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Fig. 4. Numerical verification of the thermal wind scaling for the available time-
average convective shear, Cf (see Eq. (52) and text for details), based on 38 simu-
lations of our suite of models (the remaining 7 are redundant and were used for 
benchmarking. See appendix A.1).

Fig. 5. Sensitivity of the opposite of the time-average electromagnetic torque of the 
mantle, 〈�CMB〉, with respect to its control parameters ro, B2

ro
, � and D. Same set 

of numerical simulations as Fig. 3a. The blue line represents a linear trend (unit 
slope). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

� > �c, as they also reflect unrealistic geophysical situations (see 
section 4). Equation (36) is then further validated in Fig. 6, where 
we present the evolution of the electromagnetic torque exerted on 
the mantle for a larger subset of numerical runs verifying � < �c. 
Based on the study of Holme (1998), the value of K1 estimated 
by Dumberry (2007) was 1.3. Though our value of 2.3 is a bit 
higher, it is still of order one thus validating the theoretical model 
of Dumberry (2007).

For the electromagnetic torque at the ICB, 〈�ICB〉, we seek to 
prove the consistency of equation (38). This scaling law involves 
the parameter α, representing the ratio between the local and re-
mote contributions of the fluid on 〈�ICB〉. This parameter can be 
Fig. 6. Numerical verification of the scaling law for the time average electromagnetic 
torque at the CMB, 〈�CMB〉, (see Eq. (36) and text for details) for the 33 simulations 
where � < �c . Uncertainties as defined in Appendix A.1.

Fig. 7. Parameter dependence of the ratio α between local and remote shear in-
fluencing the time average electromagnetic torque at the ICB, 〈�ICB〉, as defined in 
equation (38), in the 10 simulations without gravitational coupling (see Tables 1
and 2). The blue dashed-line marks the value obtained by Dumberry (2007), the 
black line represents the mean of our 10 numerical estimates. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

evaluated in numerical simulations where 〈�ICB〉 must vanish on 
average, i.e. in simulations without gravitational coupling between 
the inner core and the mantle, 〈�G〉 = 0. In Fig. 7 we find that α is 
roughly constant and evolves between 0.32 and 0.55, with an av-
erage at 0.4. This is slightly higher than the value 0.22 obtained by 
Dumberry (2007), in an idealized configuration. Finally, in a situa-
tion where gravitational coupling is present, we have seen (Fig. 3b) 
that Cicb increases while α and Cf remain stable. This should pro-
duce a linear trend in 〈�ICB〉, which we indeed observe in Fig. 8. 
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Fig. 8. Numerical verification of the scaling law for the time average electromagnetic 
torque at the ICB, 〈�ICB〉, (see Eq. (38) and text for details) for the 33 simulations 
where � < �c . Uncertainties as defined in Appendix A.1.

Using a least-squares fitting, we obtain K2 = 1.1 × 10−3, much 
smaller than the O(1) value of Dumberry (2007). We notice here 
the difference in behavior between a self-sustained dynamo min-
imizing the magnetic interactions between field and flow (Aubert, 
2005), and a forced system where these interactions are maximum. 
This difference is best seen if we compare the poloidal magnetic 
field lines of an idealized model (Figs. A1 and A2 in Dumberry, 
2007) with those in the tangent cylinder in Fig. 2. It is obvious that 
in the latter case, the field lines have adjusted to the azimuthal 
flow contours in order to minimize the interaction according to 
the Ferraro effect (Ferraro, 1937) while they are configured for 
a maximum interaction in the former case. This feedback, lead-
ing to a small value of K2, could not exist in the framework of 
Dumberry (2007) and explains the quantitative differences in our 
results.
3.4. Link between S and D

Fig. 9 shows the agreement of our theoretical laws (47) and 
(48) with numerical simulations. The contours of the predicted 
westward drift and inner core super-rotation are represented as 
functions of ε1 (Eq. (44)) and ε2 (Eq. (46)). We show here that 
the amount of shear in the fluid core which is effectively shared 
between D and S is (1 − α)Cf . The arrows on the bottom left 
corners of Figs. 9a and 9b point towards the numerical simula-
tions with no gravitational coupling (ζ = 0), such that ε1 
→ 0 and 
ε2 
→ 0. In this situation, the whole effective shear available is lo-
cated at the ICB, so that S is at its peak and D equals zero. For 
strong values of both the gravitational coupling and mantle con-
ductance, ε1 
→ 0 and ε2 
→ ∞, bottom right corners, the shear 
is located at the ICB, but the inner core is locked to the mantle. 
In that case, both S and D vanish. In order to obtain a strong 
westward drift, the inner core must be gravitationally braked and 
the mantle conductance must remain bounded (top left corners in 
Fig. 9a, b). Finally, these figures underline two major conclusions 
on the behavior of the rotational dynamics of the set of coupled 
Earth dynamos envisaged for this study. First, as the effective shear 
in the fluid core is a constant, there is a clear link between the 
geomagnetic westward drift and the inner core super-rotation. Sec-
ond, the transition between the regimes of strong S / vanishing D
and strong D / vanishing S appears to be rather sharp, as it occurs 
over two orders of magnitude of the control parameters ε1 and ε2. 
As a consequence, a reasonable assumption is to consider that the 
available shear in the fluid core of the Earth is either in the inner 
core super-rotation or in the westward drift, but not distributed 
among the two. This also suggests that estimates of D and S for 
the Earth are likely to place tight constraints on the values of ε1
and ε2, and consequently on the geophysical parameters entering 
their definition (see the discussion below).

4. Discussion

Our suite of numerical simulations stresses the tight link be-
tween the inner core super-rotation S and the geomagnetic west-
ward drift D, as components of the long-term rotational dynamics 
in the Earth’s core. While we rely on the theoretical approach of 
Dumberry (2007) to understand our results, in particular in order 
Fig. 9. Contours of the predicted westward drift D (a) and inner core super-rotation S (b) determined from equations (47) and (48). Comparison with the magnitude of D
and S (colored circles) in our 27 numerical simulations with � < �c and RaF = 2.7 × 10−4 (see Tables 1 and 2). Arrows point towards simulations with no gravitational 
coupling, i.e. ζ = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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to analyze the long-term electromagnetic torques at work at the 
CMB and at the ICB, it is noteworthy that the extensive numeri-
cal study we carried out sheds new light on several aspects of the 
long-term rotational dynamics of the fluid outer core. First, we de-
termined the phase diagrams for S and D (Fig. 9), together with 
their dependency on the convective forcing (Eq. (49)), through the 
convective shear Cf which is distributed among these two quanti-
ties. In contrast, the geomagnetic westward drift is considered as 
a given input in the study of Dumberry (2007). Second, the fact 
that the models (Eqs. (36), (38)) provide a satisfactory description 
of the electromagnetic torques at the fluid outer core boundaries, 
while only involving spherical rotation rates, needed a validation 
that we provide here. Finally, the very observation of the Ferraro 
effect diminishing the value of K2 in equation (38) arises from a 
validation in self-consistent numerical simulations of the geody-
namo, and could not be expected in Dumberry (2007). All these 
elements now give us confidence in applying our results to the 
Earth’s core. The first quantity we wish to estimate is the convec-
tive shear Cf given by equation (53), which we now present in the 
dimensional form,

Cf = 2.01�Ra
1
2
F . (54)

The flux Rayleigh number RaF defined in equation (25) may 
also be expressed as a function of the convective dynamo power 
(Aubert et al., 2009) through

RaF = 1

γ

p

ρ�3 D2 V
. (55)

Here V is the core volume and γ the conversion fraction (Eq. (18) 
in Aubert et al., 2009) between power p and mass anomaly flux F . 
We use ρ = 11 000 kg m−3 and � = 7.29 × 10−5 rad s−1 and en-
vision a situation where the geodynamo is entirely chemically-
driven, meaning a bottom-driven convection with γ = 0.33 (Aubert 
et al., 2009). The heat flux at the core mantle boundary Q CMB
is assumed to match the adiabatic value of 15 TW (Pozzo et al., 
2012), so that the dynamo power is then p = εQ CMB with ε = 0.2
being the combined efficiency of chemical convection and latent 
heat release at the ICB. This finally yields RaF = 2.5 × 10−12 and 
thus Cf = 0.42◦ yr−1. Using our mean value of α = 0.4 (Fig. 7), 
we show here that the available shear distributed into S and D is 
then (1 − α)Cf = 0.25◦ yr−1. Remarkably, this is close to the mean 
value of the geomagnetic westward drift of 0.28◦ yr−1 in the At-
lantic hemisphere over the last 400 yrs estimated by Finlay and 
Jackson (2003). This strongly suggests that a significant part, if not 
the whole shear available is currently in the geomagnetic west-
ward drift, leaving the long-term inner core super-rotation close 
to 0, as inferred by seismological studies (see e.g. Souriau and Cal-
vet, 2015, for a recent review of these).

In oder to have a second estimate of the proportion of the con-
vective shear available for S or D, we need to assess the values of 
ε1 and ε2 for the Earth. The dimensional form of ε1 and ε2 pro-
vides an overview of the geophysical parameters we have to take 
into account,

ε1 = �τ

K1 B2
ro�σmr4

o
, (56)

ε2 = �τ

K2 B2
ri
σcr5

i

. (57)

In our estimates, we use ri = 1220 km, ro = 3480 km, Bro =
0.4 mT, and the values of K1 and K2 found in section 3.3 (K1 =
2.3, K2 = 1.1 × 10−3). Our simulations (Tables 1 and 2) for geo-
physically realistic values of the mantle conductance consistently 
exhibit a ratio Br /Bro ∼ 7; so we thus set the r.m.s magnetic field 
i
at the inner core boundary to Bri = 2.8 mT, in agreement with in-
ferences of the magnetic field strength inside the core (Gillet et al., 
2010). We also adopt the range 3 × 1019 N m < � < 2 × 1020 N m
proposed by Davies et al. (2014) for the parameter �, relative 
to the mantle heterogeneities at the source of the gravitational 
torque. The core conductivity σc is set to 1.5 ×106 S m−1 according 
to Pozzo et al. (2012).

The major uncertainties to assess ε1 and ε2 then lie in the 
lower mantle conductance, �σm, and the viscous deformation time 
of the inner core, τ . Based on the observed out-of-phase compo-
nent of the forced nutations of the Earth, Buffett (1992) inferred a 
lower mantle conductance of 108S. This value is often considered 
as a minimum to ensure a sufficiently strong direct electromag-
netic coupling to couple the core and the mantle. Buffett (1992)
proposed the existence of a thin layer at the base of the man-
tle, about 200 meters thick, with the same conductivity as that 
of the core. From a mineral physics point a view, this high con-
ductive layer may be composed of FeO, whose conductivity was 
estimated as close to σc by Ohta et al. (2012). Another way to ob-
tain a reasonably conducting lower mantle is to consider a thicker 
layer (200–300 km) of (Mg, Fe)SiO3 post-perovskite, which may 
have an electrical conductivity greater than 102 S m−1 (Ohta et al., 
2008). This would lead to a conductance larger than 2 × 107 S. 
The mantle conductance is also bound on the upper side by the 
observation of high frequencies in the core magnetic signal, con-
straining �σm to be lower than 2.5 × 109 S (Dumberry, 2007). 
We thus adopt a range of 2 × 107 S < �σm < 2.5 × 109 S. Note 
that this range mostly lies below the limit value �cσc D = 109 S
previously introduced in Fig. 5, meaning that our scaling laws are 
valid. Finally, we constrain τ using the recent mineral physics ex-
periments of Gleason and Mao (2013) who reported an inner core 
viscosity range of 1015–1018 Pa s, corresponding to τ = 0.02 yr
and τ = 20 yr (Buffett, 1997). Considering all uncertainties on the 
geophysical parameters mentioned above, we obtain the following 
ranges of foreseeable values for ε1 and ε2,

1.4 × 10−4 ≤ ε1 ≤ 1.1 × 102, (58)

5.4 × 10−4 ≤ ε2 ≤ 3.6. (59)

This indicates that our current knowledge of deep Earth phys-
ical parameters does not strongly constrain the partitioning of 
(1 − α)Cf into S and D. However, for �σc of order 108 S, we may 
re-express our results in order to formulate a condition on the in-
ner core viscous relaxation time for dominant westward drift. With 
the previously used value of the other geophysical parameters this 
gives ε1 ≈ ε2, and the condition for a dominant westward drift 
according to Fig. 9 is then ε1 > 1 or ε2 > 1. This in turn yields 
τ > 4 yr, meaning that the inner core must be moderately stiff, 
having a viscosity larger than 2 × 1017 Pa s.

Note finally that in the case ε1 ≈ ε2, the magnitude of the shear 
that can be distributed into S and D is (1 − α)Cf

1+ε1
1+2ε1

, mean-

ing that only (1 − α)Cf/2 = 0.13◦ yr−1 is available if τ > 4 yr
(with ε1 = ε2 � O(1)). The drift so available is axisymmetric. 
In order to match the westward drift of 0.28◦ yr−1 at low lati-
tude in the Atlantic hemisphere estimated by Finlay and Jackson
(2003) from historical records, an additional mechanism has to 
be invoked that can increase the drift rate in the Atlantic hemi-
sphere at the expense of its Pacific counterpart. A geophysically 
sound possibility is that of heterogeneous buoyancy fluxes at the 
CMB and ICB, as advocated by Aubert et al. (2013). A hemispher-
ical differential buoyancy release of spherical harmonic degree 1
and order 1 at the ICB can indeed generate a concentration of 
the drift in the Atlantic hemisphere for several centuries, lead-
ing to drift rates of about 0.23◦ yr−1 (14 km yr−1) in this re-
gion, and a very weak drift in the Pacific hemisphere. An alter-
native to this mechanism is that of slow magnetic waves riding 
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Fig. 10. Total torque balance eM of statistically converged simulations as a function 
of the number of radial grid points NR in the fluid shell.

on top of the mean westward flow (see e.g. Hori et al., 2015). 
For the sake of consistency, the waves so envisioned should then 
be able to account for the hemispherical dichotomy of the west-
ward drift deduced from historical records, while yielding drift 
rates of the order of 0.1◦ yr−1 to 0.2◦ yr−1 near the equa-
tor.
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Appendix A

A.1. Assessment of numerical uncertainties on torques

Each error bar pictured in Figs. 6 and 8 reflects the truncation 
error due to the numerical approximation of the model. In order to 
make our systematic analysis numerically tractable, we indeed had 
to use a moderate resolution (Tables 1 and 2). This error manifests 
itself in the long-term magnitudes of the torques. An estimate of 
the magnitude of this error is provided by the quantity

eM = ‖〈�CMB > + < �ICB〉‖. (60)

The error eM should ideally vanish (Eq. (13)) and indeed converges 
towards 0 at a rate consistent with a second-order finite difference 
scheme in radius, when the radial resolution NR is increased (see 
Fig. 10).

References

Aubert, J., 2005. Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 
(ISSN 0022-1120) 542, 53–67. http://dx.doi.org/10.1017/S0022112005006129.
Aubert, J., Aurnou, J., Wicht, J., 2008. The magnetic structure of convection-driven 
numerical dynamos. Geophys. J. Int. 172, 945–956. http://dx.doi.org/10.1111/
j.1365-246X.2007.03693.x.

Aubert, Julien, Dumberry, Mathieu, 2011. Steady and fluctuating inner core rota-
tion in numerical geodynamo models. Geophys. J. Int. (ISSN 0956-540X) 184 
(1), 162–170. http://dx.doi.org/10.1111/j.1365-246X.2010.04842.x.

Aubert, Julien, Labrosse, Stephane, Poitou, Charles, 2009. Modelling the palaeo-
evolution of the geodynamo. Geophys. J. Int. (ISSN 0956-540X) 179 (3), 
1414–1428. http://dx.doi.org/10.1111/j.1365-246X.2009.04361.x.

Aubert, Julien, Finlay, Christopher C., Fournier, Alexandre, 2013. Bottom-up con-
trol of geomagnetic secular variation by the Earth’s inner core. Nature 
(ISSN 0028-0836) 502 (7470), 219. http://dx.doi.org/10.1038/nature12574.

Aurnou, J., Brito, D., Olson, P., 1998. Anomalous rotation of the inner core and the 
toroidal magnetic field. J. Geophys. Res. (ISSN 2169-9313) 103 (B5), 9721–9738. 
http://dx.doi.org/10.1029/97JB03618.

Aurnou, J.M., Brito, D., Olson, P.L., 1996. Mechanics of inner core super-rotation. Geo-
phys. Res. Lett. (ISSN 0094-8276) 23 (23), 3401–3404. http://dx.doi.org/10.1029/
96GL03258.

Aurnou, Jonathan, Andreadis, Steven, Zhu, Lixin, Olson, Peter, 2003. Experiments 
on convection in earth’s core tangent cylinder. Earth Planet. Sci. Lett. 212 (1), 
119–134.

Braginsky, S.I., Roberts, P.H., 1995. Equations governing convection in earth’s core 
and the geodynamo. Geophys. Astrophys. Fluid Dyn. (ISSN 0309-1929) 79 (1–4), 
1–97. http://dx.doi.org/10.1080/03091929508228992.

Buffett, B.A., 1992. Constraints on magnetic energy and mantle conductivity from 
the forced nutations of the earth. J. Geophys. Res. (ISSN 0148-0227) 97 (B13), 
19581–19597. http://dx.doi.org/10.1029/92JB00977.

Buffett, B.A., 1996. Gravitational oscillations in the length of day. Geophys. Res. Lett. 
(ISSN 0094-8276) 23 (17), 2279–2282. http://dx.doi.org/10.1029/96GL02083.

Buffett, B.A., 1997. Geodynamic estimates of the viscosity of the Earth’s inner core. 
Nature (ISSN 0028-0836) 388 (6642), 571–573.

Buffett, B.A., Christensen, U.R., 2007. Magnetic and viscous coupling at the core–
mantle boundary: inferences from observations of the Earth’s nutations. Geo-
phys. J. Int. (ISSN 0956-540X) 171 (1), 145–152. http://dx.doi.org/10.1111/
j.1365-246X.2007.03543.x.

Buffett, B.A., Glatzmaier, G.A., 2000. Gravitational braking of inner-core ro-
tation in geodynamo simulations. Geophys. Res. Lett. 27, 3125–3128. 
http://dx.doi.org/10.1029/2000GL011705.

Buffett, B.A., Mathews, P.M., Herring, T.A., 2002. Modeling of nutation 
and precession: effects of electromagnetic coupling. J. Geophys. Res. B 
(ISSN 2169-9313) 107 (B4). http://dx.doi.org/10.1029/2000JB000056.

Christensen, U.R., Aubert, J., 2006. Scaling properties of convection-driven dy-
namos in rotating spherical shells and application to planetary magnetic fields. 
Geophys. J. Int. (ISSN 0956-540X) 166 (1), 97–114. http://dx.doi.org/10.1111/
j.1365-246X.2006.03009.x.

Christensen, U.R., Olson, P., 2003. Secular variation in numerical geody-
namo models with lateral variations of boundary heat flow. Phys. Earth 
Planet. Inter. (ISSN 0031-9201) 138 (1), 39–54. http://dx.doi.org/10.1016/
S0031-9201(03)00064-5.

Christensen, Ulrich R., Aubert, Julien, Hulot, Gauthier, 2010. Conditions for Earth-
like geodynamo models. Earth Planet. Sci. Lett. (ISSN 0012-821X) 296 (3–4), 
487–496. http://dx.doi.org/10.1016/j.epsl.2010.06.009.

Civet, F., Thebault, E., Verhoeven, O., Langlais, B., Saturnino, D., 2015. Electrical con-
ductivity of the Earth’s mantle from the first Swarm magnetic field measure-
ments. Geophys. Res. Lett. (ISSN 0094-8276) 42 (9), 3338–3346. http://dx.doi.
org/10.1002/2015GL063397.

Creager, K.C., 1997. Inner core rotation rate from small-scale heterogeneity and 
time-varying travel times. Science (ISSN 0036-8075) 278 (5341), 1284–1288. 
http://dx.doi.org/10.1126/science.278.5341.1284.

Davies, Christopher J., Stegman, D., Dumberry, M., 2014. The strength of gravita-
tional core–mantle coupling. Geophys. Res. Lett. 41. http://dx.doi.org/10.1002/
2014GL059836.

de Koker, Nico, Steinle-Neumann, Gerd, Vlček, Vojtěch, 2012. Electrical resistivity 
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