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Abstract

We have conducted experiments on an asymmetrically forced quasi-two-dimensional turbulent flow in a rapidly rotat-
ing annulus. Assuming conservation of potential enstrophy and energy, we maximize a nonextensive entropy function to
obtain the azimuthally averaged vorticity as a function of radial position. The predicted vorticity profile is in good ac-
cord with the observations. A nonextensive formalism is appropriate because long-range correlations between small-scale
vortices give rise to large coherent structures in the turbulence. We also derive probability distribution functions for the
vorticity from both extensive and nonextensive entropies, and we find that the prediction from nonextensive theory is in
better accord with experiment, especially in the tails of the distribution function. The nonextensive parameterq has the
value 1.9 ± 0.2.
© 2004 Published by Elsevier B.V.
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1. Introduction

Equilibrium statistical mechanics has long been used to describe turbulence[1]. Early work by Onsager pre-
dicted coherent structure formation through consideration of the interactions of point vortices[2]. Later Kraichnan
constructed a statistical theory based on energy and enstrophy conservation[3] and showed that the Euler equation
(for inviscid flow) with truncation below a certain small length scale could describe turbulent flows[4,5]. More
recently, Miller showed that large scale coherent structures could be described by equilibrium statistical mechanics
of the Euler equation through a continuous distribution of microscopic vorticity[6]. These analyses assumed that
the asymptotic behavior depends upon the values of the conserved quantities rather than on the details of initial
structures. Further, the analyses were based on Boltzmann–Gibbs statistics, which only describes weak interactions
and does not capture long-range interactions[7]. Our observations of large coherent vortices in experiments on flow
in a rotating annulus[8–10]lead us to consider a generalization of statistical mechanics that is applicable to systems
with long-range interactions: the nonextensive formalism proposed by Tsallis[11,12].

Probability distribution functions (PDFs) for the velocity increment,δv(r) = 〈v(x+r)−v(x)〉x, have been derived
from nonextensive theory assuming conservation of aneffective energyproportional to(δv)2, and these PDFs have
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been found to describe several turbulent flows[13–16]; however,(δv)2 is not a conserved quantity for the rotating
flows of interest here. Experiments on a plasma of electrons in a strong magnetic field have been interpreted using
both extensive entropy[17] and nonextensive entropy[18] with conservation of energy. These analyses did not
consider Miller’s distinction between the macroscopic and microscopic quantities.

For our laboratory flow, we exploit an additional conservation property that holds for geostrophic flows. A
geostrophic flow is one that is dissipationless and rotates sufficiently fast so that it is two-dimensional, varying only
in the plane perpendicular to the rotation axis[19]. The additional conserved quantity is thepotential enstrophy,
which is defined as[19,20]

Π =
∫ (

ω(�r) + 2Ω

h(r)

)2

d�r, (1)

whereω(�r) is the local vorticity and in our system,Ω the rotation rate of the annulus, andh the height of fluid, which
increases in ther-direction. A sloping bottom in our rotating annulus models the variation of the Coriolis force with
latitude in a real geophysical flow. Flow in our laboratory system is only approximately geostrophic because the
rotation rate is finite rather than infinite and the dissipation is nonzero. However, the rotation rate is large enough
and dissipation effects are small enough so that the flow is strongly two-dimensional (quasi-geostrophic) [9] and
the potential enstrosphy should be nearly conserved. The potential enstrophy is only one of an infinite number of
conserved quantities in a geostrophic flow,

∫
d�rQn (with n an integer), whereQ ≡ (ω + 2Ω)/h is the potential

vorticity; the potential enstrophy corresponds ton = 2. The higher order conserved terms are more dependent on
viscous effects than energy and potential enstrophy terms[21], so we limit our analysis to the two latter conserved
quantities, which are often calledrugged invariants[22–25].

In this paper we use the Euler equation, which neglects viscous dissipation, to obtain predictions of statistical
properties of turbulence that we then compare with our experimental observations. The Euler equation has been
found to describe phenomena in large scale oceanic and atmospheric flows[6,29,30], and should provide a useful
description to flow in our rotating annulus, where dissipation is small, i.e., the spin down time (=

√
h2/4νΩ ≈ 25 s)

is much longer than the typical vortex turnover time (≈2 s).
The paper is organized as follows. InSection 2we briefly describe the nonextensive formalism. InSection 3we

introduce our nonextensive model for two-dimensional flows with energy and enstrophy conservation. We derive
expressions for the radial dependence of the azimuthally averaged vorticity and for the probability distribution
function of the vorticity; details of these calculations are given inAppendices A and B. In Section 4we dis-
cuss the experiment. InSection 5we compare the predictions of our model with the experimental data. Finally,
in Section 6we compare the nonextensive parameterq deduced from our work with values obtained in other
work.

2. Nonextensive entropy

A system composed of sub-systemsA andB has entropy[26]

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B), (2)

whereSq(A) is the entropy of systemA andq the nonextensive parameter. Whenq = 1, the entropy is extensive.
Tsallis proposed a form of the entropy that satisfies the above equation[12],

Sq = k

q − 1

(
1 −

W∑
i

p
q
i

)
, (3)
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whereW is the total number of possible microstates of the system,pi the probability ofith state andk the Boltzmann
constant. There are two constraints on the system, the normalization

W∑
i=1

pi = 1, (4)

and the conservation of total energy∑W
i=1 p

q
i Ei∑W

i=1 p
q
i

= Ûq, (5)

whereEi is the energy ofith state and̂Uq is a normalizedq-expectation total energy. The normalizedq-expectation
of any observable,O, can be expressed as

Ôq =
∑W

i=1 p
q
i Oi∑W

i=1 p
q
i

. (5)

Other definitions of observable quantities are inconsistent with the first law of thermodynamics[27].
When a system is in contact with a thermal reservoir, the entropy under appropriate constraints is maximized.

The probabilitypi of microstatei can be obtained by introducing Lagrange parametersα′ andβ′ and finding the
maximum with respect topi of

φq[pi] = Sq

k
+ α′

W∑
i=1

pi − β′
∑W

i=1 p
q
i (Ei − Û)∑W
i=1 p

q
i

. (7)

Solving forpi yields

pi = 1

Z
[1 − (1 − q)βEi]

1/(1−q), (8)

whereβ = β′/(
∑

j p
q
j + (1 − q)β′Û) andZ is the normalization factor. In the limitq → 1, Boltzmann–Gibbs

statistics is recovered,pi = (1/Z)e−βEi .

3. Energy–enstrophy models

We now compute the azimuthally averaged vorticity as a function of radius for the extensive and nonextensive cases
and derive expressions for the vorticity probability distribution function. We assume in each case three constraints:
normalization, conserved energy, and conserved enstrophy. We follow Miller[6,28] in considering the “microscopic
vorticity” field σ, which he used to develop a statistical mechanics formalism for two-dimensional turbulent flows.
The macroscopic variables are then defined by averaging the microscopic vorticity, which obeys the conservation
laws[28]. The microscopic vorticity is replaced by the probability density functionp(σ, �r), which is a conserved
quantity as a consequence of the incompressibility of the flow[29]. The macroscopic vorticityω and macroscopic
enstrophyω2 are defined in terms of the microscopic vorticityσ as

ω(�r) =
∫

dσ σp(σ, �r), ω2(�r) =
∫

dσ σ2p(σ, �r). (9)

In the following subsections, we show that the extensive and nonextensive models predict the same radial profile
for the vorticity, but predict different vorticity PDFs.
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3.1. Extensive model

The conserved energy and potential enstrophy expressed in terms of the microscopic vorticityp(σ, �r) are

Û =
∫

d�r
∫

dσ σp(σ, �r)ψ(�r), (10)

Π̂ ≈
∫

d�r|ω(�r) + βRossbyr|2 =
∫

d�r
(∫

dσ(σ2 + 2βRossbyrσ)p(σ, �r) + β2
Rossbyr

2
)
, (11)

whereβRossby ≡ 2ηΩ/h0 is theβ-plane coefficient,Ω the rotation rate of the laboratory annulus system,η the
slope of the annulus bottom (theβ plane), andh0 the mean depth of the annulus.Eq. (11)follows from Eq. (1)by
rescaling for quasi-geostrophic flow[20]. We analyze this rescaled form for the enstrophy.

When the extensive entropy (S ≡ −kpi ln pi) is maximized with energy and potential enstrophy constraints using
the corresponding Lagrange multipliersβ andγ, the probability of the equilibrium state becomes

p(σ, �r) = 1

Z
e−γ(σ+βRossbyr+(β/γ)ψ(�r))2, (12)

whereγ is the Lagrange multiplier of the potential enstrophy.
The radial dependence of the vorticity is obtained from the equation for the stream function, which is derived in

Appendix A.1,

∇2ψ −
(
βRossbyr + β

γ
ψ

)
= 0. (13)

Solving this equation with appropriate boundary conditions allows us to determine the parameterβ/γ by comparing
the predicted radial profile of vorticity with our measurements. The results are presented inSection 5.3. The linear
relation between our stream function and its Laplacian is similar to a result that was obtained from a minimum
enstrophy principle,∇2ψ + µ + λψ = 0 [31,32].

The PDF of the microscopic vorticityσ can be expressed as

g(σ) =
∫

p(σ, �r)d�r = 1

Z

∫
d�r e−γ(σ+βRossbyr+(β/γ)ψ(�r))2. (14)

Since the microscopic vorticityσ cannot be measured, this PDF cannot be verified. Miller usesg(σ) to compute the
PDF of the measurable (“dressed”) vorticity in a finite volume[29]. We conduct a similar analysis inAppendix A.2
and obtain the following prediction for the measurable vorticity:

gd(ω) ∝
∫

d�r 1

ω + βRossbyr + (β/γ)ψ(�r) e−γ(ω+βRossbyr+(β/γ)ψ(�r))2 sinh

(
2γωm

(
ω + βRossbyr + β

γ
ψ(�r)

))
,

(15)

whereωm is the fluctuation limit of the microscopic vorticity andγ the Lagrange multiplier of the potential enstrophy.

3.2. Nonextensive model

Nonadditivity can be achieved by defining any observable as inEq. (5). The vorticity and vorticity squared can
be redefined within the nonextensive formalism as

ωq(�r) =
∫

dσ σpq(σ, �r)∫
dσ pq

, (16)
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ω2
q(�r) =

∫
dσ σ2pq(σ, �r)∫

dσ pq
. (17)

In the nonextensive formalism, the two conserved quantities, energy and potential enstrophy, become

Û =
∫

d�r ∫ dσ σpq(σ, �r)ψ(�r)∫
d�r ∫ dσ pq(σ, �r) , (18)

Π̂ ≈
∫

d�r(ω + βRossbyr)
2∫

d�r ∫ dσ pq(σ, �r) =
∫

d�r{∫ dσ(σ2 + 2βRossbyrσ)p
q(σ, �r) + β2

Rossbyr
2}∫

d�r ∫ dσ pq(σ, �r) . (19)

The PDF for the microscopic entropy, subject to the three constraints (normalization, conserved energy, and con-
served enstrophy), becomes

p(σ, �r) = 1

Z

[
1 − (1 − q)γ

f(ω)

(
σ + βψ(�r)

γ
+ βRossbyr

)2
]1/(1−q)

, (20)

wheref(ω) ≡ 1 + (1 − q)γω2. The expression for the stream function remains identical to the extensive case,
Eq. (13). In Appendix B.2we derive the following PDF of the microscopic vorticity forq > 1,

g(σ) =
∫

d�r pq∫
pqdσ

= Ξ

∫
d�r
[

1 − (1 − q)γ

f(βRossbyr + (β/γ)ψ)

(
σ + βRossbyr + β

γ
ψ

)2
]q/(1−q)

f

(
βRossbyr + β

γ
ψ

)−1/2

,

(21)

whereΞ is the normalization constant. The equation for the dressed (measurable) vorticity is

gd(ω) ∝
∫

d�r f(ω)

ω + βRossbyr + (β/γ)ψ(�r)

[
1 − (1 − q)γ

f(ω)

(
ω + βRossbyr + β

γ
ψ(�r)

)2
]q/(1−q)

×
([

1 + 2
(1 − q)γωm

f(ω) − (1 − q)γ(ω + βRossbyr + (β/γ)ψ(�r))2

(
ω + βRossbyr + β

γ
ψ(�r)

)]1/(1−q)

−
[
1 − 2

(1 − q)γωm

f(ω) − (1 − q)γ(ω + βRossbyr + (β/γ)ψ(�r))2

(
ω + βRossbyr + β

γ
ψ(�r)

)]1/(1−q)
)
.

(22)

Thus if we first solveEq. (13)for the stream function, then we can useψ in Eq. (22)to compute the PDF of the
dressed vorticity. InSection 6we compare the vorticity PDFs predicted for the extensive and nonextensive cases
with the experimental observations.

4. Experimental setup

The experimental system is shown inFig. 1and described in the original report on our measurements on turbulence
in a rapidly rotating annulus with asymmetric forcing[10]. The annulus has an inner radiusri = 10.8 cm, outer
radiusro = 43.2 cm, a sloping bottom, and a flat transparent lid. The bottom depth varies from 17.1 cm at the inner
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Fig. 1. Schematic representation of the experimental apparatus. The tank rotates up to 3 Hz and water circulates through holes in the bottom. In
a rotating frame, the camera obtains images of passive scalar particles (polystyrene spheres, 100–200�m diameter) suspended in the flow.

radius to 20.3 cm at the outer radius, with a mean heighth0 = 18.7 cm and a bottom slopeη = −0.1. For the data
analyzed in this paper, the rotation frequency of the annulus isΩ/2π = 2.5 Hz.

Water is continuously pumped through the tank in a closed circuit via a ring of 120 circular holes located at
the bottom of the tank at the mean radius of the annulus,rf = 27 cm. To avoid direct forcing of a zonal flow, the
pumping holes are arranged in two semi-circles: one semi-circle of the pumping holes contains sources and the
opposite semi-circle contains sinks; thus zero net vorticity is injected. Each hole has a diameter of 2.5 mm and the
total pumping rate is 150 cm3/s.

The water is seeded with neutrally buoyant plastic particles of size of 150–200�m. Light emitting diodes produce
a 3 cm thick horizontal sheet of light that illuminates the annulus at mid-depth. The particles suspended in the water
are imaged with a camera located 2 m above the annulus; the camera rotates with the tank. Particle image velocimetry
(PIV) is used to obtain the full two-dimensional velocity field.

The flow can be characterized by three dimensionless numbers, the Reynolds, Rossby, and Ekman numbers. The
characteristic velocityU = 7 cm/s and lengthL = 20 cm yield a Reynolds numberUL/ν = 7000; thus the flow
is turbulent. The Rossby number (ratio of inertial to Coriolis force) isωrms/2Ω = 0.05, which indicates that the
Coriolis force is dominant, as is the case for planetary flows on large length scales, where Rossby numbers are
typically in the range 0.05–0.2. Finally, the small Ekman number,ν/2L2Ω = 5 × 10−4, indicates that dissipation
in the bulk is small. The Ekman time from dissipation in the boundary layers is 25 s, much longer than the typical
vortex turnover time, 2 s. The dimensionless numbers indicate that the flow is quasi-geostrophic; previous studies
of turbulence in the annulus have indeed confirmed the strong two-dimensionality of the flow[9].

5. Results

In this section we compare the solution for the stream function inEq. (13)with the measurements of the azimuthally
averaged vorticity (preliminary results were published in Ref.[33]). Using that stream function we compare the PDF
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of the measured vorticity with the expressions derived using the extensive and nonextensive formalisms,Eqs. (15)
and (22), respectively.

5.1. Qualitative flow features

In the previous work, we demonstrated that our forcing configuration with no net vorticity injection yields
a quasi-geostrophic flow with three jets alternating in their azimuthal direction[10]. Although the net vorticity
injected is zero, theβ plane (sloping bottom) acts as vorticity selector: cyclonic (anticyclonic) structures cannot
move outward (inward) because their motion outward (inward) would trigger a Rossby wave, thus restoring them
to their original position. Positive (negative) potential vorticity is carried to the inner (outer) region of the annulus.
Within the inner and outer regions the potential vorticity is well mixed. Further, we found the potential vorticity
profile was independent of forcing and rotation rate[10].

As seen inFig. 2, large anticyclones and cyclones appear intermittently. These structures drift in the direction
opposite to the annulus rotation. The coherent vortices are created and decay in the region where the inlet–outlet
semi-circles meet. A large coherent vortex is typically dissipated after traveling 180◦ in the azimuthal direction.

5.2. Stream function solution and the vorticity profile

Eq. (13)involves two parameters: theβ-plane coefficient,βRossby≡ 2ηΩ/h0 = 0.196 rad/s cm (seeSection 4),
and the unknown parameterβ/γ, which is determined by fitting the predicted vorticity profile to the experimental
data. One boundary condition needed to solveEq. (13)is given by the condition that the azimuthally averaged
vorticity is zero atr = rf because one-half of the forcing ring contains sources and the other half sinks; thus∫
ω|r=rf dθ = 0. The other boundary condition is that the total circulation should be conserved,

∮ �ud�l = 0 =∫
ωr dr dθ (seeEq. (A.3)).
The observed radial profile for the vorticity is compared with the best fit profile inFig. 3. The predicted vorticity

profile exhibits the qualitative features of the measured vorticity, and the locations of the predicted maxima and
minima are in reasonable quantitative agreement with experiment. Note that value of the fit parameter isβ/γ =

Fig. 2. The measured vorticity field from an experiment with rotation rate 2.5 Hz and pumping rate 550 cm3/s contains strong cyclones (bright)
and anticyclones (dark). The forcing holes are arranged in semi-circles of 60 sources (white dots) and 60 sinks (black dots).
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Fig. 3. A comparison of the measured and the predicted radial profile for the vorticity. The theoretical curve is given by a least-squares fit to the
solution ofEq. (13), which yields a value for the only adjustable parameter,β/γ = −0.169.

−0.169. One reason for the difference between the model and the measurements is that the real fluid is viscous while
the model assumes an inviscid fluid. The viscosity is dominant near the walls and is responsible for the generation
of vorticity that is injected into the mean flow, an effect not captured by the theory.

5.3. Vorticity PDF

The extensive and nonextensive formalisms yield the same equation for the stream function, but the two approaches
predict different PDFs for the vorticity,Eqs. (15) and (22), respectively. The nonextensive model involves the
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Fig. 4. Comparison of the measured vorticity probability distribution function with the predictions of the extensive and nonextensive
energy–enstrophy models,Eqs. (15) and (22), respectively. The linear plot on the left facilitates a comparison of the peaks of the PDF, and
the log plot on the right facilitates a comparison of the tails of the distribution. The theoretical curves are least-squares fits that minimize
|(pexperiment(ω) − pmodel(ω))/pmodel(ω)|2 over 96 velocity fields. Usingβ/γ = −0.169 from the fit to the vorticity radial profile (Fig. 1) leaves
two fit parameters,ωm (0.7±0.2) andγ (0.25±0.03) for the extensive model, and three parameters for the nonextensive model,ωm (0.7±0.2),
γ (0.15± 0.01) and the nonextensive parameter,q (1.9 ± 0.2). The uncertainties are the standard deviations of the fits to 96 different velocity
fields.
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parameterq, which is absent from the extensive theory; the tails of the vorticity distribution are broad forq > 1
and narrow forq < 1 (seeAppendices B.2 and B.3). The predictions from the two models are compared to the
measurements inFig. 4. Using the value ofβ/γ = −0.169 obtained in the previous subsection, we have a single fit
parameter,ωm, for the extensive model and two fit parameters,ωm andq, for the nonextensive model (seeFig. 4).
The nonextensive model describes the data over the entire range of vorticity, including both the peak and the broad
tails of the distribution. In contrast, the extensive model fails to capture the broad tails of the distribution. The broad
tails arise from the large coherent cyclones and anticyclones.

6. Discussion

Assuming conservation of energy and enstrophy, we have constructed models of two-dimensional inviscid flows
using both extensive and nonextensive entropy. The two models yield the same prediction for the radial dependence
of the azimuthally averaged vorticity. The model involves a single fit parameter and provides good agreement with
the observations (Fig. 3). The extensive and nonextensive models yield different predictions for the vorticity PDF.
The nonextensive model accurately describes the entire PDF, including the broad tails of the distribution (Fig. 4),
which are not described by the extensive model. The value obtained for the nonextensive parameter isq = 1.9±0.2.
Previous experiments with our system configured with an inner ring of sources and an outer ring of sinks produced
a strong turbulent anticyclonic circulation. An analysis of structure function data from that experiment yielded
q = 1.32±0.03[15]. Experiments in our laboratory on turbulent Couette–Taylor flow were analyzed by Beck et al.
[13], who found that the velocity increment structure function data yieldedq = 1.17 for nearby spatial points. As
expected,q decreased to unity for large separations between the points. Measurements by La Porta et al.[34] of
the acceleration of passive scalar particles in a strong turbulent shear flow have been analyzed by Beck[16], who
obtainedq = 1.49.
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Appendix A. Extensive energy–enstrophy model

A.1. Equation of stream function

We find the probability of the microscopic vorticity in the equilibrium state,p(σ, �r), by maximizing the entropy,
where the microscopic vorticity is assumed to fluctuate continuously within the range±ωm.

−∇2ψ =
∫ ω(�r)+ωm
ω(�r)−ωm

dσ σ e−γ(σ+βRossbyr+(β/γ)ψ(�r))2∫ ω(�r)+ωm
ω(�r)−ωm

dσ e−γ(σ+βRossbyr+(β/γ)ψ(�r))2

=
∫ ωm
−ωm

W e−γW2
dW∫ ωm

−ωm
e−γW2 dW

−
(
βRossbyr + β

γ
ψ(�r)

) ∫ ωm
−ωm

e−γW2
dW∫ ωm

−ωm
e−γW2 dW

= −
[
βRossbyr + β

γ
ψ(�r)

]
, (A.1)

whereW ≡ σ − ω(�r). The above equation yields
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∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2

∂2ψ

∂θ2
− β

γ
ψ = βRossbyr. (A.2)

We apply two boundary conditions. First, total circulation is conserved in the annulus, yielding the boundary
condition∫

ω d�r = −
∫

1

r

∂

∂r

[
r
∂ψ

∂r

]
r dr = −ri

∂ψ

∂r

∣∣∣∣
r=ri

+ ro
∂ψ

∂r

∣∣∣∣
r=ro

= 0. (A.3)

The second boundary condition is the mean vorticity over the forcing ring is zero,∫
ω|r=rf dθ = 0. (A.4)

The pumping holes consist of a semi-circle of sources and a semi-circle of sinks. We determineβ/γ by fitting the
solution forψ with the experimental data, as shown inFig. 1.

A.2. Probability density function of vorticity

The PDF of microscopic velocity can be expressed from the Boltzmann distribution

g(σ) =
∫

p(σ, �r)d�r =
√

γ

π

∫
d�r e−γ(σ+βRossbyr+(β/γ)ψ(�r))2 =

√
γ

π

∫
d�r e−γ(σ+βRossbyr+(β/γ)ψ(�r))2. (A.5)

It is impossible to measure the microscopic vorticity directly. Miller et al. suggested a dressed vorticity density
corollarygd(ω), which is a measurable vorticity on any finite scale[29],

gd(ω) ≡ 1

V

∫
d�r δ(ω′(�r) − ω) = 1

V

∫
d�r〈ω′(�r)|ω〉 = 1

V

∫
d�r
∫

dσ′〈ω′(�r)|σ′〉〈σ′|ω〉

= γ

π

∫
d�r
∫

dσ′ e−γ(σ′−ω)2+γ(σ′−ω′(�r))2 ∝
∫

d�r′ e−γ(ω2−ω′(�r)2)
∫ ω(�r)+ωm

ω(�r)−ωm

dσ′ e−2γσ′(ω′(�r)−ω)

∝
∫

d�r 1

ω − ω′(�r) e−γ(ω−ω(�r))2 sinh(2γωm(ω − ω′(�r))), (A.6)

whereω′(�r) is defined asβRossbyr + (β/γ)ψ(�r) and〈σ|ω〉 is the probability of microscopic quantity,σ, at the given
macroscopic quantityω. The original work of Miller usesωm → ∞, meaning that the microsopic vorticity makes
gd(ω) diverge. Therefore, we assume a lower and higher cutoff of microscopic vorticity,ωm.

Appendix B. Nonextensive energy–enstrophy model

B.1. Equation of stream function

By maximizing the nonextensive entropy inEq. (3), we can derive an equation for the stream function,

−∇2ψ =
∫ ω(�r)+ωm
ω(�r)−ωm

dσ σ e
−γ(σ+βRossbyr+(β/γ)ψ(�r))2
q∫ ω(�r)+ωm

ω(�r)−ωm
dσ e

−γ(σ+βRossbyr+(β/γ)ψ(�r))2
q

= −
(
βRossbyr + β

γ
ψ(�r)

) ∫ ωm
−ωm

dW e−γW2

q∫ ωm
−ωm

dW e−γW2

q

= −
(
βRossbyr + β

γ
ψ(�r)

)
, (B.1)
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where exq ≡ (1 + (1 − q)x)1/(1−q). These results are valid for bothq < 1 andq > 1. Note that this nonextensive
analysis yields the same equation for the stream function as the extensive analysis.

B.2. PDF of vorticity whenq > 1

If we know the functional form of the probability of the microscopic vorticity,p(σ, �r), we can calculate the
normalization factor as follows:∫

pq dσ = 1

Zq

∫ ωm

−ωm

(
1 − (1 − q)γ

f(ω)
W2

)q/(1−q)

dW

= 1

Zq

∫ ωm

−ωm

(1 − y2)q/(1−q) dy

√
f(ω)

(q − 1)γ
= Ξ−1f(ω)1/2, (B.2)

wheref(ω) = 1 + (1 − q)γω2 andy = √
(q − 1)γ/f(ω)W . The PDF of vorticity is given as

g(σ) =
∫

d�r pq∫
pq dσ

=
∫

d�r {1 − ((1 − q)γ/f(ω))(σ + βRossbyr + (β/γ)ψ(�r))2}q/(1−q)

Ξ−1f(ω)1/2

= Ξ

∫
d�r
(

1 − (1 − q)γ

f(ω)

(
σ + βRossbyr + β

γ
ψ(�r)

)2
)q/(1−q)

f(ω)−1/2. (B.3)

The dressed vorticity is given by

gd(ω) =
∫

d2r

∫
dσ′ {1 + ((q − 1)γ/f(ω))(σ′ − ω)2}q/(1−q)f(ω)1/2

{1 + ((q − 1)γ/f(ω′))(σ′ − ω′(�r))2}q/(1−q)f(ω′(�r))1/2
. (B.4)

Consider the regionΣ<, which satisfies|((q−1)γ/f(ω))(σ−ω)2| < 1. We have|ω−ωm/2| > √
1/(2γ(q − 1)ωm)

and|ω − ωm/2| < √
1/(2γ(q − 1)) − ω2

m/4 in Σ<, and the inequalities are reversed in the regionΣ>. With these
conditions we can approximateEq. (B.4)as

gΣ<

d =
∫
Σ<

d�r
∫

dσ′
(

1 − (1 − q)γ

f(ω)
(σ′ − ω)2 + (1 − q)γ

f(ω′(�r)) (σ
′ − ω′(�r))2 + · · ·

)q/(1−q)

, (B.5)

gΣ<

d ≈
∫
Σ<

d�r
∫ ω(�r)+ωm

ω(�r)−ωm

dσ′
[
1 − (1 − q)γ

f(ω)
(ω2 − ω′(�r)2) − (1 − q)γ

f(ω)
2σ′(ω′(�r) − ω)

]q/(1−q)

∝
∫
Σ<

d�r f(ω)

ω − ω′(�r)
[
1 − (1 − q)γ

f(ω)
(ω − ω′(�r))2

]q/(1−q)

×
([

1 + 2
(1 − q)γωm

f(ω) − (1 − q)γ(ω − ω′(�r))2
(ω − ω′(�r))

]1/(1−q)

−
[
1 − 2

(1 − q)γωm

f(ω) − (1 − q)γ(ω − ω′(�r))2
(ω − ω′(�r))

]1/(1−q)
)
. (B.6)

We use the approximation thatf(ω) ∼ f(ω′) becauseω is close toω′ for the dressed vorticity. The limit ofq → 1
approaches the result in the extensive case. Ifγ(q − 1) andω2

m/4 are very small,gΣ>

d is negligible compared to
gΣ<

d . From experimental data, we found thatγ(q − 1) ∼ 0.14 andω2
m/4 ∼ 0.12. Therefore,gd ≈ σΣ<

d .
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B.3. PDF of vorticity whenq < 1

The PDF of vorticity is obtained as

∫
pq dσ = 1

Zq

∫ (
1 − (1 − q)γ

f(ω)
W2

)q/(1−q)

dW = 1

Zq

√
f(ω)

(1 − q)γ

(
1

2
,

1

1 − q

)
= Ξ−1f(ω)1/2 (B.7)

by using
∫ 1

0 (1 − x2)µ−1 dx = (1/2)B(1/2, µ). We can assume thatW is confined to the range
(−1 <

√
(1 − q)γ/f(ω)W < 1) because values outside this range result in nonphysical interpretations such as

negative partition function.

g(σ) =
∫

d�r pq∫
pq dσ

=
∫

d�r {1 − ((1 − q)γ/f(ω))(σ − ω)2}q/(1−q)

f(ω)1/2Ξ−1

= Ξ

∫
d�r
(

1 − (1 − q)γ

f(ω)
(σ − ω)2

)q/(1−q)

f(ω)−1/2, (B.8)

wheref(ω) = 1 + (1 − q)γω2. The dressed velocity distribution is given by

gd(ω) =
∫

d�r
∫

dσ′ {1 − ((1 − q)γ/f(ω))(σ′ − ω)2}q/(1−q)f(ω)−1/2

{1 − ((1 − q)γ/f(ω′(�r)))(σ′ − ω′(�r))2}q/(1−q)f(ω′(�r))−1/2

∝
∫

d�r f(ω)

(ω − ω′)

[
1 − (1 − q)γ

f(ω)
(ω − ω′)2

]q/(1−q)

×
([

1 + 2
(1 − q)γωm

f(ω) − (1 − q)γ(ω − ω′)2
(ω − ω′)

]1/(1−q)

−
[
1 − 2

(1 − q)γωm

f(ω) − (1 − q)γ(ω − ω′)2
(ω − ω′)

]1/(1−q)
)
. (B.9)

As before, we use the approximationf(ω) ∼ f(ω′). In the limit q → 1, we obtain the extensive case. With the
approximation

gd(ω) ≈
[
1 − (1 − q)γ

f(ω)
(ω − ω′)2

]q/(1−q)

,

we find that the fourth and higher moments of vorticity diverge forq ≥ 2 because
∫∞

0 xn−1(1 + x2)−q/(q−1)dx
converges whenq > n/(n − 2).
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