Available online at www.sciencedirect.com

sc.ENcE@D.REcT. P"YSIGA@

ELSEVIE Physica D xxx (2004) XXX—XXX

www.elsevier.com/locate/physd

Nonextensive statistical mechanics for rotating
guasi-two-dimensional turbulence

Sunghwan Jung, Brian D. Storey, Julien Aubert, Harry L. Swifiney
Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712, USA
Communicated by C.K.R.T. Jones

Abstract

We have conducted experiments on an asymmetrically forced quasi-two-dimensional turbulent flow in a rapidly rotat-
ing annulus. Assuming conservation of potential enstrophy and energy, we maximize a nonextensive entropy function to
obtain the azimuthally averaged vorticity as a function of radial position. The predicted vorticity profile is in good ac-
cord with the observations. A nonextensive formalism is appropriate because long-range correlations between small-scale
vortices give rise to large coherent structures in the turbulence. We also derive probability distribution functions for the
vorticity from both extensive and nonextensive entropies, and we find that the prediction from nonextensive theory is in
better accord with experiment, especially in the tails of the distribution function. The nonextensive paramasethe
value 19 £+ 0.2.
© 2004 Published by Elsevier B.V.
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1. Introduction

Equilibrium statistical mechanics has long been used to describe turbydnéearly work by Onsager pre-
dicted coherent structure formation through consideration of the interactions of point v{2fidester Kraichnan
constructed a statistical theory based on energy and enstrophy consel®jp#ind showed that the Euler equation
(for inviscid flow) with truncation below a certain small length scale could describe turbulent [fioBls More
recently, Miller showed that large scale coherent structures could be described by equilibrium statistical mechanics
of the Euler equation through a continuous distribution of microscopic vor{@]jtyThese analyses assumed that
the asymptotic behavior depends upon the values of the conserved quantities rather than on the details of initial
structures. Further, the analyses were based on Boltzmann—-Gibbs statistics, which only describes weak interactions
and does not capture long-range interacti@hsOur observations of large coherent vortices in experiments on flow
in arotating annuluB—10]lead us to consider a generalization of statistical mechanics that is applicable to systems
with long-range interactions: the nonextensive formalism proposed by T44l|E2]

Probability distribution functions (PDFs) for the velocity increménty) = (v(x+r) —v(x)), have been derived
from nonextensive theory assuming conservation daféettive energproportional to(sv)2, and these PDFs have
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been found to describe several turbulent flga&-16} however,(5v)? is not a conserved quantity for the rotating

flows of interest here. Experiments on a plasma of electrons in a strong magnetic field have been interpreted usinc
both extensive entropjl7] and nonextensive entrog$8] with conservation of energy. These analyses did not
consider Miller’s distinction between the macroscopic and microscopic quantities.

For our laboratory flow, we exploit an additional conservation property that holds for geostrophic flows. A
geostrophic flow is one that is dissipationless and rotates sufficiently fast so that it is two-dimensional, varying only
in the plane perpendicular to the rotation aji8]. The additional conserved quantity is thetential enstrophy
which is defined agl9,20]

- /(w(r) +2.Q> & (1)
h(r)

wherew (7) is the local vorticity and in our systenf®, the rotation rate of the annulus, althe height of fluid, which
increases in the-direction. A sloping bottom in our rotating annulus models the variation of the Coriolis force with
latitude in a real geophysical flow. Flow in our laboratory system is only approximately geostrophic because the
rotation rate is finite rather than infinite and the dissipation is nonzero. However, the rotation rate is large enough
and dissipation effects are small enough so that the flow is strongly two-dimensjoaai-geostrophic[9] and

the potential enstrosphy should be nearly conserved. The potential enstrophy is only one of an infinite number of
conserved quantities in a geostrophic flgigr Q" (with n an integer), wher® = (v + 2£2)/h is the potential
vorticity; the potential enstrophy correspondsite- 2. The higher order conserved terms are more dependent on
viscous effects than energy and potential enstrophy tfjsso we limit our analysis to the two latter conserved
guantities, which are often calledgged invariant§22—25}

In this paper we use the Euler equation, which neglects viscous dissipation, to obtain predictions of statistical
properties of turbulence that we then compare with our experimental observations. The Euler equation has beer
found to describe phenomena in large scale oceanic and atmospheri¢g2%80] and should provide a useful
description to flow in our rotating annulus, where dissipation is small, i.e., the spin down:tip@MuQ ~ 255)
is much longer than the typical vortex turnover time2(s).

The paper is organized as follows.$ection 2we briefly describe the nonextensive formalismSkction 3we
introduce our nonextensive model for two-dimensional flows with energy and enstrophy conservation. We derive
expressions for the radial dependence of the azimuthally averaged vorticity and for the probability distribution
function of the vorticity; details of these calculations are giverAppendices A and BIn Section 4we dis-
cuss the experiment. I18ection 5we compare the predictions of our model with the experimental data. Finally,
in Section 6we compare the nonextensive parameteteduced from our work with values obtained in other
work.

2. Nonextensive entropy

A system composed of sub-systefignd B has entropy26]
S4(A+ B) = S;(A) + Sy(B) + (1 — 9)S4(A)Sy(B), (2)

whereS,(A) is the entropy of syster andq the nonextensive parameter. Wheg= 1, the entropy is extensive.
Tsallis proposed a form of the entropy that satisfies the above equia#ihn

k LA
ququ 1_21-:pi , ®3)
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whereW is the total number of possible microstates of the sysjertine probability ofith state and the Boltzmann
constant. There are two constraints on the system, the normalization

w
Y opi=1 4
i=1
and the conservation of total energy
Zivil P? E; ~
W oq Uq’ (5)
2z P

whereE; is the energy ofth state ancf]q is a normalized-expectation total energy. The normalizeexpectation
of any observable, can be expressed as
p Yt P 0i
0y = =52 ©)
q
2 im1 P
Other definitions of observable quantities are inconsistent with the first law of thermodyramiics
When a system is in contact with a thermal reservoir, the entropy under appropriate constraints is maximized.
The probabilityp; of microstatei can be obtained by introducing Lagrange parametéend g’ and finding the
maximum with respect tp; of

w W oq o
S ’ Z—lp(El _U)
bglpil = L+ )y pi— == (7)
! k ; Zi‘ll P?
Solving for p; yields
1 _
pi=[1—A-qpEIV, ®)

whereg = 8'/(3; pf + (1 - ¢)B'U) and Z is the normalization factor. In the limit — 1, Boltzmann-Gibbs
statistics is recoveregh; = (1/Z) e PEi,

3. Energy—enstrophy models

We now compute the azimuthally averaged vorticity as a function of radius for the extensive and nonextensive cases
and derive expressions for the vorticity probability distribution function. We assume in each case three constraints:
normalization, conserved energy, and conserved enstrophy. We follow [@ilk&jin considering the “microscopic
vorticity” field o, which he used to develop a statistical mechanics formalism for two-dimensional turbulent flows.
The macroscopic variables are then defined by averaging the microscopic vorticity, which obeys the conservation
laws[28]. The microscopic vorticity is replaced by the probability density funcfiom 7), which is a conserved
gquantity as a consequence of the incompressibility of the f&R8 The macroscopic vorticity and macroscopic
enstrophyw? are defined in terms of the microscopic vorticityas

o) = /da op(o, 7), 0 (F) = /da O'Zp(O’, 7). 9)

In the following subsections, we show that the extensive and nonextensive models predict the same radial profile
for the vorticity, but predict different vorticity PDFs.
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3.1. Extensive model

The conserved energy and potential enstrophy expressed in terms of the microscopic yatiitare

U= / dr / do op (o, F)Y(7), (10)

ﬁ R /dﬂw(;) + /3Rossb)1’|2 = /d; (/ dU(UZ + ZﬂRossby‘U)P(U, ?) + ,Bgzossbyr2> ’ (11)

where Brossby = 2182/ ho is the g-plane coefficients2 the rotation rate of the laboratory annulus systgrthe
slope of the annulus bottom (tifeplane), andig the mean depth of the annuligg. (11)follows from Eq. (1) by
rescaling for quasi-geostrophic fld20]. We analyze this rescaled form for the enstrophy.

When the extensive entrop§ & —kp; In p;) is maximized with energy and potential enstrophy constraints using
the corresponding Lagrange multipligggndy, the probability of the equilibrium state becomes

p@azégmwmwwmwﬂ (12)

wherey is the Lagrange multiplier of the potential enstrophy.
The radial dependence of the vorticity is obtained from the equation for the stream function, which is derived in
Appendix A.1

Vzw - (ﬁRossby’ + §W> =0. (13)

Solving this equation with appropriate boundary conditions allows us to determine the pargméetgcomparing
the predicted radial profile of vorticity with our measurements. The results are preseBection 5.3The linear
relation between our stream function and its Laplacian is similar to a result that was obtained from a minimum
enstrophy principley2y + u + Ay = 0[31,32]

The PDF of the microscopic vorticity can be expressed as

o 1 L .
glo) = /p(cr, F)dr = E/dre o+BRossby +(B/VY(F)? "

Since the microscopic vorticity cannot be measured, this PDF cannot be verified. Miller p&@ego compute the
PDF of the measurable (“dressed”) vorticity in a finite volu2@]. We conduct a similar analysis Appendix A.2
and obtain the following prediction for the measurable vorticity:

1
w + /3Rossbf + (,3/)/)1#(7)

2d(®) o / dr e—y(w+ﬂRossb)r+(ﬁ/y)zlf(?))z sinh(Zywm (a) + BRrossby” + gw(?))) ,

(15)

wherewn, is the fluctuation limit of the microscopic vorticity apdhe Lagrange multiplier of the potential enstrophy.
3.2. Nonextensive model

Nonadditivity can be achieved by defining any observable &jin(5) The vorticity and vorticity squared can
be redefined within the nonextensive formalism as

[ doop(c, 7)

o (16)

Wq (;) =
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[ do o?pi(o, 7)

22y
wy(r) = [ do pi (17)
In the nonextensive formalism, the two conserved quantities, energy and potential enstrophy, become
i [ dr fﬁda api(o, 7)?(7) 18)
[ dF [do pi(o, F)
o L@+ Brossey)? _ [ 9L do(0% + 2BRossby ) P (0, 7) + BRosshy”) 19)
[ dF [do pi(o, F) [ dF [do pi(o, ) '

The PDF for the microscopic entropy, subject to the three constraints (normalization, conserved energy, and con-
served enstrophy), becomes

1. a-g BY(F) A
plo,7) = = |:1 — vy (0 + y + ﬁRossbf) i| ) (20)

Z flw)

where f(w) = 1+ (1 — g)yw?. The expression for the stream function remains identical to the extensive case,
Eq. (13) In Appendix B.2we derive the following PDF of the microscopic vorticity fr> 1,

. p?
= d —_—
g(o) rf ido

/(1=q) -1/2
I 1—qy £\ ( g>/
- @ [1 oyt 7 P + ) } I\ Prossor oy ¥)

(21)

whereZ is the normalization constant. The equation for the dressed (measurable) vorticity is

/(1—q)
) f(w) (1—q>y< B ﬁ>2 !
d — | 1-— -
gd(w) x / r T Prossoy + BV |: @) ® + BRrossby + Y ¥(r)

[ (1-q)yom
X 142 —
flw) — (1 — @)y(@ + Brossby + (B/V)Y(F))?

(11— q)yom < B, . )T/ 1=
—[(1-2 — - .
[ (@) — (L= @)@ + Prosshy + (BImpn2 \ @+ Prossoy + 200

B 1/(1—q)
<a) + ,BRosst’ + ;W(?)>j|

(22)

Thus if we first solveEq. (13)for the stream function, then we can ugen Eq. (22)to compute the PDF of the
dressed vorticity. IrSection 6we compare the vorticity PDFs predicted for the extensive and nonextensive cases
with the experimental observations.

4, Experimental setup

The experimental system is showrHig. 1and described in the original report on our measurements on turbulence
in a rapidly rotating annulus with asymmetric forcifi]. The annulus has an inner raditis= 10.8 cm, outer
radiusr, = 43.2 cm, a sloping bottom, and a flat transparent lid. The bottom depth varies frarartiat the inner
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Fig. 1. Schematic representation of the experimental apparatus. The tank rotates up to 3 Hz and water circulates through holes in the bottom. Ir
a rotating frame, the camera obtains images of passive scalar particles (polystyrene spheres pi@i2@@ter) suspended in the flow.

radius to 208 cm at the outer radius, with a mean height= 18.7 cm and a bottom slopg= —0.1. For the data
analyzed in this paper, the rotation frequency of the annuly#&r = 2.5 Hz.

Water is continuously pumped through the tank in a closed circuit via a ring of 120 circular holes located at
the bottom of the tank at the mean radius of the annujus; 27 cm. To avoid direct forcing of a zonal flow, the
pumping holes are arranged in two semi-circles: one semi-circle of the pumping holes contains sources and the
opposite semi-circle contains sinks; thus zero net vorticity is injected. Each hole has a diameieniof 2nd the
total pumping rate is 150 cfyis.

The water is seeded with neutrally buoyant plastic particles of size of 15Q+RB0Dight emitting diodes produce
a 3 cm thick horizontal sheet of light that illuminates the annulus at mid-depth. The particles suspended in the water
are imaged with a camera located 2 m above the annulus; the camera rotates with the tank. Particle image velocimetr
(PIV) is used to obtain the full two-dimensional velocity field.

The flow can be characterized by three dimensionless numbers, the Reynolds, Rossby, and Ekman numbers. Th
characteristic velocity/ = 7 cm/s and lengtli. = 20cm yield a Reynolds numbé&h./v = 7000; thus the flow
is turbulent. The Rossby number (ratio of inertial to Coriolis forcedigs/262 = 0.05, which indicates that the
Coriolis force is dominant, as is the case for planetary flows on large length scales, where Rossby numbers are
typically in the range 0.05-0.2. Finally, the small Ekman numb&[22 = 5 x 10~%, indicates that dissipation
in the bulk is small. The Ekman time from dissipation in the boundary layers is 25 s, much longer than the typical
vortex turnover time, 2 s. The dimensionless numbers indicate that the flow is quasi-geostrophic; previous studies
of turbulence in the annulus have indeed confirmed the strong two-dimensionality of tH8]flow

5. Results

Inthis section we compare the solution for the stream functi&ujirff13)with the measurements of the azimuthally
averaged vorticity (preliminary results were published in [B5]). Using that stream function we compare the PDF
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of the measured vorticity with the expressions derived using the extensive and nonextensive forregksiif)
and (22) respectively.

5.1. Qualitative flow features

In the previous work, we demonstrated that our forcing configuration with no net vorticity injection yields
a quasi-geostrophic flow with three jets alternating in their azimuthal diretioh Although the net vorticity
injected is zero, thg plane (sloping bottom) acts as vorticity selector: cyclonic (anticyclonic) structures cannot
move outward (inward) because their motion outward (inward) would trigger a Rossby wave, thus restoring them
to their original position. Positive (negative) potential vorticity is carried to the inner (outer) region of the annulus.
Within the inner and outer regions the potential vorticity is well mixed. Further, we found the potential vorticity
profile was independent of forcing and rotation ridt@].

As seen inFig. 2, large anticyclones and cyclones appear intermittently. These structures drift in the direction
opposite to the annulus rotation. The coherent vortices are created and decay in the region where the inlet—outlet
semi-circles meet. A large coherent vortex is typically dissipated after travelirigii8@e azimuthal direction.

5.2. Stream function solution and the vorticity profile

Eq. (13)involves two parameters: thieplane coefficientfrosshy= 212/ ho = 0.196 rad's cm (see5ection 4,
and the unknown parametgfy, which is determined by fitting the predicted vorticity profile to the experimental
data. One boundary condition needed to sdiee (13)is given by the condition that the azimuthally averaged
vorticity is zero atr = r; because one-half of the forcing ring contains sources and the other half sinks; thus
]a)|,:,f dé = 0. The other boundary condition is that the total circulation should be consgf\ieﬂﬂ =0=
[ ordrdé (seeEq. (A.3)).

The observed radial profile for the vorticity is compared with the best fit profiégn3. The predicted vorticity
profile exhibits the qualitative features of the measured vorticity, and the locations of the predicted maxima and
minima are in reasonable quantitative agreement with experiment. Note that value of the fit parageteris

Vorticity (s')
10

Fig. 2. The measured vorticity field from an experiment with rotation rate 2.5 Hz and pumping rate %s0ozmtains strong cyclones (bright)
and anticyclones (dark). The forcing holes are arranged in semi-circles of 60 sources (white dots) and 60 sinks (black dots).
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Fig. 3. A comparison of the measured and the predicted radial profile for the vorticity. The theoretical curve is given by a least-squares fit to the
solution ofEg. (13) which yields a value for the only adjustable parameig¢y, = —0.169.

—0.169. Onereason for the difference between the model and the measurements is that the real fluid is viscous while
the model assumes an inviscid fluid. The viscosity is dominant near the walls and is responsible for the generation

of vorticity that is injected into the mean flow, an effect not captured by the theory.
5.3. Vorticity PDF

The extensive and nonextensive formalisms yield the same equation for the stream function, but the two approache
predict different PDFs for the vorticityggs. (15) and (22)respectively. The nonextensive model involves the

0.4
-- Extensive
Nonextensive 4
o Experiment 10 '+
0.3} 1
102}
p(w) p(w)
-3
10 ¢ \
1 1
1 1
0.1+ ald 1 \
10 'l I|
1 1
1 1
5 1 1
0 10 ! ‘ 1
-10 10 -10 0 10
Vorticity w (s'l) Vorticity w (s '1)

Fig. 4. Comparison of the measured vorticity probability distribution function with the predictions of the extensive and nonextensive
energy—enstrophy modelggs. (15) and (22)respectively. The linear plot on the left facilitates a comparison of the peaks of the PDF, and
the log plot on the right facilitates a comparison of the tails of the distribution. The theoretical curves are least-squares fits that minimize
| (Pexperimenf®) — Pmodel(@))/ Pmodel(®)|? over 96 velocity fields. Using/y = —0.169 from the fit to the vorticity radial profilé={g. 1) leaves

two fit parameterspn, (0.7 £0.2) andy (0.25+ 0.03) for the extensive model, and three parameters for the nonextensive mqdel7 +0.2),

y (0.15+ 0.01) and the nonextensive parametefl.9 + 0.2). The uncertainties are the standard deviations of the fits to 96 different velocity

fields.
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parametey, which is absent from the extensive theory; the tails of the vorticity distribution are brogd=fot

and narrow forg < 1 (seeAppendices B.2 and B)3The predictions from the two models are compared to the
measurements iRig. 4. Using the value of/y = —0.169 obtained in the previous subsection, we have a single fit
parameteron, for the extensive model and two fit parametesg,andg, for the nonextensive model (sEéy. 4).

The nonextensive model describes the data over the entire range of vorticity, including both the peak and the broad
tails of the distribution. In contrast, the extensive model fails to capture the broad tails of the distribution. The broad
tails arise from the large coherent cyclones and anticyclones.

6. Discussion

Assuming conservation of energy and enstrophy, we have constructed models of two-dimensional inviscid flows
using both extensive and nonextensive entropy. The two models yield the same prediction for the radial dependence
of the azimuthally averaged vorticity. The model involves a single fit parameter and provides good agreement with
the observationgHjg. 3). The extensive and nonextensive models yield different predictions for the vorticity PDF.
The nonextensive model accurately describes the entire PDF, including the broad tails of the distffigitidn (
which are not described by the extensive model. The value obtained for the nonextensive pargmetebis 0.2.
Previous experiments with our system configured with an inner ring of sources and an outer ring of sinks produced
a strong turbulent anticyclonic circulation. An analysis of structure function data from that experiment yielded
g = 1.324+0.03[15]. Experiments in our laboratory on turbulent Couette—Taylor flow were analyzed by Beck et al.
[13], who found that the velocity increment structure function data yielded1.17 for nearby spatial points. As
expectedg decreased to unity for large separations between the points. Measurements by La Pof&teofl.
the acceleration of passive scalar particles in a strong turbulent shear flow have been analyzed b§]Bsbk
obtainedy = 1.49.
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Appendix A. Extensive energy—enstrophy model
A.1. Equation of stream function

We find the probability of the microscopic vorticity in the equilibrium statés, 7), by maximizing the entropy,
where the microscopic vorticity is assumed to fluctuate continuously within the tange

JeDrom g o @V +Brossby+(B/PV ()

2. »(F)—wm
VoY= w(F)+o 2112
fw(?) _w"’]“ do e V(@ +Prossby+(B/V)¥ (1))
m — 2 m _ 2
_ff)mee w dW_ B +Ew(7) w—_ B +Ew(;) (A.1)
[on e W dw Rossby ™y o e W dw Rossoy ), Vi | '

whereW = o — o (7). The above equation yields
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Py loy 1%y B

52 T T2 a2 W BRossby- (A-2)

We apply two boundary conditions. First, total circulation is conserved in the annulus, yielding the boundary
condition

/a)d?:—/——[ a¢j| dr = —r; W
ror| or or |,—,

The second boundary condition is the mean vorticity over the forcing ring is zero,

31/f

©Br|_ = 0. (A.3)

/ ®lr=r d6 = 0. (A.4)

The pumping holes consist of a semi-circle of sources and a semi-circle of sinks. We detgfmmmgefitting the
solution fory with the experimental data, as showrFig. 1

A.2. Probability density function of vorticity
The PDF of microscopic velocity can be expressed from the Boltzmann distribution

¢(0) = / p(o,7) dF = \/g / dF e V(@ +Prossby +(B/NV()? _ \/g / dF @ V(@ +PRossby +(B/ NV ()? (A.5)

It is impossible to measure the microscopic vorticity directly. Miller et al. suggested a dressed vorticity density
corollary g4(w), which is a measurable vorticity on any finite scgey],

gd(a))zé/d?S(w'(?)—w) ‘];/dr (0 (P)|w) = /drfda (' ()]0’ (0 |w)

(o
/ & / e I / e Pl / T ! &2 @ Do)

o(r)—om

/dr—/ g V-o®)? sinh2ywm(w — o' (7)), (A.6)
w— o (F)
wherew/'(F) is defined agrossby + (8/¥)¥(7) and(o|w) is the probability of microscopic quantity, at the given

macroscopic quantity. The original work of Miller useswm — oo, meaning that the microsopic vorticity makes
gd(w) diverge. Therefore, we assume a lower and higher cutoff of microscopic vordigity,

Appendix B. Nonextensive energy—enstrophy model
B.1. Equation of stream function

By maximizing the nonextensive entropyHi. (3) we can derive an equation for the stream function,

. 2 _ 2
_v2 [0 gy g 1 R VO (ﬂ . ﬂw( )) [ aw e
- f:ﬁ)((rr))f,;" doe, “ o+ Brossoy tBIMVNZ Rossby’ o aw e

- (ﬂRossb)}” + )E;WG)) ) (B.1)
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where ¢ = (14 (1 — g)x)/1=9. These results are valid for both< 1 andg > 1. Note that this nonextensive
analysis yields the same equation for the stream function as the extensive analysis.

B.2. PDF of vorticity whery > 1

If we know the functional form of the probability of the microscopic vorticip(o, 7), we can calculate the
normalization factor as follows:

©m —_ q/(1=q)
/pqdo'zi (1_(1—61))/W2> dw

VA —wm f(w)
- o _ v2y9/A=9) flo) — 4 1/2

where f(w) = 1+ (1 — g)yw? andy = /(g — 1)y/f(w)W. The PDF of vorticity is given as

o) = / G _ f o 11~ (A= )Y/f(@)(@ + Brossby + (B/¥yF)*#/ 00
8190 = [ pdo N

5L f(w) 2

1. 2\ 4/(1—q)
Ty (1 N —y ) 12, (©.3)

flw)
The dressed vorticity is given by

gd(w) = /er/ do’ {1+ (g = Dy/flw) (o — w)Z}q/(l—q)f(w)l/Z
{1+ (g = Dy/f(@))(0" — &' (7))} 1= flo! (7)) 12

Consider the regiol <, which satisfie$((g — 1)y/f(w)) (0 —w)?| < 1. We havéw —wm/2| > 1/ 2y(qg — Dwm)
and|o — om/2| < \/1/(2y(q — 1)) — /4 in X<, and the inequalities are reversed in the regibn With these
conditions we can approximaksy. (B.4)as

< _ - o, A=y , L A=-q@y , .5 q/(1-9)
&d —/<dV/d0 <1 f) (o )+ f(a)’(?)) (o ' (r)) +> i (B.5)

(B.4)

. o (F)+om _ _ q/(1—q)
R A [1 QDY i) - D o - w)]

»(F)—wm f(w) H)
— q/(1—q)
x / dar Slw) _ [1 _a Q)V(w B w/(;))2i|
< @) flo)
(1—q)yom L }1/(1—11)
142 _ -
: <[ - f(w)—(l—q)y(w_w/(r))Z(w w (1))
(1—q)yom L }1/(1—4)
T - ) B.6
[ @ — A= ayw-—wm?z " (B.6)

We use the approximation thgitw) ~ f(w') becausev is close taw’ for the dressed vorticity. The limit af — 1
approaches the result in the extensive casg(df— 1) anda),zn/4 are very smallg(j:> is negligible compared to
g& " . From experimental data, we found théy — 1) ~ 0.14 andw? /4 ~ 0.12. Thereforegy ~ o .
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B.3. PDF of vorticity whery < 1

The PDF of vorticity is obtained as

1 A—qy NP 1| flo (1 1\ _ .
/”qd"_E/<l_ f@) W) W=z (1—q)y<§’1—q>_“ Je (1)

by using fol(l — XA 1dx = (1/2)B(1/2, ). We can assume thaW is confined to the range
(-1 < /A —9)y/flw)W < 1) because values outside this range result in nonphysical interpretations such as
negative partition function.

) = /d; P /d?{l—((1—q>y/f<w>)(a—w>2}q/<lq>
BO=] T Tprde T flw)t/251

_ q/(1—q)
=5 f dr (1 - uf((j))”(a -~ w)Z) flw)~Y2, (B.8)

where f(w) = 1+ (1 — q)yw?. The dressed velocity distribution is given by

ga(@) = / & / 4o L= (A= @y/f)(0' = )70 f(w) 12
(1= (A= @y/fl M) — o )20 (' ()2

_ q/(1—q)
N / ) [1_(1 6]))/(0)_0)/)2}

(0 — ') flw)
(1 - q)yom N
" <[1+ 2w — A= apo—w 2 )]
_ 1/(1-q)
— [1— 2 (1= g)yom (@ — a/)] . (B.9)
flo) — 1 - gyw—w')?

As before, we use the approximatigiw) ~ f(«'). In the limitg — 1, we obtain the extensive case. With the
approximation

_ q/(1—q)
_ (l ‘Z)V (w _ w/)2:| ,
flw)

we find that the fourth and higher moments of vorticity divergedor 2 becausely® x"~1(1 + x?)~9/@~Ddx
converges when > n/(n — 2).

gd(w) ~ |:l
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