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A numerical dynamo benchmark
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Abstract

We present the results of a benchmark study for a convection-driven magnetohydrodynamic dynamo problem in a rotating
spherical shell. The solutions are stationary aside from azimuthal drift. One case of non-magnetic convection and two dynamos
that differ in the assumptions concerning the inner core are studied. Six groups contributed numerical solutions which show
good agreement. This provides an accurate reference standard with high confidence. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In recent years, three-dimensional simulations of
convection-driven magnetohydrodynamic dynamos in
rotating spherical shells have become possible and are
progressively employed to develop an understanding
for the origin of the Earth’s magnetic field and its spa-
tial and temporal structure. The first models employed
hyperdiffusivities and either neglected inertia or in-
cluded only the axisymmetric part (Glatzmaier and
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Roberts, 1995; Kuang and Bloxham, 1997) or they
assumed somewhat artificial boundary conditions for
the magnetic field Kageyama and Sato (1995). Later
models with more moderate values of the control
parameters did not use these approximations (for ex-
ample, Christensen et al., 1998; Busse et al., 1998;
Christensen et al., 1999; Katayama et al., 1999; Grote
et al., 2000). Several numerical codes for dynamo
modelling have been developed independently by
various groups, although they usually follow simi-
lar principles. The velocity and magnetic fields are
represented by poloidal and toroidal scalar potentials
and all the unknowns are expanded in spherical har-
monic functions in the angular coordinates. Diffusive
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terms in the equations are treated implicitly during
time-stepping, while the non-linear terms are evalu-
ated on grid points, which requires transformations
between spectral and grid space (spectral transform
method). The codes differ mainly in their treatment
of the radial dependence and in the way the arising
boundary value problems for each harmonic mode
are solved. Some expand the variables in Chebyshev
polynomials and use collocation methods, while oth-
ers use finite differencing and grid representation.
An exception is the method by Kageyama and Sato
(1995), who have used finite differences throughout.
Other codes that employ only local representations
of the variables, for example by finite elements, are
currently under development.

The verification of newly developed codes for com-
plex nonlinear problems is not a simple task. Rigorous
testing with analytical solutions is not possible for the
fully non-linear problem. Comparison with other pub-
lished solutions is difficult because they usually show
chaotic time-dependence and because they make spe-
cific assumptions (for example, on boundary condi-
tions or neglected terms), which are not implemented
in other codes. The concept of a benchmark is to set up
a simple, well defined and easily reproduced standard
solution, which is confirmed by several independent
codes and which is converged to great accuracy. It
serves several purposes: (i) to increase the confidence
in the correctness of the codes that contribute to the
benchmark, (ii) to assess the accuracy and possibly
the run-time performance of existing methods, and

(iii) to assist future code developments by providing
a well-established standard solution for verification.

The present benchmark was proposed at the study
of the Earth’s deep interior (SEDI) meeting of 1998
in Tours and has been expanded and modified as a
result of discussions among the participants. Its basis
is one of the few quasi-stationary dynamo solutions
that have been reported in the literature (Christensen
et al., 1999). The stationarity allows the comparison of
well-defined numbers. Parameter values are moderate,
so that high resolution is not required to reproduce the
dynamo. The full inertia term is kept in the momen-

tum equation and the concept of hyperdiffusivity is not
used. In addition to the originally proposed dynamo
with an insulating inner core co-rotating with the outer
boundary (case 1), the cases of rotating non-magnetic
convection (case 0) and that of a dynamo with a con-
ducting and freely rotating inner core (case 2) have
been added. Aside from global properties, such as ki-
netic and magnetic energies, where small inaccuracies
may average out, some local values of the solution are
also reported.

2. Definition of the benchmark cases

Thermal convection and magnetic field generation
in a rotating spherical shell filled with an electrically
conducting fluid are considered. The ratio of inner
radiusri to outer radiusro is set to 0.35. Temperature
is fixed to To and To + �T on the outer and inner
boundaries, respectively. The Boussinesq approxima-
tion is used and gravity varies linearly with radius.
The equations are scaled withD = ro − ri as the fun-
damental length scale, which makes the dimensions-
less radii equal toro = 20/13 andri = 7/13. The time
scale isD2/ν, with ν the kinematic viscosity,ν/D
is the scale for velocityu, and�T for temperature
T . The scaled temperature on the outer boundary is
zero. Magnetic inductionB is scaled by(ρµηΩ)1/2,
whereρ is the density,µ the magnetic permeability,
η the magnetic diffusivity, andΩ is the basic rotation
rate about thez-axis. The non-hydrostatic pressureP
is scaled byρνΩ. The scaled equations are

E

(
∂u
∂t

+ u · ∇u − ∇2u
)

+ 2ẑ× u + ∇P = Ra
r
ro
T + 1

Pm
(∇ × B)× B (1)

∂B
∂t

= ∇ × (u × B)+ 1

Pm
∇2B (2)

∂T

∂t
+ u · ∇T = 1

Pr
∇2T (3)

∇ · u = 0, ∇ · B = 0 (4)

Non-dimensional control parameters are the modified
Rayleigh number

Ra = αgo�T D

νΩ
(5)

where α is the thermal expansion coefficient
and go gravity at the outer radius, the Ekman
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number

E = ν

ΩD2
, (6)

the Prandtl number

Pr = ν

κ
, (7)

where κ is thermal diffusivity, and the magnetic
Prandtl number

Pm = ν

η
. (8)

The velocity vanishes on the rigid boundaries, relative
to the state of rotation of the respective boundary. In
cases 0 and 1, the inner and outer boundaries co-rotate.
In case 1, the regions outside the fluid shell are elec-
trical insulators and the magnetic field on the bound-
aries matches with appropriate potential fields in the
exterior that imply no external sources of the field.

In case 2, the inner core is treated as an electrically
conducting rigid sphere that can rotate around the
z-axis relative to the outer boundary, which provides
the frame of reference. Its moment of inertia is deter-
mined assuming the same density as in the liquid shell,
and its angular acceleration results from viscous and
magnetic torques. The moment of inertia is irrelevant
for the final uniform rotation of the inner core, but in-
fluences the transient spinup. In the inner core Eq. (2)
applies with the velocity field of rigid-body rotation
and the same magnetic Prandtl number, i.e. the same
electrical conductivity and magnetic permeability as
in the fluid shell. At the boundary between inner core
and fluid shell the magnetic field and the horizontal
component of the electrical field are continuous.

The Ekman number isE = 10−3 and the Prandtl
number isPr = 1 in all cases. In cases 0 and 1, we
set the Rayleigh number toRa = 100. In case 2,
it is Ra = 110, which is approximately two times
supercritical. The magnetic Prandtl number is zero in
case 0 (non-magnetic convection) and isPm = 5 in
cases 1 and 2.

Because only the final quasi-stationary solutions are
compared, the initial condition is, strictly speaking,
not part of the benchmark definition. However, be-
cause non-magnetic convection is found stable against
small magnetic perturbations at these parameters and
because the dynamo solutions seem to have only a
small basin of attraction, the initial state is of some

concern. Also the existence of multiple dynamo solu-
tions, for example with different azimuthal symmetry,
cannot be ruled out. Here, we recommend a set of ini-
tial conditions, but any other conditions that lead to
the desired solutions are also permissible. In all cases
the initial velocity is zero and the initial temperature is

T = rori

r
− ri + 210A√

17920π

× (1 − 3x2 + 3x4 − x6) sin4 θ cos 4φ (9)

whereθ is the colatitude,φ the longitude, andx =
2r − ri − ro. This describes a conductive state with a
perturbation of harmonic degree and order four super-
imposed. The amplitude is set toA = 0.1. In case 1,
the initial magnetic field is forri ≤ r ≤ ro:

Br = 5

8

(
8ro − 6r − 2

r4
i

r3

)
cosθ (10)

Bθ = 5

8

(
9r − 8ro − r4

i

r3

)
sinθ (11)

Bφ = 5 sin(π(r − ri)) sin 2θ. (12)

This corresponds to a dipolar poloidal field created by
a current density in theφ-direction which is uniform in
radius and a superimposed toroidal field of harmonic
degree two. The maximum value of bothBr andBφ is
5. In case 2, the initial magnetic field is for 0≤ r ≤ ro:

Br = 5
4ro − 3r

3 + ro
cosθ (13)

Bθ = 5
9r − 8ro
2ro + 6

sinθ (14)

Bφ = 5 sin

(
π
r

ro

)
sin 2θ. (15)

3. Character of the solution

Starting from the recommended initial condition,
a quasi-stationary solution is reached within approxi-
mately 15 time units in cases 1 and 2 and within 1.2
time units in case 0. The solution can be expressed by
a vector function of the form

(u,B, T ) = f(r, θ, φ − ωt) (16)
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Fig. 1. Case 1: left, contours ofBr on outer boundary in steps of 0.25; right, contours ofur at mid-depth in the shell, interval 2. Positive
and zero contours solid lines, negative contours dash-dotted.

with ω being the drift frequency. In case 2, the in-
ner core rotates at a uniform rateωic with respect to
the outer boundary after the initial transient. The solu-
tions are symmetric about the equator (dipole parity)
and have fourfold symmetry in longitude. In order to
reduce computer time, in some calculations this sym-
metry has been exploited by restricting the spherical
harmonic expansions accordingly. This is safe because
tests show that the solution is stable against small
symmetry-breaking perturbations. Some aspects of the
solution for case 1 are visualised in Fig. 1. Convec-
tion is columnar and the magnetic field on the outer
boundary is strongly dipolar and dominated by four
flux lobes. The figure shows a result obtained with
moderate resolution and is meant for illustrative pur-
poses only. The presence of a conducting and rotating
inner core in case 2 has no strong effect of the overall
pattern of the solution.

4. Requested data

Global averages as well as local data at a specific
point are compared in this benchmark. In all cases, the
drift frequencyω and the mean kinetic energy density
in the fluid have been calculated as

Ekin = 1

2Vs

∫
Vs

u2 dV (17)

whereVs refers to the volume of the fluid shell. In
cases 1 and 2, the mean magnetic energy density in

the shell is calculated as

Emag = 1

2VsEPm

∫
Vs

B2 dV. (18)

In case 2, also the magnetic energy densityEic
mag in

the inner core, defined equivalently to Eq. (18) for the
inner core volumeVic, and the angular frequencyωic
of differential rotation of the inner core are requested.
When participants compared preliminary results in the
course of the benchmark study, the torque acting on
the inner core turned out to be useful to identify errors.
Therefore we also list the values of the Lorentz torque
ΓL scaled byρDν2.

Defining a point where local data are to be taken
is not trivial because it must be fixed in the drifting
frame of reference. We take a point at mid-depth (r =
(ri + ro)/2) in the equatorial plane (θ = π/2) whose
φ-coordinate is given by the conditionsur = 0 and
(∂ur/∂φ) > 0. For this point we request in cases 0
and 1 the values ofT anduφ and additionally in case
1 the value ofBθ .

5. Methods

Six groups have contributed results to some or
all of the benchmark cases. Here, each code is de-
scribed briefly by some keywords. A more com-
plete description can be found in the supplied
references.
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Aubert, Cardin and Dormy (ACD): Spherical har-
monic expansion, finite differences in the radial
direction (Dormy et al., 1998). The radial mesh in-
terval decreases in geometrical progression towards
the boundaries. Three-point stencil for second-order
derivatives and five-point stencil for biharmonic oper-
ators (second-order accurate). Symmetry in longitude
can be imposed.

Christensen, Wicht and Glatzmaier (CWG): Spher-
ical harmonic expansion, Chebyshev polynomials
in radial direction, alias-free transform (Glatzmaier,
1984; Christensen et al., 1999); the basic numerical
method was also used in (Glatzmaier and Roberts,
1995). Symmetry in longitude assumed in most
cases. Time step dynamically controlled, typically
1.5 × 10−4 at low spatial resolution and 0.75× 10−4

at high resolution. Different versions of this code have
been run on the benchmark problems by Christensen
and Wicht and by Glatzmaier, respectively. Results
obtained by Glatzmaier are marked by an asterisk (∗).

Gibbons, Jones and Zhang (GJZ): Spherical har-
monic expansion, finite-differencing in radial direction
with non-equidistant grid using the Chebyshev zeros
as grid points and a seven-point stencil for all deriva-
tives.

Kono and Sakuraba (KS): Spherical harmonic ex-
pansion, Chebyshev tau method (Canuto et al., 1987)
for radial coordinate (Sakuraba and Kono, 1999).

Tilgner and Grote (TG): Spherical harmonic ex-
pansion, Chebyshev polynomials in radial direction
(Busse et al., 1998; Tilgner, 1999).

Takahashi, Matsushima and Honkura (TMH):
Spherical harmonic expansion, finite difference with
option for equidistant or non-uniform grid (Cheby-
shev points) in radial direction. Pressure defined on
staggered grid points. Three-point stencil used for
second-order derivatives and four-point stencil for
derivatives at staggered grid points. Longitudinal
symmetry exploited.

The three codes which use an expansion in Cheby-
shev polynomials in the radial direction (CWG, KS
and TG) are structured very similarly. The three codes
using finite differences in the radial direction (ACD,
GJZ and TMH) differ for example in the order of the
difference scheme and the structuring of the radial
grid.

Most groups provide results at different resolution.
All use 8-byte words (double precision). The spherical

harmonic expansion is truncated at degree"max and
ordermmax. Most contributors include all terms with
harmonic orderm ≤ " ≤ "max (mmax = "max, trian-
gular truncation), except GJZ, who truncate in most
cases atm ≤ min(",mmax) with mmax< "max (trape-
zoidal truncation). The minimum necessary number
of grid points inθ -direction (Gauss points), on which
non-linear products are calculated, is"max + 1, but
some authors use a larger number of pointsNθ to
reduce aliasing effects (similarly inφ-direction). For
alias-free computations of the non-linear termsNθ

needs to be equal or greater than(3"max + 1)/2 and
for triangular truncation of the spherical harmonics the
number of grid points in longitude needs to be twice
this. In those codes which use a spectral representation
in the radial direction, the number of radial grid points
Nr may exceed the number of Chebyshev modesNc,
although in the present casesNr � Nc has been used.

6. Results

At a qualitative level, all contributors obtain the
same generic solutions, which is the prerequisite for
a quantitative comparison and a convergence test.
In order to compare specific numbers obtained with
different codes at different resolution and in order to
monitor convergence, we define as resolutionR the
third root of the number of degrees of freedom for
each scalar variable:

R = N
1/3
r ("max[2mmax + 1] −m2

max +mmax + 1)1/3.

(19)

For mmax = "max this reduces toR = N
1/3
r ("max +

1)2/3. In case 2,Nr refers to the combined number of
radial points in the fluid shell and in the inner core.

6.1. Non-magnetic convection (case 0)

All results for case 0 are listed in Table 1. In Fig. 2,
we compare most of the results as functions ofR. Note
that for each quantity exceptω the range in the diagram
is less than 2% of the absolute value. That is, all results
that fall into the diagram agree within better than 2%.
All results seem to converge towards the same point.
The convergence is clearest for the fully spectral code
by CWG (circles), where results at comparatively low
resolution differ only marginally from those with high
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Table 1
Results for benchmark case 0a

Group Nr Nθ "max Ekin T uφ ω

ACD 50 46 44 58.970 0.4259 −10.058 0.0602
ACD 100 46 44 58.515 0.4276 −10.134 0.1509
ACD 150 46 44 58.426 0.4279 −10.147 0.1686
ACD 250 92 44 58.379 0.4280 −10.153 0.1775
CWG 25 48 32 58.3499 0.42812 −10.1570 0.18283
CWG 33 80 53 58.3481 0.42811 −10.1571 0.18241
CWG∗ 49 96 63 58.3488 0.42811 −10.1570 0.18241
CWG 65 128 84 58.3480 0.42812 −10.1571 0.18241
GJZ 40 38 36 (20) 58.2208 0.42808 −10.1547 0.19198
GJZ 60 42 40 (28) 58.2955 0.42813 −10.1560 0.19010
GJZ 100 42 40 (28) 58.3348 0.42816 −10.1558 0.18289
TMH 40 36 58.5874 0.4271 −10.0823 0.1228
TMH 100 36 58.4028 0.4279 −10.1421 0.1670
TMH 100e 36 58.5471 0.4281 −10.1585 0.1560

a Notation: e, equidistant radial grid;mmax given in parentheses after"max when different.

resolution. Also the contributions by ACD (diamonds),
GJZ (squares) and TMH (crosses) with radial finite
differencing converge satisfactorily towards the same
values at highR. For the finite difference methods the
radial resolution has been found to be critical, and in
fact the angular resolution has been kept constant or
varied little in these calculations. ACD and GJZ report
that results for a uniform radial grid (not shown in

Fig. 2. Convergence of results for case 0: diamonds, ACD; circles, CWG; squares, GJZ; crosses, TMH. (a) Kinetic energy, (b) local
temperature, (c) local azimuthal velocity, (d) drift frequency.

this paper) are much worse than for the non-uniform
grids used here. The comparison supplied by TMH for
Nr = 100 confirms this forEkin andω, although the
differences are rather moderate. A non-uniform grid
provides better resolution in the boundary layers, and
even though the Ekman layer is not very thin at the
moderate value of the Ekman number, good resolution
of this layer seems to be essential.
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Table 2
Results for benchmark case 1a

Group Nr Nθ "max Ekin Emag T uφ Bθ ω

ACD 48 46 44 29.965 601.912 0.3730 −7.864 −4.779 −3.038
ACD 90 46 44 30.637 623.204 0.3729 −7.669 −4.912 −3.102
ACD 150 46 44 30.732 625.681 0.3730 −7.634 −4.929 −3.105
ACD 200 92 44 30.758 626.284 0.3730 −7.626 −4.933 −3.105
CWG 21 40 26 30.5015 616.085 0.36281 −7.2228 −4.8456 −3.0926
CWG 25 48 32 30.7214 626.572 0.37373 −7.5941 −4.9023 −3.0852
CWG 33 64 42 30.7686 626.420 0.37390 −7.6427 −4.9358 −3.1011
CWG 33 80 53 30.7714 626.406 0.37325 −7.6211 −4.9285 −3.1016
CWG 41 96 64 30.7715 626.416 0.37337 −7.6250 −4.9288 −3.1016
CWG∗ 49 96 63 30.7716 626.413 0.37337 −7.6255 −4.9284 −3.1016
CWG 65 128 85 30.7734 626.409 0.37338 −7.6250 −4.9289 −3.1017
GJZ 40 38 36 (20) 30.1263 617.462 0.36226 −7.0899 −4.8972 −2.992
GJZ 40 52 50 (44) 30.5724 622.558 0.37314 −7.6201 −4.9101 −3.083
GJZ 80 52 50 (44) 30.7541 625.656 0.37325 −7.6203 −4.9301 −3.100
GJZ 100 54 52 (52) 30.7605 626.020 0.37336 −7.6308 −4.9232 −3.101
GJZ 150 78 50 (44) 30.7677 626.282 0.37328 −7.6210 −4.9333 −3.101
KS 48 64 42 30.7709 626.434 0.37376 −7.6376 −4.9333 −3.1009
TG 33 64 42 30.7695 626.402 0.37378 −7.6387 −4.9340 −3.0997
TMH 70e 26 31.0298 623.092 0.3679 −7.3525 −4.9220 −3.0949
TMH 70 26 30.7901 627.607 0.3675 −7.3330 −4.9190 −3.0735

a Notation: e, equidistant radial grid;mmax in parentheses after"max when different.

6.2. Dynamo with insulating inner core (case 1)

Results for case 1 are listed in Table 2 and some of
them are plotted against resolution in Fig. 3. Again

Fig. 3. Convergence of results for case 1: diamonds, ACD; circles, CWG; squares, GJZ; plus sign, TG; triangle, KS; crosses, TMH
(uniform and non-uniform radial grid). (a) Kinetic energy, (b) magnetic energy, (c) local magnetic field component, (d) drift frequency.

the agreement among the various contributions is very
satisfactory; the range covered in each of the diagrams
is only 1% of the total value. The general agreement
is particularly good between the three codes using
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Table 3
Results for benchmark case 2

Group Nr N ic
r Nθ "max Ekin Emag E ic

mag ω ωic ΓL

ACD 90 25 46 44 42.311 844.400 822.522 −3.834 −2.521 −91.023
ACD 150 40 46 44 42.392 845.400 821.855 −3.821 −2.598 −91.910
ACD 200 60 46 44 42.405 845.604 821.833 −3.816 −2.619 −92.212
ACD 250 70 46 44 42.409 845.694 821.885 −3.815 −2.630 −92.381
CWG 33 16 48 32 42.3295 849.003 824.255 −3.7584 −2.7393 −94.407
CWG 49 16 64 41 42.3713 845.932 823.162 −3.7984 −2.6706 −93.105
CWG 49 16 96 63 42.3882 845.605 822.667 −3.8027 −2.6594 −92.979
CWG∗ 49 16 96 63 42.3878 845.604 822.672 −3.8027 −2.6593 −92.978
CWG 49 20 96 63 42.3888 845.602 822.649 −3.8027 −2.6593 −92.978
CWG 49 16 128 84 42.3881 845.606 822.673 −3.8027 −2.6595 −92.979

Chebyshev expansion (circles, triangle and plus sign
in Fig. 3), which is not surprising given that the codes
are based on the same principles. For this method,
only CWG (circles) provide results at variable reso-
lution, but two codes with radial finite differencing
seem to converge against the same values for the ki-
netic and magnetic energy, respectively. For the local
values and the drift frequency convergence against a
common point is less clear than for the energies, but
the best resolved results agree within a quarter of a
percent. For the local values the need to interpolate the

Fig. 4. Convergence of results for case 2: diamonds, ACD; circles, CWG. (a) Magnetic energy density in fluid shell, (b) magnetic energy
density in inner core, (c) drift frequency, (d) rotation frequency of inner core.

respective fields between grid points is an additional
source of error, which might explain the less system-
atic convergence behaviour.

CWG studied the influence of changing the
time-step for two different spatial grids. Reduc-
ing the step by a factor of two lead to differences
in the sixth decimal place. Therefore, a time-step
which is smaller than what stability requires does
not improve the solution significantly, at least in the
weakly time-dependent regime of the benchmark
dynamo.
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6.3. Dynamo with conducting and rotating
inner core (case 2)

Results for case 2 have only been reported by two
contributors. The validity of the results is somewhat
reinforced by the use of two different code versions
by CWG (labelled with and without an asterisk). The
basis for both versions is the fully spectral dynamo
code by Glatzmaier (1984), but the additions for treat-
ing a conducting and rotating inner core have been
implemented independently and overall the codes dif-
fer in some details. The two solutions agree within
better than 4× 10−5 for all requested properties. The
results by ACD, who use a finite difference method in
the radial direction, are in reasonable agreement with
those by CWG (Table 3 and Fig. 4). The deviation is
largest for the inner core rotation rate, about 1% at
the highest resolution, but a quadratic extrapolation of
ACD’s results suggest that they converge against those
by CWG.

The sum of the viscous and magnetic torques on
the solid inner core is obviously zero because its
rotation rate is steady. The viscous torque is posi-
tive (prograde) while the magnetic torque is negative
(Table 3). GAG reports that the viscous torque on
the stationary inner core of case 1 is also positive
and cancels the negative viscous torque on the outer
boundary so that the net torque on the fluid shell
still vanishes, as it has to in steady state. It is inter-
esting that the signs of the viscous torques on the
two boundaries in the non-magnetic case 0 are op-
posite to what they are in case 1 and that the sign
of the drift frequencyω differs between cases 0
and 1.

Table 4
Suggested standard solution with uncertainties

Case 0 Case 1 Case 2

Ekin 58.348± 0.050 30.733± 0.020 42.388± 0.050
Emag 626.41± 0.40 845.60± 0.40
E ic

mag 822.67± 1.60
T 0.42812± 0.00012 0.37338± 0.00040
uφ −10.1571± 0.0020 −7.6250± 0.0060
Bθ −4.9289± 0.0060
ω 0.1824± 0.0050 −3.1017± 0.0040 −3.8027± 0.0250
ωic −2.6595± 0.0600
ΓL −92.979± 1.200

7. Discussion and conclusions

The comparison of codes that use finite differences
in the radial direction with fully spectral methods sug-
gests that the latter are more advantageous when high
accuracy is required. In case of the partial finite dif-
ference methods, the radial resolution is clearly the
accuracy-limiting factor. The exponential convergence
behaviour of fully spectral methods is very helpful
to pin down the solution to several significant digits,
which is one aim of the benchmark study. Further-
more, an asset of the Chebyshev representation is that
it allows one to calculate radial derivatives of the de-
pendent variables on grid points with great accuracy.
Because most computer time is used for the trans-
formation in the angular coordinates, the additional
time required for the Chebyshev transforms is far out-
weighed by the smaller number of radial grid levels
that is needed to achieve a given accuracy. However,
one must also keep in mind that the benchmark cases
are simple in the sense that the spatial spectra drop
off rapidly with wavenumber and time-dependence
is weak, which makes them ideally suited for spec-
tral methods. For chaotic dynamos at higher Rayleigh
numbers and lower Ekman numbers, which require
much higher spatial resolution, the spectral method
becomes very expensive and may be less suited than
other techniques for massively parallel computers. Un-
fortunately, a comparison study at such parameters
would be far more difficult.

The overall level of agreement between different
methods is remarkable when the resolution is suf-
ficiently high. This allows us to define with great
confidence a standard solution within narrow error
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limits for cases 0 and 1. We suggest that the best
result from CWG be considered the standard. To es-
timate the range of uncertainty we require that the
best-resolved results of two more codes (those by
ACD and GJZ) fall into this range (Table 4). Be-
cause of the slower convergence of the latter two
codes, the exact solution may be much closer to
the suggested value than what the quoted accuracy
suggests.

With only two completely independent contribu-
tions to case 2 we cannot claim the same level of
confidence as in the other cases, but the convergence
of the CWG results and the satisfactory agreement
with the ACD solution justifies the selection of the
best resolved result by CWG as a standard also
in this case. Here, the uncertainty has been fixed
to twice the difference between the best results by
CWG and ACD, but not less than the uncertainty
determined in case 1 for the same property (where
applicable).
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