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a b s t r a c t

The convective instability in a rapidly rotating, self-graviting sphere sets up in the form of equatorially
symmetric, non-axisymmetric columnar vortices aligned with the rotation axis, carrying heat away in
the cylindrical radial direction. In this study, we present numerical simulations of thermal convection
and dynamo action driven by internal heating (intended to model a planetary core subject to uniform
secular cooling) in a rotating sphere where, from the classical columnar convection regime, we find
a spontaneous transition towards an unexpected and previously unobserved flow regime in which an
equatorially antisymmetric, axisymmetric (EAA) mode strongly influences the flow. This EAA mode car-
ries heat away along the rotation axis and is the nonlinear manifestation of the first linearly unstable
otating convection
ecular cooling
ynamo
ntisymmetric
emispherical
ars

axisymmetric mode. When the amplitude of the EAA mode reaches high enough values, we obtain hemi-
spherical dynamos with one single hemisphere bearing more than 75% of the total magnetic energy at the
surface of the rotating sphere. We perform the linear analysis of the involved convective modes and the
nonlinear study of this hydrodynamic transition, with and without dynamo action, to obtain scaling laws
for the regime boundaries. As secular cooling in a full sphere (i.e. without inner core) is a configuration

wide
sible i
which has probably been
Mars, we discuss the pos

. Introduction

Convection in rotating systems has been widely studied because
f its numerous geophysical and astrophysical applications. For
nstance, dynamo processes sustained by convection are an attrac-
ive explanation not only for the Sun’s magnetic field but also for
he magnetic field of the Earth and other planets. Rotationally dom-
nated convection is typically organized into vortices aligned with
he rotation axis. These columnar structures tend not to violate the
aylor–Proudman constraint which requires the velocity field to be
nvariant along any line parallel to the rotation axis and which is
pproximately valid when the main balance is between the Coriolis
orce and the pressure gradient force. In the particular case of rotat-
ng spheres, the idea of a columnar convection appeared gradually.
he first attempts to solve the onset of thermal convection focused
n axisymmetric modes. Scaling laws for the threshold of instabil-

ty of these modes could be extracted from Chandrasekhar (1961),
ut the asymptotic behavior in the limit of small Ekman numbers
as obtained by Roberts (1965) and Bisshopp and Niiler (1965)
ith two different analytical approaches. Roberts (1968) was the
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031-9201/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.pepi.2011.01.004
spread in the early solar system in planetary cores, including the core of
mplications of our results for the past martian dynamo.

© 2011 Elsevier B.V. All rights reserved.

first to recognize that the important modes at the onset of ther-
mal convection in rapidly rotating spheres are non-axisymmetric.
However, Roberts concentrated his efforts on equatorially antisym-
metric modes, in the wake of his 1965 study (Roberts, 1965) where
he found that the linearly most unstable axisymmetric mode of
convection has this parity. Busse (1970) subsequently showed that
the dominant structures at onset are not only non-axisymmetric
but also equatorially symmetric, corresponding to the famous illus-
tration of vortices parallel to the axis of rotation and localized in
the vicinity of a fixed radius in cylindrical coordinates. The first
correct linear asymptotic solution for rapidly rotating full spheres
was given by Jones et al. (2000). Nonlinear numerical simulations
of convection and dynamo action in spherical shells have subse-
quently confirmed this columnar flow structure and the secondary
influence of equatorially antisymmetric modes (e.g. Olson et al.,
1999).

Among the different driving mechanisms which can be imposed
in such numerical simulations, secular cooling in full spheres (i.e.
without inner core) has been studied little until now. This config-
uration is appropriate for modeling convection and dynamo action

in the Earth’s core prior to inner core nucleation (Gubbins et al.,
2003; Aubert et al., 2009). Besides, an early dynamo in a convective
core subject to secular cooling is the most plausible hypothesis to
explain the strong magnetizations measured on Mars’ crust by the

dx.doi.org/10.1016/j.pepi.2011.01.004
http://www.sciencedirect.com/science/journal/00319201
http://www.elsevier.com/locate/pepi
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ars Global Surveyor mission. The timing of the martian dynamo
s debated but can be estimated using ages of the different crust
egions. Indeed, some large impact basins, believed to be∼4 Gyr old,
re not magnetized (Acuna et al., 1999). Thus, the dynamo would
ave been active in the early history of Mars, between 4.5 Gyr and
Gyr. Several published studies (Lodders and Fegley, 1997; Sanloup
t al., 1999) compared sulphur contents of martian meteorites with
hose of other primitive meteorites and estimated a high sulphur
ontent in Mars’ core: from 10.6% to 16.2%. Stewart et al. (2007) per-
ormed experiments on iron–sulfur and iron–nickel–sulfur systems
t high pressure and obtained the corresponding phase diagrams
t fixed pressure. They showed that, considering such high sulphur
ontents, Mars’ core is likely to be presently entirely liquid.

The Mars Global Surveyor mission also revealed a very surpris-
ng feature for Mars’ crust: intense crustal magnetizations were

easured in the Southern hemisphere whereas the Northern hemi-
phere contains only weak fields. Dynamo models do not easily
xplain this hemispherical crustal magnetic field. Since Mars is a
errestrial planet with a size comparable to that of the Earth, we
ould have expected a dipole dominated dynamo regime with sim-
lar magnetic field strength in both hemispheres. For this reason it
as long been thought that post-dynamo events, such as resurfacing
rocesses or giant impacts, were responsible for the magnetic field
symmetry of the martian crust. It is however possible (Stanley
t al., 2008) that hemispherical magnetizations of Mars’ surface
ave been caused by a dynamo process, influenced by a hemi-
pherical pattern in the heat flux extracted by the mantle at the
ore-mantle boundary (CMB).

Here, we use numerical simulations to model thermal con-
ection and dynamo action driven by secular cooling in rotating
ull spheres. We find that, in this geometry and with this driv-
ng mechanism, an unexpected and previously unobserved flow
egime spontaneously emerges through a hydrodynamic bifurca-
ion: from the classical columnar flow regime to a flow regime
hich is strongly influenced by an equatorially antisymmetric,

xisymmetric (EAA) mode and which apparently violates the
aylor–Proudman constraint. This unexpected flow regime, which
e will refer to as the asymmetric regime, has never been observed

efore. The aim of the present study is to investigate the following
uestions: What is the dynamics of this EAA mode and why does it
ppear in the particular case of convection driven by secular cooling
n rotating spheres? What impact does the EAA mode have on the
attern of magnetic field which can be seen on the planetary sur-
ace? In Section 2 we present the model and the equations solved by
he numerical code. In Section 3 we introduce the results related to
he hydrodynamics of the system. In Section 4 we analyze the effect
f the emergence of the EAA mode on magnetic field generation
nd we show that hemispherical dynamos can be spontaneously
nduced. Finally, in Section 5, we discuss our numerical results and
he possible implications for the past martian dynamo.

. Model

Fig. 1 illustrates the configuration of the system. We use spheri-
al coordinates (r, �, �) and cylindrical coordinates (s, �, z). A sphere
f radius ro, which contains a conductive fluid, is rotating at rate �
round an axis parallel to ẑ. Because of numerical considerations,
or the calculations performed in this study we retained a very small
nner sphere of radius ri = 0.01ro at the center of the system. It has
lready been argued (Aubert et al., 2009) that the presence of the

mall inner sphere has a negligible impact on the solution. After
mplementation of a more recent version of our code where the
nner sphere is completely removed (ri/ro = 0), we were able to con-
rm that this is indeed the case for the results presented here. For
his reason, the system will be referred to as a rotating full sphere.
x̂

Fig. 1. Schematic representation of the system. ri/ro = 0.01.

Within the magnetohydrodynamic approximation, the non-
dimensionalized governing Boussinesq equations for the velocity
field u, the magnetic field B, and the temperature field T, are given
by:

∂u
∂t

+ u.∇u + 2ẑ × u = −∇P + RaQ
r
r0

T + (∇ × B) × B + E�u (1)

∂T

∂t
+ (u.∇)T = E

Pr
�T + ST (2)

∂B
∂t

= ∇ × (u × B) + E

Pm
�B (3)

∇ · B = 0 (4)

∇ · u = 0 (5)

where ST is a positive source term. The equations have been non-
dimensionalized using the following scales: D = ro − ri for length
scale (D ≈ ro), �−1 for time, �D for velocity, �D2�2 for pressure
where � is the fluid density,

√
���D for magnetic field where � is

the magnetic permeability of the fluid and Q/4	�Cp�D3 for tem-
perature where Q is the total heat flux at the external boundary, or
CMB and Cp the specific heat capacity.

Our numerical code solves the Boussinesq equations (1)–(5) for
a system which corresponds to fluctuations with respect to an adia-
batic reference state. In this framework, we model secular cooling in
planetary systems using internal heating in the Boussinesq system.
The decrease in the adiabatic (reference) temperature on geolog-
ical time scales is modeled by a uniform distribution of internal
heat sources (ST) in Eq. (2). As T has to be statistically stationary,
ST is determined such that the heat budget of the sphere vanishes
(Aubert et al., 2009).

The mantle dynamics evolves on much longer time scales than
the core dynamics and thus, the core provides an isothermal bound-
ary condition for the mantle. The resulting heat flux at the CMB,
either related to thermal boundary layers in a convective mantle or
to a conductive heat flux in a stagnant mantle, provides the ther-
mal boundary condition for core convection. Thus, we impose a
uniform heat flux Q at the surface of the sphere which represents
the CMB. The heat flux is equal to zero at ri. The velocity vanishes
on the rigid boundaries. We study hydrodynamic simulations (in

which the initial magnetic field is set to zero) and dynamo simula-
tions (in which the initial magnetic field corresponds to a dipole of
infinitesimal amplitude).

Non-dimensional control parameters are:
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Table 1
Numerical models and results for hydrodynamic simulations. See text for the definitions of input parameters and output quantities. In all simulations we impose Pr = 1 and
Pm = 5. The first column labels A and B tag runs which are specifically referred to in the text. The last column characterizes the resulting flow regime: ‘Sym’ and ‘Asym’ for
simulations which are in a symmetric and asymmetric regime respectively (see Section 3.2 for definitions).

E RaQ Ks Ka K0a

0.0001 1.5 × 10−5 2.56 × 10−5 3.10 × 10−15 6.86 × 10−16 Sym
0.0001 1.7 × 10−5 3.01 × 10−5 1.13 × 10−12 1.65 × 10−13 Sym
0.0001 1.8 × 10−5 3.24 × 10−5 1.46 × 10−9 1.67 × 10−10 Sym
0.0001 2 × 10−5 3.61 × 10−5 1.45 × 10−6 2.16 × 10−7 Asym
0.0001 2.2 × 10−5 3.90 × 10−5 3.98 × 10−6 7.38 × 10−7 Asym
0.0001 2.5 × 10−5 4.40 × 10−5 6.44 × 10−6 1.23 × 10−6 Asym
0.0001 4 × 10−5 6.49 × 10−5 2.63 × 10−5 6.81 × 10−6 Asym
0.0001 4.5 × 10−5 7.11 × 10−5 3.25 × 10−5 8.48 × 10−6 Asym
0.0001 5 × 10−5 7.76 × 10−5 3.88 × 10−5 1.02 × 10−5 Asym
0.0001 6 × 10−5 9.27 × 10−5 5.15 × 10−5 1.33 × 10−5 Asym
0.0001 7 × 10−5 1.08 × 10−4 6.13 × 10−5 1.52 × 10−5 Asym
0.0003 1.8 × 10−5 6.40 × 10−7 9.28 × 10−18 9.20 × 10−18 Sym
0.0003 4.5 × 10−5 3.22 × 10−5 3.13 × 10−16 2.55 × 10−16 Sym
0.0003 7.2 × 10−5 6.99 × 10−5 9.22 × 10−12 9.80 × 10−13 Sym

A 0.0003 9 × 10−5 9.11 × 10−5 3.69 × 10−11 7.79 × 10−12 Sym
0.0003 1.08 × 10−4 1.15 × 10−4 1.41 × 10−10 1.00 × 10−11 Asym
0.0003 1.26 × 10−4 1.28 × 10−4 2.07 × 10−5 6.29 × 10−6 Asym
0.0003 1.35 × 10−4 1.38 × 10−4 2.30 × 10−5 6.33 × 10−6 Asym
0.0003 1.575 × 10−4 1.49 × 10−4 4.93 × 10−5 1.78 × 10−5 Asym
0.0003 1.8 × 10−4 1.66 × 10−4 7.20 × 10−5 2.81 × 10−5 Asym
0.0003 1.98 × 10−4 1.73 × 10−4 9.04 × 10−5 3.59 × 10−5 Asym
0.0003 2.25 × 10−4 1.92 × 10−4 1.14 × 10−4 4.56 × 10−5 Asym
0.0003 2.475 × 10−4 2.02 × 10−4 1.35 × 10−4 5.37 × 10−5 Asym
0.0003 2.7 × 10−4 2.15 × 10−4 1.58 × 10−4 6.36 × 10−5 Asym
0.0003 3.15 × 10−4 2.45 × 10−4 1.94 × 10−4 7.56 × 10−5 Asym

B 0.0003 3.6 × 10−4 2.76 × 10−4 2.34 × 10−4 9.00 × 10−5 Asym
0.001 6.5 × 10−4 3.70 × 10−4 1.88 × 10−7 7.60 × 10−8 Asym
0.001 7 × 10−4 3.58 × 10−4 5.98 × 10−5 3.68 × 10−5 Asym
0.01 1.25 × 10−2 3.40 × 10−5 0 0 Sym
0.01 1.3 × 10−2 8.48 × 10−5 0 0 Sym
0.01 1.4 × 10−2 2.25 × 10−4 0 0 Sym
0.01 1.55 × 10−2 6.00 × 10−5 2.08 × 10−4 2.02 × 10−4 Asym
0.01 1.57 × 10−2 1.29 × 10−6 2.83 × 10−4 2.83 × 10−4 Asym
0.01 1.6 × 10−2 1.47 × 10−6 3.35 × 10−4 3.35 × 10−4 Asym
0.01 1.61 × 10−2 1.60 × 10−6 3.52 × 10−4 3.52 × 10−4 Asym
0.01 1.62 × 10−2 1.75 × 10−6 3.69 × 10−4 3.69 × 10−4 Asym
0.01 1.63 × 10−2 1.92 × 10−6 3.87 × 10−4 3.87 × 10−4 Asym

0−6

0−6

0−6

0−6

•

•

•

•

a
�
c
b

n
f

0.01 1.65 × 10−2 2.32 × 1
0.01 1.7 × 10−2 3.30 × 1
0.01 1.8 × 10−2 5.93 × 1
0.01 1.9 × 10−2 9.30 × 1

the modified Rayleigh number

RaQ = ˛g0Q

4	�Cp�3D4
, (6)

which has the advantage of being independent of the thermal and
viscous diffusivities (Christensen and Aubert, 2006; Aubert et al.,
2009),
the Ekman number

E = 


�D2
, (7)

the Prandtl number

Pr = 


�
, (8)

the magnetic Prandtl number

Pm = 


�
, (9)

where ˛ is the thermal expansion coefficient, go is the acceler-
tion due to gravity at the outer radius, 
 the kinematic viscosity,
the thermal diffusivity and � the magnetic diffusivity. Using this
hoice of non-dimensional numbers, the canonical Rayleigh num-
er Ra is given by Ra = RaQE−3 Pr2.

The numerical code PARODY is used to solve the entire set of
onlinear equations (1)–(5). More details about this code can be

ound in Aubert et al. (2008). The parameters of all the nonlinear
4.21 × 10−4 4.21 × 10−4 Asym
5.08 × 10−4 5.08 × 10−4 Asym
6.80 × 10−4 6.80 × 10−4 Asym
8.52 × 10−4 8.52 × 10−4 Asym

simulations used in this study are contained in Table 1 (hydrody-
namic simulations) and Table 2 (dynamo simulations): we vary the
values of E and RaQ and set Pr to 1 and Pm to 5 in most simula-
tions. Linear stability results are obtained using a linear version
of PARODY. Eqs. (1)–(5) are linearized in order to get the corre-
sponding perturbation equations. The basic state corresponds to a
stagnant fluid in which heat is transferred by diffusive processes.
The algorithm used here is the same as in Dormy et al. (2004):
it does not solve an eigenvalue problem but, for each value of
the modified Rayleigh number, it integrates the equations in time
until the system converges towards a given eigenfunction of the
form F(r)exp (t)exp i(m� − ωt) for each azimuthal wavenumber
m. Then, we increase the Rayleigh number until the growth rate of
a particular mode with azimuthal wavenumber mc becomes pos-
itive. As for the nonlinear analysis, we set Pr = 1 and we vary the
Ekman and modified Rayleigh numbers.

As the results presented in this study are rather unexpected, spe-
cial care has been devoted to testing our numerical implementation
PARODY against at least another implementation (the Christensen,
Wicht, Glatzmaier MAG/MAGIC code, Christensen et al., 2001) in a
case where antisymmetric convection arises in the presence of an

−4 −4
inner core, with the following parameters: E = 10 , RaQ = 2 × 10 ,
Pr = 1, Pm = 7, and an aspect ratio ri/ro = 0.35. We have checked
that after equilibration, both codes yield the same results, with an
equatorially asymmetric temperature profile outside the cylinder
tangent to the inner core.
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Table 2
Numerical models and results for dynamo simulations. See text for the definitions of input parameters and output quantities. In all simulations we impose Pr = 1 and Pm = 5,
except in simulation H in which Pm = 1. The first column labels C to H tag runs which are specifically referred to in the text. The last column characterizes the flow regime:
‘Sym’, ‘Os’ and ‘Asym’ for simulations which are in a symmetric, oscillating and asymmetric regime respectively (see Sections 3.2 and 4.1 for definitions).

E RaQ Ks Ka K0a Mdip Mqua

H 3 × 10−5 4.5 × 10−5 1.46 × 10−4 6.07 × 10−5 8.86 × 10−6 1.94 × 10−7 2.16 × 10−7 Asym
0.0001 2 × 10−5 1.79 × 10−5 3.61 × 10−6 2.18 × 10−7 1.65 × 10−5 9.39 × 10−6 Os
0.0001 4 × 10−5 3.67 × 10−5 1.03 × 10−5 6.05 × 10−7 2.35 × 10−5 1.66 × 10−5 Os
0.0001 6 × 10−5 5.81 × 10−5 1.84 × 10−5 1.43 × 10−6 2.43 × 10−5 1.92 × 10−5 Os
0.0001 6.5 × 10−5 6.16 × 10−5 1.97 × 10−5 1.47 × 10−6 2.88 × 10−5 2.25 × 10−5 Os
0.0001 7 × 10−5 6.61 × 10−5 2.26 × 10−5 2.22 × 10−6 2.85 × 10−5 2.29 × 10−5 Os
0.0001 7.5 × 10−5 7.26 × 10−5 2.59 × 10−5 3.17 × 10−6 2.69 × 10−5 2.23 × 10−5 Os
0.0001 8 × 10−5 7.30 × 10−5 3.44 × 10−5 7.68 × 10−6 2.72 × 10−5 2.43 × 10−5 Os

G 0.0001 9 × 10−5 7.79 × 10−5 5.19 × 10−5 2.08 × 10−5 2.54 × 10−5 2.41 × 10−5 Os
0.0001 9.5 × 10−5 8.11 × 10−5 6.13 × 10−5 2.75 × 10−5 2.23 × 10−5 2.16 × 10−5 Asym
0.0001 1.5 × 10−4 1.32 × 10−4 1.27 × 10−4 5.50 × 10−5 1.37 × 10−5 1.40 × 10−5 Asym
0.0003 1.8 × 10−5 6.40 × 10−7 5.62 × 10−22 5.57 × 10−22 7.07 × 10−16 1.13 × 10−22 Sym
0.0003 4.5 × 10−5 3.26 × 10−5 1.53 × 10−13 1.26 × 10−13 3.30 × 10−10 7.48 × 10−17 Sym
0.0003 7.2 × 10−5 6.85 × 10−5 3.56 × 10−11 1.48 × 10−11 1.44 × 10−10 5.17 × 10−14 Sym

C 0.0003 9 × 10−5 7.67 × 10−5 2.33 × 10−6 1.79 × 10−7 1.59 × 10−5 3.13 × 10−6 Sym
0.0003 1.08 × 10−4 8.33 × 10−5 7.16 × 10−6 8.03 × 10−7 2.65 × 10−5 1.00 × 10−5 Os
0.0003 1.35 × 10−4 1.14 × 10−4 1.15 × 10−5 1.27 × 10−6 3.86 × 10−5 2.00 × 10−5 Os
0.0003 1.8 × 10−4 1.38 × 10−4 2.40 × 10−5 3.11 × 10−6 2.97 × 10−5 1.88 × 10−5 Os
0.0003 1.98 × 10−4 1.38 × 10−4 2.90 × 10−5 3.73 × 10−6 4.33 × 10−5 2.72 × 10−5 Os

F 0.0003 2.25 × 10−4 1.58 × 10−4 4.52 × 10−5 1.23 × 10−5 3.84 × 10−5 2.80 × 10−5 Os
0.0003 2.48 × 10−4 1.58 × 10−4 4.74 × 10−5 1.06 × 10−5 5.59 × 10−5 4.07 × 10−5 Os
0.0003 2.7 × 10−4 1.48 × 10−4 8.69 × 10−5 4.42 × 10−5 5.88 × 10−5 5.12 × 10−5 Os
0.0003 2.925 × 10−4 1.49 × 10−4 1.31 × 10−4 8.36 × 10−5 5.05 × 10−5 4.94 × 10−5 Asym
0.0003 3.15 × 10−4 1.53 × 10−4 1.65 × 10−4 1.13 × 10−4 4.76 × 10−5 4.89 × 10−5 Asym

D 0.0003 3.6 × 10−4 1.75 × 10−4 2.14 × 10−4 1.51 × 10−4 4.28 × 10−5 4.37 × 10−5 Asym
0.0003 4.05 × 10−4 1.92 × 10−4 2.83 × 10−4 2.05 × 10−4 4.25 × 10−5 4.43 × 10−5 Asym
0.0003 4.5 × 10−4 2.15 × 10−4 3.37 × 10−4 2.40 × 10−4 3.97 × 10−5 4.12 × 10−5 Asym
0.001 6 × 10−4 3.25 × 10−4 2.50 × 10−8 1.16 × 10−8 3.34 × 10−11 4.48 × 10−14 Sym
0.001 7 × 10−4 3.88 × 10−4 1.95 × 10−5 9.15 × 10−6 3.59 × 10−11 8.83 × 10−12 Asym
0.001 7.5 × 10−4 3.02 × 10−4 9.33 × 10−5 6.51 × 10−5 1.23 × 10−5 1.00 × 10−5 Asym
0.001 7.6 × 10−4 3.11 × 10−4 9.44 × 10−5 6.56 × 10−5 1.40 × 10−5 1.12 × 10−5 Asym
0.001 7.7 × 10−4 3.14 × 10−4 1.10 × 10−4 7.87 × 10−5 1.09 × 10−5 9.27 × 10−6 Asym
0.001 8 × 10−4 3.17 × 10−4 1.30 × 10−4 9.29 × 10−5 1.01 × 10−5 9.02 × 10−6 Asym
0.001 8.2 × 10−4 3.17 × 10−4 1.39 × 10−4 1.00 × 10−4 1.35 × 10−5 1.16 × 10−5 Asym
0.001 8.5 × 10−4 3.27 × 10−4 1.48 × 10−4 1.05 × 10−4 1.48 × 10−5 1.31 × 10−5 Asym
0.001 8.7 × 10−4 3.23 × 10−4 1.63 × 10−4 1.18 × 10−4 1.65 × 10−5 1.49 × 10−5 Asym
0.001 9 × 10−4 3.25 × 10−4 1.93 × 10−4 1.41 × 10−4 1.48 × 10−5 1.37 × 10−5 Asym

−4 −4 0−4 −4 −5 −5

0−4

0−3

0−3

K

w
a

•

•

•

m
d
w
�

a

M

0.001 9.5 × 10 3.29 × 10 2.16 × 1
0.001 1 × 10−3 3.29 × 10−4 2.24 × 1
0.001 3 × 10−3 7.60 × 10−4 1.73 × 1
0.001 5 × 10−3 1.31 × 10−3 2.94 × 1

The time averaged kinetic energy density K is defined as follows:

= 1
2VS

〈∫
VS

u2dV

〉
(10)

here VS is the shell volume and the angled brackets indicate a time
veraging operator. Using this template, we additionally define:

the time averaged kinetic energy density contained in the equa-
torially antisymmetric, axisymmetric (EAA) flow component K0a,
the time averaged kinetic energy density contained in equatori-
ally antisymmetric modes Ka,
the time averaged kinetic energy density contained in equatori-
ally symmetric modes Ks.

In the present study, it is understood that an ‘equatorially sym-
etric’ vector field u is left unchanged by the operator � which

escribes mirror-reflection through the equatorial plane, i.e. �u = u,
hile an ‘equatorially antisymmetric’ vector field is such that
u = − u.
We similarly define a time averaged magnetic energy density M
t the external boundary of the model:

= 1
2Scmb

〈∫
Scmb

B2dS

〉
(11)
1.60 × 10 2.15 × 10 1.98 × 10 Asym
1.66 × 10−4 3.69 × 10−5 3.41 × 10−5 Asym
1.34 × 10−3 7.18 × 10−6 7.53 × 10−6 Asym
2.21 × 10−3 1.46 × 10−5 1.51 × 10−5 Asym

where Scmb is the surface of the sphere (at the CMB). Using this
template, we also define:

• the time averaged CMB magnetic energy related to modes of
dipole parity (odd l + m in spherical harmonics) Mdip,

• the time averaged CMB magnetic energy related to modes of
quadrupole parity (even l + m) Mqua.

Another output quantity fhem is used to characterize the hemi-
sphericity of the magnetic field at the CMB:

fhem = max[MS, MN]
M

, (12)

where MS and MN are the time averaged magnetic energy densities
contained in the Southern and Northern hemispheres. The hemi-
sphericity factor fhem is equal to 0.5 for a purely dipolar field and
has the value 1 for a purely hemispherical field.

3. Results for convection without dynamo action
In this section we introduce the results for secular cooling-
driven convection in a rotating sphere without dynamo action.
Starting from a non-convective stable state at low Rayleigh num-
ber, we introduce the main hydrodynamic transitions found when
we progressively increase the forcing.
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Table 3
Critical Rayleigh number RaQc and azimuthal wavenumber mc for the most linearly
unstable equatorially symmetric convection mode.

E RaQc mc

10−6 1.08 × 10−9 38
3 × 10−6 6.80 × 10−9 26
10−5 5.18 × 10−8 17
3 × 10−5 3.34 × 10−7 12
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10.3749

RaQc

E5/3

1/E

F
E

5 × 10−5 7.98 × 10−7 10
10−4 2.61 × 10−6 7
3 × 10−4 1.72 × 10−5 5

.1. Linear stability results: the onset of convection

The first hydrodynamic transition corresponds to the onset of
onvection and occurs when the modified Rayleigh number reaches
first critical value RaQc. We start introducing the onset of convec-

ion in our system because it gives the framework for the nonlinear
imulations presented in the following parts.

For each value of the azimuthal wavenumber m and each value
f the modified Rayleigh number, two growth-rates can be cal-
ulated using the linear version of the code PARODY: one for
quatorially symmetric modes and one for equatorially antisym-
etric modes. Indeed, these two families of modes are not coupled

n the linearized equations.
We found that the first unstable modes are equatorially sym-

etric, non-axisymmetric modes, as expected from previous
heoretical studies (Busse, 1970; Jones et al., 2000). Table 3 lists
he critical Rayleigh number and azimuthal wavenumber for each
tudied value of the Ekman number. Fig. 2 shows that RaQc/E5/3 con-
erges towards an asymptote which is in good agreement with the
alue 10.3749 (≈10.4) obtained by Jones et al. (2000). It must be
ointed out that Jones et al. (2000) used slightly different bound-
ry conditions (fixed temperature and stress-free) at the external
oundary, while we presently use a fixed flux condition for geo-
hysical relevance and we consider rigid boundaries. However, as
he temperature gradient in the bulk of the fluid is the same in
ur and their study, we do not expect the asymptote to be shifted
y a dramatic amount, as confirmed by our numerical results. The
symptotic behavior of the critical modified Rayleigh number in
he limit E → 0 is thus approximated by:

aQc ≈ 10.4 · E5/3 (13)
n terms of critical canonical Rayleigh number Rac, this corresponds
o the following asymptotic behavior: Rac ≈ 10.4 · E−4/3. The expo-
ent value −4/3 for the Ekman number dependence of the critical
ayleigh number is a robust feature of the onset of convection in

ig. 3. Velocity structures at onset for E = 10−5 and Pr = 1. (a) Meridional section of the z
quatorial section (� = 	/2) of the z-component of vorticity.
Fig. 2. Convection onset. Stars: RaQc/E5/3 versus 1/E (logarithmic scale). The grey line
is the asymptote predicted by the theory of Jones et al. (2000) with slightly different
boundary conditions (see text).

rotating spheres or shells: it is expected from analytical consider-
ation (Busse, 1970; Jones et al., 2000) and has subsequently been
found in numerical studies (Dormy et al., 2004) for other geometries
and boundary conditions.

As illustrated in Fig. 3, the velocity structures at onset cor-
respond to quasi-geostrophic Rossby waves that vary slowly in
z-direction. These waves form a set of non-axisymmetric vortices
aligned with the rotation axis as predicted by Busse (1970). The
azimuthal wavenumber of the first unstable modes mc, is expected
to vary such that mc ∝ E−1/3 (Busse, 1970; Jones et al., 2000). The val-
ues we found for mc are reported in Table 3 and are in agreement
with the expected trend.

A second important family of convective modes is the axisym-
metric family. At first sight it can seem of secondary importance
to study the linear stability of this family into detail since we pre-
viously saw that the first unstable modes are non-axisymmetric
at high rotation rates (Geiger and Busse, 1981 have shown that
axisymmetric modes can be preferred at low rotation rates). How-
ever, as announced in Section 1 and developed in Section 3.2, the
axisymmetric modes acquire a crucial importance in our nonlin-
ear simulations. We thus compute (Table 4) the linear threshold of
instability for the axisymmetric modes RaQa0. Indeed, these results
will be required in Section 3.2 in order to determine if the emer-

gence of EAA modes in nonlinear simulations is related to their
linear instability. Within a margin of error of 20% (which corre-
sponds to the misfit between the results of Roberts (1965) and
Bisshopp and Niiler (1965)), our numerical results are compatible

-component of velocity. (b) Meridional section of the azimuthal velocity field. (c)
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Table 4
Critical Rayleigh numbers RaQa0 for the linear onset of axisymmetric convection
(EAA mode), and RaQt for the nonlinear emergence of the EAA mode (see Section
3.2).

E RaQa0 RaQt

10−4 8.37 × 10−6 1.95 × 10−5

3 × 10−4 5.00 × 10−5 1.07 × 10−4

10−3 3.34 × 10−4 6.28 × 10−4

10−2 1.41 × 10−2 1.41 × 10−2
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ig. 4. First unstable axisymmetric convection mode at E = 3 × 10−4 and Pr = 1. (a)
eridional section of the z-component of velocity. (b) Meridional section of the

zimuthal velocity field.

ith both the asymptotes found by Roberts (1965), which yields:

aQa0 ≈ 52.2 · E5/3, (14)

nd Bisshopp and Niiler (1965), which yields:

aQa0 ≈ 61.3 · E5/3, (15)

lthough the thermal boundary conditions are different and a
mall inner sphere is present in our study. Unlike the non-
xisymmetric modes, the most linearly unstable axisymmetric
ode belongs to the equatorially antisymmetric family. Its pat-

ern (Fig. 4) corresponds to a single convection cell carrying heat
way in the direction of the rotation axis, whereas the first unsta-
le non-axisymmetric modes convect heat in the cylindrical radial
irection. As the axial circulation gets close to the upper and lower

oundaries, the flow is diverted and couples with the Coriolis force
o give rise to an equatorially antisymmetric, zonal circulation. As
n the case of non-axisymmetric convection (Busse, 1970), viscous
orces on short length scales of order E1/3 are required to overcome
he two-dimensional constraint of the Taylor–Proudman theorem.

ig. 5. (a) Schematic representation of the two main hydrodynamic transitions found w
lassical symmetric regime at RaQc (onset of convection) and then, at RaQt , from the symm
ode). (b) and (c) Snapshots of azimuthal velocity field at radius r = 0.88 (Hammer proje

eported in Table 1).
d Planetary Interiors 185 (2011) 61–73

Then, the thickness of the axial cell is of order E1/3 (Roberts, 1965)
and motion in the cell is quasi-geostrophic, slowly varying in z-
direction.

In summary, the linear stability analysis performed in the case
of rotating convection driven by secular cooling confirms the theo-
retical results obtained with slightly different boundary conditions:
equatorially symmetric, non axisymmetric vortices are the most
linearly unstable modes, and the first linearly unstable axisym-
metric modes are equatorially antisymmetric. The critical canonical
Rayleigh numbers for both families vary as E−4/3 when E → 0. Plane-
tary core dynamos are located largely above the onset of convection
and nonlinear simulations are required to go further.

3.2. Nonlinear simulation results: transition towards the
asymmetric regime

When we increase the Rayleigh number slightly above onset,
we found that non-axisymmetric vortices aligned with the rotation
axis (equatorially symmetric structures) remain the main convec-
tive features, even though the flow becomes chaotic and small-scale
structures appear. This result can be seen in Fig. 5(b) which shows
results obtained with simulation A (with RaQ ≈ 5RaQc, see Table 1).
The columnar structures tend to satisfy the Taylor–Proudman theo-
rem and the flow is said to be in a symmetric regime as indicated in
Fig. 5(a) which gives a schematic representation of the main hydro-
dynamic transitions found when increasing the modified Rayleigh
number. Most of the previously studied nonlinear numerical simu-
lations are located in this symmetric regime (see for instance Olson
et al., 1999).

By further increasing the forcing, we found that the flow
undertakes an unexpected transition when the modified Rayleigh
number reaches a second critical value RaQt (values reported in
Table 4). Fig. 5(a) shows a schematic representation of this tran-
sition and Fig. 6 serves as a bifurcation diagram. At the onset
of convection (RaQc ≈ 0.17 × 10−4), the symmetric solution branch
(K0a 	 Ks) emerges. At RaQt ≈ 1.07 × 10−4, the symmetric branch
looses stability and a new branch of solutions, which is charac-
terized by a rapid increase of K0a, emerges through a supercritical
pitchfork bifurcation. This branch of solutions is called asymmetric
branch because it characterizes equatorially asymmetric solutions
in which the EAA kinetic energy density K0a, and the equatorially
symmetric kinetic energy density Ks, become of the same order of
magnitude (Fig. 6). The asymmetric regime is unexpected since the
amplitude of equatorially antisymmetric modes has always been

found to be much smaller than the amplitude of equatorially sym-
metric modes in previous numerical simulations (Olson et al., 1999;
Christensen and Aubert, 2006; Sakuraba and Roberts, 2009). The
EAA mode is the dominant equatorially antisymmetric mode since
almost half of Ka is contained in this mode (K0a ≈ 0.44Ka). Equa-

hen increasing the modified Rayleigh number: from a non-convective state to the
etric regime to the asymmetric regime (characterized by the emergence of an EAA
ction), hydrodynamic simulations. (b) Simulation A. (c) Simulation B (parameters
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Fig. 7. Arrows: schematic representation of the time-averaged EAA mode

∂z
=

2r0 ∂�
(16)

Fig. 8 shows a high degree of similarity between the right-hand
side and left-hand side terms of Eq. (16), thus confirming that Eq.
(16) captures the flow dynamics inside the shell (except near the
urves refer to linearly stable and unstable solutions respectively. RaQt locates the
mergence of the asymmetric solution branch. To estimate the value of RaQt we
ook for RaQt and the constant a such that K0a is best scaled (in the sense of the least
quares) by a(RaQ − RaQt) on the asymmetric branch.

orially antisymmetric, non-axisymmetric modes also emerge at
aQt, with an energy density equal to Ka − K0a. However, we find
hat these modes do not emerge spontaneously, contrary to the
AA mode, but result from nonlinear interactions between the EAA
ode and equatorially symmetric modes. The spatial structure of

hese modes is indeed strongly correlated with that of equatori-
lly symmetric, non-axisymmetric modes. Thus, in the asymmetric
egime, the dominant (and dynamically important) structures cor-
espond to a superposition of columnar, equatorially symmetric
odes and an EAA mode (Fig. 5(c)).
We found that, at low Ekman numbers (E ≤ 10−3), RaQt is located

bove the linear threshold of instability of EAA modes RaQa0
Table 4). This result means that the emergence of an EAA mode
n our nonlinear simulations can not be explained by linear sta-
ility analysis if E ≤ 10−3. Thus, the asymmetric branch emerges
rom the equatorially symmetric, columnar convection which has
o be seen as the new basic state. We checked numerically that
aQt corresponds indeed to the threshold of linear instability of EAA
odes with respect to a purely equatorially symmetric basic state.

he bifurcation at E = 10−2 is a very isolated case since RaQt = RaQa0
Table 4). In this case the bifurcation can be described in terms
f interactions between two linearly unstable modes: an equato-
ially symmetric mode of order m = 1 and an EAA mode. Since we
re looking for asymptotic behaviors in the limit E → 0, we will not

onsider the slowly rotating cases E ≥ 10−2 for the determination
f the regime boundaries.

Fig. 7 gives a schematic view of the EAA mode which emerges in
he asymmetric regime: the azimuthal velocity field is organized
nto two large equatorially antisymmetric vortices, one in each
(azimuthal and meridional flows) which emerges in the asymmetric regime. (a)
Meridional section (arbitrary azimuth) of the time-averaged temperature field in
asymmetric simulation B (parameters reported in Table 1). (b) Same as (a) for the
time-averaged azimuthal velocity field.

hemisphere. Contrary to the two-cell meridional circulation of the
symmetric regime (Olson et al., 1999), the time-averaged merid-
ional circulation induced by the EAA mode is organized in only one
cell. The fluid goes from one pole to the other passing through the
center of the sphere. As a consequence of this equatorially anti-
symmetric meridional circulation, the temperature profile has a
considerable equatorially antisymmetric component (Fig. 7(a)).

The dynamics of the asymmetric regime is strongly influenced
by rotation since the local Rossby number (Christensen and Aubert,
2006) remains inferior to 0.08 in all our asymmetric simulations.
We find that the equatorially asymmetric azimuthal velocity field
results from meridional variation of the asymmetric temperature
field through a thermal wind mechanism, which is characterized
by a balance between the Coriolis, pressure gradient and buoy-
ancy forces. Taking the �-component of the curl of the momentum
equation, and retaining only the above forces, we have:

∂u� RaQ ∂T
Fig. 8. Comparison between (a) a snapshot of the �-average of the left-hand side
term of Eq. (16), and (b) a snapshot of the �-average of the right-hand side term
of the same equation. Results obtained using asymmetric simulation B (parameters
indicated in Table 1).
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oundaries where the viscous term in Eq. (1) is not negligible). The
erm ∂ T/∂� is globally negative in the whole shell as a consequence
f the equatorially antisymmetric component of the temperature
rofile shown in Fig. 7(a). Then, according to Eq. (16), ∂ u�/∂z is
lso negative, and this is coherent with an antisymmetric azimuthal
ow organized in two vortices as we find in our asymmetric simu-

ations (Fig. 7(b)).
The time-averaged zonal velocity field is also in equilibrium

ith the time-averaged convective axial velocity field. In our non-
inear simulations, we have found that this equilibrium arises
hrough Ekman pumping. In the Southern hemisphere in Fig. 7,
he fluid is rotating faster than the external boundary, inducing
meridional flow that converges towards the center of the vortex.
onversely, the time-averaged meridional flow diverges from the
enter of the vortex in the Northern hemisphere. The axial velocity
z is then related to the vertical vorticity ωz by vz = O(E1/2ωz). To
heck this hypothesis we computed the ratio

E = max |〈〈vz〉〉�|
E1/2 max |〈〈ωz〉〉�| , (17)

here〈〉� and 〈〉 denote the azimuthal and time averaging opera-
ors. Considering only the equatorially antisymmetric part of the
elocity and vorticity fields, we find a mean value r̄E = 3.52 and
standard deviation 1.6, meaning that this ratio remains of order
, as expected in the case of an Ekman pumping mechanism, even
hough our configuration is far from being the ideal case of a unique
otating plate for which the classical Ekman pumping formula is
erived.

Eqs. (1), (2) and (5), and the boundary conditions have equatorial
eflection symmetry. Consequently, if A(t) is the amplitude of the
AA mode ua, then Aua and −Aua are two dynamically equivalent
olutions. This means that the solution for the EAA mode which
s represented in Fig. 7 is dynamically equivalent to the solution

hich can be obtained by reversing the arrows in Fig. 7. In our sim-
lations we indeed found both solutions. The system chooses one of
he two and does not reverse towards the other. Thus, the EAA mode
hould emerge through a pitchfork bifurcation. As it would be in a
anonical supercritical pitchfork bifurcation, K0a is proportional to
RaQ − RaQt) in our numerical simulations (Fig. 6(a)).

Considering the possible relationship between the emergence of
strong EAA mode and the smallness (or absence) of the inner core,
e found the same hydrodynamic transition towards the asym-
etric regime in a shell with aspect ratio ri/ro = 0.35, provided the

riving mode is the same (secular cooling with zero heat flux at

he inner core). The critical value RaQt is larger when ri/ro = 0.35
han when ri/ro = 0.01 (results not reported here) but the tran-
ition occurs at about the same static temperature difference in
oth cases. However, no transition to the EAA state has been found
hen a non-zero homogeneous heat flux or fixed temperature was

ig. 10. (a) Schematic representation of the main hydrodynamic transitions found whe
on-convective state to the classical symmetric regime at RaQc (onset of convection) and
he oscillating regime to the asymmetric regime. (b) and (c) Snapshots of azimuthal veloc
parameters reported in Table 2).
curve corresponds to the asymptotic behavior of RaQc at low Ekman numbers accord-
ing to Eq. (13)) and from the symmetric regime to the asymmetric regime (black
curve). Light grey symbols: symmetric simulations. Black symbols: asymmetric sim-
ulations.

imposed at the inner core boundary, suggesting that the presence
of a thermal boundary layer with a positive incoming heat flux at
the inner core boundary prevents the EAA mode from emerging.
We presume that the EAA hydrodynamic transition is favored in
our numerical simulations because the buoyancy driving allows for
EAA convection carrying heat away in the direction perpendicular
to the equatorial plane.

The different transitions found are represented in a (1/E, RaQ)
parameter space (Fig. 9). The transition between the symmetric
and asymmetric regimes occurs at RaQt, which is best scaled (in the
sense of the least squares) by:

RaQt ≈ 21.2 · E1.51 (18)

4. Results for convective dynamos

We now turn to the study of the EAA mode in the presence
of dynamo action. We first introduce the different hydrodynamic
transitions found when allowing dynamo action and compare them
with the transitions found in hydrodynamic simulations (Section
3). Then we present the changes in magnetic field generation which
are related to these hydrodynamic transitions.

4.1. Hydrodynamic transitions
Fig. 10(a) gives a schematic representation of the different
hydrodynamic transitions found when increasing the modified
Rayleigh number and allowing dynamo action. The results for the
linear onset of convection at RaQc are identical to what we found in

n increasing the modified Rayleigh number and allowing dynamo action: from a
then, from the symmetric regime to the oscillating regime at RaQt and finally from
ity field at radius r = 0.88 (Hammer projections). (b) Simulation C. (c) Simulation D
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Fig. 11. Bifurcation diagram at E = 3 × 10−4 (when allowing dynamo action) show-
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the range of values taken by the instantaneous values of K0a . RaQt corresponds to
the emergence of the asymmetric branch introduced in the hydrodynamic study
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ection 3.1 (without dynamo action) since the Lorentz force (third
erm in the right-hand side of Eq. (1)) is a nonlinear term. Increasing
he modified Rayleigh number above onset we found a symmetric
egime dominated by columnar, equatorially symmetric vortices as
llustrated in Fig. 10(b), similarly to the non-magnetic case.

By further increasing the forcing, the flow undertakes succes-
ive changes of regime which can be identified in the bifurcation
iagram of Fig. 11(a). When RaQ reaches the value RaQt (previously
omputed in Section 3.2), the symmetric solution branch (K0a 	 Ks)
ecomes unstable and the instantaneous value of K0a starts oscil-

ating in a chaotic manner between low values much smaller than
s (symmetric regime), and larger values of order Ks (asymmetric
egime). The flow is said to be in an oscillating regime, illustrated in
ig. 12. Finally, when the forcing is strong enough (RaQ ≈ 3 × 10−4),
he flow reaches the asymmetric regime: the instantaneous value
f K0a remains large and does not reach the symmetric solution
ranch anymore. Similarly to the hydrodynamic case, the dominant
and dynamically important) modes in the asymmetric regime are
he columnar, equatorially symmetric modes and the EAA mode
Fig. 10(c)).

We found a similar bifurcation diagram (with a symmetric, oscil-
ating and asymmetric regime) at E = 10−4. However we did not find
ny oscillating simulations at E ≥ 10−3 because the dynamo onset
as not been overcome when RaQ reaches RaQt at such Ekman num-
ers. Therefore, the bifurcation diagrams are similar to the ones
btained in hydrodynamic simulations if E ≥ 10−3. Since we are
ooking for asymptotic behaviors in the limit E → 0, we will not con-
ider cases in which E ≥ 10−3 for the determination of the regime
oundaries.

The appearance of the oscillating regime when allowing dynamo
ction can be seen as a consequence of Ferraro’s law of corota-
ion (Ferraro, 1937): the axisymmetric magnetic field lines tend to
ollow the isocontours of 〈u�/s〉� where s is the cylindrical radius.
t the beginning of an oscillation towards the asymmetric regime,

he EAA flow component emerges because it is linearly unstable
ith respect to the symmetric regime (because RaQ ≥ RaQt). Then,

he EAA mode distorts the isocontours of 〈u�/s〉� which no longer
ollow the magnetic field lines. Consequently, an axisymmetric
zimuthal magnetic field is created from stretching of the axisym-
etric poloidal magnetic field by the EAA azimuthal flow through
n ω-effect, which increases the magnetic tension along the merid-
onal field lines. In agreement with Lenz law, the resulting Lorentz
orce tends to oppose the motion that increases the magnetic ten-
ion, i.e. reduces the EAA flow component. If the Lorentz force
ecomes strong enough, the flow returns its symmetric regime.
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Ks

ig. 12. Instantaneous values for K0a (black curve) and Ks (light grey curve) versus time fo
aQt) (Table 2).
(computed in Section 3.2). Light grey, medium grey and black symbols correspond
to symmetric, oscillating and asymmetric simulations respectively (see text). Note
that K0a is not exactly equal to zero in the symmetric regime but very small compared
to the scale of the figure.

Thus, the closer we get to RaQt in the oscillating regime, the smaller
the growth-rate value of the EAA flow component becomes and
the faster the Lorentz force will be able to restore the symmetric

state. As a consequence, for Rayleigh numbers located just above
RaQt, we observe rather bursts towards the asymmetric regime than
oscillations (Fig. 12(a)).

The EAA mode forms one axisymmetric vortex in each hemi-
sphere, one cyclone and one anticyclone. The geometry of the
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r oscillating simulations F ((a), RaQ close to RaQt) and G ((b), RaQ further away from
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Fig. 13. Phase diagram of the main hydrodynamic regimes when allowing dynamo
action. Each symbol corresponds to one numerical simulation. Light grey, medium
grey and black symbols correspond to symmetric, oscillating and asymmetric sim-
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Fig. 15. DMFI visualization of asymmetric simulation D (Table 2). The outer bound-

F
A

lations respectively. The light grey curve corresponds to the asymptotic behavior
f RaQc given by Eq. (13). The medium grey curve corresponds to the best fit (in the
ense of the least squares) for RaQt . The black dashed line corresponds to a tentative
oundary regime between the oscillating and asymmetric regime.

ime-averaged EAA mode in Fig. 7 remains unchanged when
ynamo action is present.

Similarly to Fig. 9, Fig. 13 summarizes the regime boundaries in
(1/E, RaQ) parameter space when dynamo action is allowed. We

mphasize here again that the boundary between symmetric and
scillating regimes is set by RaQ = RaQt, where RaQt is the forcing at
hich the transition from the symmetric to the asymmetric regime

ccurs in the hydrodynamic case. Its location is thus given by Eq.
18).

.2. Magnetic field structures: effects of the emergence of the EAA
ode

Fig. 14 shows the qualitative effects of the transition from
he symmetric to the asymmetric hydrodynamic regime on the
ynamo-generated magnetic field. Fig. 14(a) shows the results
btained with symmetric simulation C (Table 2): the magnetic

eld is dipole dominated similarly to previously described numer-

cal dynamos. In contrast, in asymmetric simulation D (Table 2),
he magnetic field is hemispherical with high intensities in one
emisphere and weaker in the other (Fig. 14(b)), not only at the
MB (top) but also at the surface of the planet (bottom). Thus,

ig. 14. Snapshots of the radial magnetic field at the CMB (top) and at the surface of a
symmetric simulation D.
ary of the model is color-coded with the radial magnetic field. In addition, the outer
boundary is made selectively transparent, with a transparency level that is inversely
proportional to the local radial magnetic field. Field lines are displayed in grey, their
thickness is proportional to B2 (for details see Aubert et al., 2008).

the hydrodynamic asymmetric regime can induce hemispherical
dynamos.

The reason why the radial magnetic field becomes hemispher-
ical in the asymmetric hydrodynamic regime can be qualitatively
captured looking at the corresponding DMFI visualization (Aubert
et al., 2008) (Fig. 15). The surface magnetic flux is collected in the
hemisphere where the EAA meridional flow converges. Near the
pole, the converging EAA meridional flow is converted into flow
downwellings. The ambient radial magnetic field is amplified by
stretching within these downwellings, forming magnetic down-
wellings which are similar to the magnetic upwellings described
in Aubert et al. (2008). In the other hemisphere, magnetic flux is
dispersed by the divergent EAA flow and is thus much weaker.

In order to quantify this result, we computed the hemispheric-
ity factor fhem (Fig. 16(a)). A dynamo is said to be hemispherical

if fhem ≥ 0.75 which means that one hemisphere contains at least
75% of the CMB magnetic energy. The ratio Ka/Ks, which measures
the equatorial symmetry breaking of the flow, is a control param-
eter of the hemisphericity factor fhem, as shown by the univariate
behavior in Fig. 16(a). In symmetric simulations the flow is domi-

Mars-like planet (bottom) (Hammer projections). (a) Symmetric simulation C. (b)
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ig. 16. (a), Hemisphericity factor fhem versus Ka/Ks . (b), Magnetic energy parity r
ymmetric, oscillating and asymmetric simulations respectively. The dashed black li
he symbols C and D indicate the results obtained with simulations C and D respect

ated by equatorially symmetric modes and Ka/Ks has low values.
n these symmetric simulations the hemisphericity factor is very
lose to 0.5 which means that these dynamos are not hemispher-
cal, as illustrated with Fig. 14(a). In asymmetric and oscillating
imulations the ratio Ka/Ks increases progressively from low val-
es (∼0.2) to large values (∼2.3) due to the progressive emergence
f the EAA mode. Fig. 16(a) shows that the hemisphericity fac-
or fhem increases almost linearly with Ka/Ks and the transition
rom non-hemispherical to hemispherical dynamos is gradual. The
emisphericity factor reaches 0.75 when Ka/Ks ≈ 1 (at Pm = 5). Sev-
ral hemispherical dynamos (fhem ≥ 0.75) are obtained, including
he simulation of Fig. 14(b). The reader may have expected the use
f K0a/Ks rather than Ka/Ks in Fig. 16(a) since the equatorial sym-
etry breaking of the flow is caused by the emergence of the EAA
ode in our simulations. However, we find a less univariate behav-

or if we plot fhem as a function of K0a/Ks rather than Ka/Ks. This
esult suggests that equatorially antisymmetric, non-axisymmetric
odes play a non-negligible role in the transition towards hemi-

pherical dynamos. However, these non-axisymmetric modes
emain a consequence of the spontaneous emergence of the EAA
ode.
Fig. 16(b) shows that the equatorial symmetry breaking of the

ow Ka/Ks, is also a control parameter of the magnetic field parity
qua/Mdip at fixed Pm. Indeed, all the simulations are aligned on the

ame curve (with the exception of one simulation which has been
btained at a different value of Pm). At fixed Pm, Mqua/Mdip increases
hen Ka/Ks increases (due the emergence of the EAA mode in the

scillating and asymmetric regimes). When Ka/Ks reaches ∼0.75,
qua/Mdip saturates and remains close to 1: there is equipar-

ition between magnetic energy contained in modes of dipole
arity and magnetic energy contained in modes of quadrupole
arity. We underline that several simulations have reached the
quipartition of magnetic energy even though they are not hemi-
pherical (for instance, multipole-dominated simulations). Note
hat we use Ka/Ks rather than K0a/Ks for the same reasons as in
ig. 16(a).

. Discussion

.1. Discussion of the numerical results

At onset, convection driven by secular cooling (modeled by

nternal heating) in rapidly rotating spheres is very similar to

hat has been obtained for other geometries and boundary
onditions: the first unstable modes are equatorially symmet-
ic, non-axisymmetric vortices aligned with the rotation axis. By
ncreasing the modified Rayleigh number above onset we found a
qua/Mdip versus Ka/Ks . Light grey, medium grey and black symbols correspond to
tes the transition from non-hemispherical to hemispherical dynamos at fhem = 0.75.
which are illustrated in Fig. 14.

flow regime which remains dominated by equatorially symmetric
modes. These modes are in agreement with the Taylor–Proudman
constraint. The flow is said to be in a symmetric regime and it is very
similar to flows already described in previous numerical studies
(Olson et al., 1999).

By further increasing the forcing, we found a transition towards
a new flow regime, called the asymmetric regime. We have shown
that the asymmetric regime is characterized by the emergence of an
EAA mode (at RaQ = RaQt), with an amplitude which becomes of the
same order of magnitude as those of equatorially symmetric modes.
This transition is unexpected. First, because the amplitude of equa-
torially antisymmetric modes has always been found to be much
smaller than the amplitude of equatorially symmetric modes in
previous studies (Olson et al., 1999; Christensen and Aubert, 2006;
Sakuraba and Roberts, 2009). Second, because bifurcations are often
related to symmetry breaking. Even though the emergence of the
EAA mode breaks the equatorial symmetry, this mode has gained
axisymmetry with respect to the columnar basic state on which it
emerges. The occurrence of this transition highlights the need to
study secondary instability mechanisms, especially for planetary
systems which are far above the onset of primary instability.

The dynamics of the asymmetric regime is strongly influenced
by rotation. The EAA mode comprises strong azimuthal thermal
winds which induce two large-scale axial vortices: a cyclone in
one hemisphere and an anticyclone in the other hemisphere. The
related time-averaged meridional circulation is organized in only
one cell. The EAA mode is the nonlinear manifestation of the first
linearly unstable axisymmetric mode (considering a static basic
state) studied by Roberts (1965) and Bisshopp and Niiler (1965). We
underline that the EAA mode is an alternative way of carrying heat
away while complying with the Taylor–Proudman constraint. As
shown by Eqs. (14) and (15), the critical modified Rayleigh number
for axisymmetric convection is proportional to E5/3, as is the crit-
ical Rayleigh number for non-axisymmetric convection (Eq. (13)).
The Rayleigh number RaQt for the nonlinear emergence of the EAA
mode scales with the power 1.51 of the Ekman number (Eq. (18)),
which is rather close to 5/3.

For the EAA mode to emerge and become a dynamically mean-
ingful mode, two conditions must be met: the buoyancy flux must
vanish at the inner boundary and RaQ has to exceed RaQt. The rea-
son why the asymmetric regime has not been previously observed
stems from the fact that one of these two conditions was not met

in earlier studies. The size of the inner core appears not to have
effect on the transition towards the asymmetric regime. However,
in a geophysical context, the presence of an inner core implies a
non-zero buoyancy flux at the inner boundary. For that reason,
the asymmetric regime is only expected in planetary systems that
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Table 5
Plausible parameter values for Mars’ core, after Nimmo and Stevenson (2000) and
references for the first five parameters. The last parameter value is an estimation of

 in the terrestrial core.

Parameters Plausible values for Mars

Acceleration due to gravity at the CMB, g0 (m s−2) ∼3
Core radius, ro (km) 1300–1700
Density, � (kg m−3) 6600–8300
Thermal expansion coefficient, ˛ (K−1) ∼10−5
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Heat capacity, Cp (J kg−1 K−1) 820–860
Rotation rate (present), � (s−1) 7.1 × 10−5

Kinematic viscosity, 
 (m2 s−1) ∼10−6

ave not nucleated an inner core yet, and where convection is thus
owered only by secular cooling (or radiogenic heating).

We have shown that the emergence of the EAA mode in the
symmetric hydrodynamic regime breaks the equatorial symme-
ry which controls the hemisphericity of the dynamo. Indeed, if the
nergy contained in the EAA mode is strong enough (i.e. the equa-
orial symmetry breaking of the flow Ka/Ks is larger than ∼1), then
e obtain hemispherical dynamos in which at least 75% of the total
agnetic energy at the CMB is contained in one hemisphere. The

act that an equatorial symmetry breaking of the flow can lead to
emispherical dynamos is a universal result related to fundamental
ymmetries in the governing equations, and can be captured using
imple kinematic ˛2-dynamo models (Gallet and Petrelis, 2009).
he equatorial symmetry breaking of the flow, due to the emer-
ence of the EAA mode, leads to an equipartition between magnetic
nergy contained in modes of dipole parity and magnetic energy
ontained in modes of quadrupole parity in agreement with the
ow dimensional model proposed by Gallet and Petrelis (2009).

Hemispherical dynamos have been previously found in numer-
cal simulations of convection and dynamo action in rotating shells
Grote and Busse, 2000; Simitev and Busse, 2005; Stanley et al.,
008). Fixed temperature and stress-free boundary conditions have
een imposed in Grote and Busse (2000) and in Simitev and Busse
2005). Their hemispherical dynamos do not result from the same

echanism as ours. Indeed, we found that the antisymmetric
inetic energy remains at low values in their dynamo simulations
Ka/Ks ≈ 0.01 at Pr = 1, Pm = 2, E = 2 × 10−4 and Ra = 6.5 × 105) and it
s exactly equal to zero in the corresponding hydrodynamic simu-
ations. In Stanley et al. (2008), hemispherical dynamos result from
he emergence of an EAA mode, as in our simulations, but this mode
s forced by thermal boundary conditions in Stanley et al. (2008)

hile it spontaneously emerges in our study.

.2. Implications for the past martian dynamo

The EAA mode of convection could be an attractive explanation
or the asymmetry of Mars’ crustal magnetic field without requir-
ng any post-dynamo mechanism or any heat flux heterogeneity
t the CMB. In the following we discuss first, whether the past
artian dynamo could have been in an asymmetric hydrodynamic

egime and, second, whether the asymmetric regime may gener-
te hemispherical dynamos at Ekman numbers close to planetary
alues.

The past martian dynamo may have reached the asymmetric
egime if RaQ was at least larger than RaQt when the dynamo was
ctive. One may use the scaling law (18) to estimate RaQt in Mars’
ore: considering plausible parameter values given in Table 5, we
nd that E is roughly within the range 5 × 10−15 to 8 × 10−15 in

−21 −20
ars’ core and RaQt within the range 5 × 10 to 10 . The past
artian CMB heat flux depends on the mechanism of heat transfer
hich is considered. Considering a stagnant lid mantle convec-

ion the maximum heat flux is expected to be about 60 mW m−2

Nimmo and Stevenson, 2000; Breuer and Spohn, 2003; Stevenson
d Planetary Interiors 185 (2011) 61–73

et al., 1983) whereas if we consider an overturn after magma ocean
crystallization it is about 600 mW m−2 (Elkins-Tanton et al., 2005).
Plate tectonics has been suggested for Mars but is not coherent with
little remixing of crust and mantle as indicated by geochemistry. In
addition Breuer and Spohn (2003) have shown that it is difficult to
reconcile crust production required by geological constraints and
the presence of a core-dynamo using a model that includes plate
tectonics. We note that, in the case of plate tectonics, the maximum
heat flux at the CMB would be of the same order as in the case
of a stagnant lid regime (∼100 mW m−2, Nimmo and Stevenson,
2000). It is important to underline that RaQ has to be estimated
using the superadiabatic heat flux (the total heat flux minus the
adiabatic heat flux). The adiabatic heat flux for Mars’ core is esti-
mated to be in the range 5–19 mW m−2 (Nimmo and Stevenson,
2000).

Using the parameter values given in Table 5, one can estimate a
plausible range of values for the maximum modified Rayleigh num-
ber RaQm, in Mars’ core. Considering convection underneath a single
plate, RaQm is within the range 2 × 10−13 to 4 × 10−13 whereas with
a model that supposes an overturn after magma ocean crystalliza-
tion (Elkins-Tanton et al., 2005), RaQm is within the range 3 × 10−12

to 4.5 × 10−12. These values are larger than RaQt. This suggests
that Mars’ core could have been in the hydrodynamic asymmetric
regime.

In the previous section we saw that the CMB magnetic field is
hemispherical in our simulations if the equatorial symmetry break-
ing of the flow Ka/Ks is larger than 1. The equatorial symmetry
breaking which may have been due to the EAA flow component
of the asymmetric regime can be roughly estimated for the past
martian dynamo. Considering fixed heat flux boundary conditions,
Aubert et al. (2009) have obtained a scaling law which gives the
non-dimensional mean kinetic energy K, as a function of the dimen-
sionless convective power p. In the particular case of secular cooling
p = 3/5RaQ and their scaling law becomes: K ≈ 0.56Ra0.84

Q . Since the
EAA mode results from a thermal wind mechanism, we expect the
kinetic energy density related to the zonal EAA flow to be propor-
tional to RaQ at forcings far above RaQt (Aurnou et al., 2003; Aubert,
2005). Supposing that the amplitude of the meridional circulation
is, at most, of the same order of magnitude as the amplitude of
the zonal circulation (as it is in the first linearly unstable axisym-
metric mode analytically computed by Roberts (1965) and in our
nonlinear numerical simulations) then, K0a ∝ RaQ. Considering this
scaling law (roughly satisfied in our numerical simulations) and
the plausible values listed above for RaQm, we estimate that the
ratio K0a/K induced by the asymmetric regime would not have been
larger than 0.05 in Mars’ core. This result means that the EAA mode
was of much weaker amplitude than the equatorially symmetric,
non-axisymmetric modes and it suggests that the equatorial sym-
metry breaking of the flow due to the EAA mode was not large
enough to induce a hemispherical dynamo in Mars’ core. However
such a conclusion may be hasty. First of all, we have noticed that the
spontaneous emergence of the EAA mode gives birth to equatori-
ally antisymmetric, non-axisymmetric modes as a consequence of
nonlinear interactions between the EAA mode and the symmetric
columnar structures. These modes might saturate with a different
scaling law from the EAA mode and become of much higher ampli-
tude than the EAA mode at planetary parameters. In such a case, the
equatorial symmetry breaking might have reached higher values in
Mars’ core. Second, the transition between non-hemispherical and
hemispherical dynamos occurs at Ka/Ks ≈ 1 in our simulations when
Pm = 5. However, there is no reason to suppose that the transition

would occur at the same Ka/Ks value if Pm /= 5. Indeed, the simula-
tion at Pm = 1 in Fig. 16(b) is the only one located above the general
trend, which suggests that Pm may have a considerable impact on
the quantitative effects of the equatorial symmetry breaking of the
flow on magnetic field. Recalling that Pm is expected to be of the
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rder of 10−6 in Mars’ core, the transition towards hemispheri-
al dynamos may occur at much lower Ka/Ks-values in planetary
ores. The results obtained in Gallet and Petrelis (2009) suggest that
his last point is not completely speculative: they show that even
ery weak equatorial symmetry breaking of the flow may lead to
emispherical dynamos. Thus, the Pm-dependence of fhem could be
tudied in order to determine if the asymmetric regime is able to
xplain the asymmetry of Mars’ crustal magnetic field.

A heterogeneous CMB heat flux is plausible for the past mar-
ian dynamo (Stanley et al., 2008) and would make the emergence
f hemispherical dynamos easier. Indeed, a strong EAA heat flux
eterogeneity would directly set the amplitude of the EAA temper-
ture contribution to ∂ T/∂� and thus the amplitude of the EAA mode
ccording to Eq. (16) (which is probably what fixes the amplitude
f the EAA mode in the simulations of Stanley et al. (2008)). Thus,
arger Ka/Ks-values could have been reached in Mars’ core due to
eterogeneous boundary conditions.
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