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Abstract. Magmatic crystallization depends on the kinetics 
of nucleation and crystal growth. It occurs over a region 
of finite thickness called the crystallization interval, which 
moves into uncrystallized magma, We present a dimension- 
al analysis which allows a simple understanding of the crys- 
tallization characteristics. We use scales for the rates of nu- 
cleation and crystal growth, denoted by I,, and Ym respec- 
tively. The crystallization time-scale % and length-scale dc 
are given by (y3.I~)-1/4 and 0c.%) 1/2 respectively, where 
~c is thermal diffusivity. The thickness of the crystallization 
interval is proportional to this length-scale. The scale for 
crystal sizes is given by (Y~/Im) TM. We use numerical calcula- 
tions to derive dimensionless relationships between all the 
parameters of interest: position of the crystallization front 
versus time, thickness of the crystallization interval versus 
time, crystal size versus distance to the margin, temperature 
versus time. We assess the sensitivity of the results to the 
form of the kinetic functions. The form of the growth func- 
tion has little influence on the crystallization behaviour, 
contrary to that of the nucleation function. This shows that 
nucleation is the critical process. In natural cases, magmatic 
crystallization proceeds in continously evolving conditions. 
Local scaling laws apply, with time and size given by z 
=(y3.I)-1/4 and R=(Y/I) 1/4, where Yand I are the rates 
at which crystal are grown and nucleated locally, z is the 
time to achieve crystallization and R the mean crystal size. 
We use these laws together with petrological observations 
to infer the in-situ values of the rates of nucleation and 
growth. Two crystallization regimes are defined. In the high- 
ly transient conditions prevailing at the margins of basaltic 
intrusions, undercoolings are high and the peak nucleation 
and growth rates must be close to 1 cm-3 . s  -1 and 
10 .7 cm/s, in good agreement with laboratory measure- 
ments. In quasi-equilibrium conditions prevailing in the in- 
terior of large intrusions, undercoolings are small. We find 
ranges of 10- 7 to 10- 3 cm-  3 s-  t and of 10-10 to 10- 8 cm/s 
for the local rates of nucleation and growth respectively. 

I Introduction 

In a magma chamber, crystallization is affected by many 
processes. Igneous layering and crystal size variations show 
that crystallization does not proceed continuously, with the 
thickness of the crystal pile increasing at a steady rate. To 
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interpret this complex igneous record, one must first under- 
stand the very process of crystallization. For natural mag- 
mas, it occurs out of equilibrium and depends on the kinet- 
ics of nucleation and crystal growth. Following an early 
attempt by Kirkpatrick (1976), Brandeis et al. (1984) studied 
the transient cooling of magma emplaced in cold country 
rocks. Given functions for the rates of nucleation and crystal 
growth, the evolution of crystallization can be followed and 
all relevant parameters can be computed. These include the 
thickness of the crystallization interval, which is the region 
where crystallization is active, and the crystal size. The cal- 
culations are made with a computer program which has 
two drawbacks: they do not allow a straightforward under- 
standing of the characteristics of crystallization and must 
be repeated for each new system studied. The latter is partic- 
ularly limiting since there are few data on the rates of nucle- 
ation and growth. The purpose of this paper is to present 
a dimensional analysis of the same problem. Given scales 
for the rates of nucleation and crystal growth, we derive 
a time-scale for crystallization, a length-scale (proportional 
to the thickness of the crystallization interval) and finally 
a size-scale (proportional to the crystal size). This leads to 
a very simple method to characterize crystallization. 

Before proceeding with the analysis, a few words may 
be useful to explain why such a general understanding of 
crystallization equations is needed. The past ten years have 
seen many dynamic crystallization experiments in the labo- 
ratory (Gibb 1974; Walker et al. 1976; Donaldson 1979; 
Lofgren 1980; Kirkpatrick et al. 1981; Tsuchiyama 1983; 
Baker and Grove 1985). To use them for petrological inter- 
pretations, it is necessary to estimate the cooling rate in 
natural conditions. This is usually done with the simple 
thermal calculations of Jaeger (1968), which is not legitimate 
because the crystallization kinetics have an effect on the 
cooling rate through the release of latent heat (Dowty 1980; 
Brandeis et al. 1984). Therefore, the full problem must be 
solved, which requires the knowledge of the nucleation and 
growth rates. These remain poorly constrained. 

There are essentially two kinds of nucleation. Heteroge- 
neous nucleation is such that the formation of nuclei of 
critical size is catalyzed by a solid surface in contact with 
the liquid (impurities). Homogeneous nucleation is such that 
a crystal forms without aid of foreign material, when a clus- 
ter of atoms fortuitously reaches a critical size. The rates 
for both phenomena can be expressed as a function of un- 
dercooling and temperature (Johnson and Mehl 1939; 
Turnbull and Fisher 1949). In magmas, it is not clear which 



kind of nucleation dominates. Heterogeneous nucleation is 
probably important at small undercoolings, when the prob- 
ability of formation of atom clusters is small (Chalmers 
1977, pp 62-90). Crystal growth requires that chemical 
components be transported to the crystal surface, which 
is usually achieved by diffusion, and oriented into the crystal 
lattice (attachment). As crystallization proceeds, diffusion 
probably becomes limiting, determining the crystal growth 
rate. No method is available to treat diffusion with many 
interfering crystals. Thus, there is no obvious way to specify 
theoretically the nucleation and growth functions. One must 
ultimately rely on empirical expressions obtained from labo- 
ratory data and it is important to assess the precision re- 
quired for realistic models and to understand the sensivity 
of the crystallization behaviour to the kinetic functions. This 
is the purpose of the present study. 

The plan is the following. We study the simplest problem 
of conduction cooling and we carry out a dimensional anal- 
ysis of the governing equations. We then give dimensionless 
relationships for all the crystallization parameters. In a third 
section, we focus on the nucleation process and show that 
it controls the crystallization behaviour. We then discuss 
the different assumptions. We finally use our results and 
available petrological constraints to derive bounds on the 
in-situ value of the nucleation rate in the interior of a large 
basaltic intrusion. 

II Basic equations and dimensional analysis 

We consider a cooling experiment in one dimension only 
(perpendicular to the margin). Heat transport is by conduc- 
tion only. This approximation is valid in boundary layers 
close to the intrusion walls and will be discussed. At time 
t = 0, magma is emplaced in cold country rocks. The heat 
equation is written: 

c3T/~t--=tg.~2T/63z 2 for z < 0 (country rock) (la) 

63T/~t=tg.632T/~z2-bL/Cp.63qD/63t for z>0(magma)  (lb) 

where Cp is the isobaric heat capacity and Lthe latent heat 
per unit mass. �9 is the crystal content per unit volume 
and takes values between 0 and 1. 63cb/63t depends on the 
rates of nucleation and growth rates according to the equa- 
tion (Kirkpatrick 1976) 

' ]2 
c~cb/Ot=4n.[1-Cb(z, t)]-Y(t).~o I(v). Y(u)du .dr (2) 

where I and Yare the nucleation and growth rate functions 
respectively. In this equation, it is assumed that crystals 
are spherical and that both the nucleation and growth rates 
can be uniquely prescribed as a function of time at any 
depth z. In this paper, both rates are prescribed as a function 
of undercooling which in turn depends on time. In effect, 
this assumes that the attachment kinetics are the controlling 
mechanism for crystal growth, and will be discussed. To 
define the nucleation and growth functions, two steps are 
required. One is to specify a characteristic value, or scale, 
which introduces the nucleation and growth scales Im and 
Ym- The other step is to specify the form of the function. 
Standard kinetic theory leads to bell-shaped curves for both 
the nucleation and growth rates as a function of undercool- 
ing (Kirkpatrick 1976), called "shape 1" functions (Appen- 
dix). To investigate the influence of the form of the kinetic 
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functions, we shall also use box-car functions, called 
"shape 2". 

The initial conditions are that both magma and country 
rock are isothermal, with a temperature contrast AT: 

r(z, 0) = Ti for z > 0 (magma) (3 a) 

r(z, O) = Ti-- A T  for z < 0 (country rocks) (3 b) 

The boundary conditions are: 

T( + 0% t) = T/ (3 c) 

T( - 0% t) = Ti - A T (3 d) 

T~ is the initial magma temperature, set equal to the liquidus 
TL. Boundary condition (3 c) states that the magma temper- 
ature is fixed far away from the margin. 

The equations for T and �9 are coupled, which shows 
that the temperature evolution depends on the crystalliza- 
tion kinetics. We assume that the physical properties (K, 
%) are constant. The temperature scale is AT, and the scales 
for the nucleation and growth rates are Im and Y,, respective- 
ly. The time-scale appears when equation (2) is made dimen- 
sionless: 

Tc = { Ym 3" Ira} - 1/4 (4a)  

Heat transfer is by conduction and the length-scale is given 
by: 

dc = (to. %)1/2 (4b) 

To summarize, the knowledge of characteristic scales 
for the rates of nucleation and growth allow the definition 
of both a time-scale and length-scale. We show below that 
they also yield a size-scale Rc which is used to parameterize 
the crystal size evolution: 

Rc = (Ym/im) 1/4 (4 c) 

Non-dimensional variables are denoted by primes: 

t=t'.~c (5a) 

z=z' .dc (5b) 

I = I ' . I ~  (5c) 

Y= Y'. Ym (5 d) 
T= T~+ T ' . A T  (5e) 

Equations then (1-2) become, dropping the primes: 

63 T/63 t = ~ 2 T/63 z 2 (6 a) 

63 T/~ t = 632 T/63 z 2 + L/(Cp A r ) .  6 3 ~/~ t (6 b) 

t [ j  ; 63qr)/63t=4~. [1--~b(z, t)]. g(t). ~o I(v). Y(u) du .dr (6c) 

This introduces a non-dimensional number a, called the 
Stefan number: 

L 
~ r = - -  (7a) 

c v. A T  

Another non-dimensional number is related to the nu- 
cleation delay: 

6 T  
D = A ~  (7b) 
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Table 1. List of numerical experiments 

No. L AT Im Y,, I Y set of exp. ~ T z~ R~ 
cal/g C cm-  3 s-  1 cm. s -  i shape shape ~ s cm 

2.00 86 600 7. 6 .10-  7 1 1 A ~ 4  3 x 104 2 x 10 -z 
2.01 86 600 7. 6.10 -s  1 1 A -~4 9x102 5 x 1 0  -2 
2.02 86 600 7.10 -2 6-10 -6 1 1 A -~4 2x104 10 -1 
2.03 86 600 7.102 6.10 -6 1 1 A -~4 2 x 103 10 -2 
2.04 86 600 7- 6-10 -6 1 1 A ~-4 5 x 103 3 x 10 -2 
2.05 86 200 7. 6.10 6 1 1 B -~4 5 x 103 3 x 10 -z 
2.06 86 400 7. 6 . 1 0  - 6  1 1 B ~ 4  5 • 103 3 • 10 - 2  

2.07 0 600 7. 6-10 -6 1 1 B-C ~ 4  5 x 103 3 x 10 -2 
2.08 0 600 1. 10 -6 2 2 C 5 3 x 104 3 x 10 .2 
2.09 86 600 1. 10 .6 2 2 C 5 3 x 104 3 x 10 -2 
2.10 86 200 7. 6.10 -5 1 1 B ~ 4  9 x 1 0  z 5 x 1 0  -2 
2.11 0 600 7- 6-10 -5 1 1 B-C ~ 4  9x102 5 x 1 0  -2 
2.12 0 600 1- 10 -5 2 2 C 5 6x103 6 x 1 0  -z 
2.13 86 600 7- 10 -5 1 2 C ~ 4  3 x 103 3 x 10 -2 
2.15 0 600 7. 6.10 -4 1 1 B-C ---4 2x  102 10 -1 
2.16 0 600 7. 6.10 -4 1 2 C "~4 2• 10 -1 
2.17 86 200 7. 6.10 -4 1 1 B ~ 4  2x  102 10 -1 
2.18 86 600 7- 6.10 -4 1 1 A ~ 4  2 x 102 10-1 
2.19 0 200 7- 6 . 1 0  - 4  1 1 B-C -----4 2 x 10 / 10 -1 
2.20 0 600 7. 6" 10 -'~ 2 1 C 5 2 x 102 10-1 
2.21 0 600 7" 6-10 5 1 2 C ~-4 9 x 10 z 5 x 10 -2 
2.22 0 200 7. 6.10 -5 1 1 C ~-4 9 X 10 2 5 • 10 - 2  

2.23 0 600 7. 6.10 5 2 1 C --4 9 • 102 5 x 10 -2 
2.26 0 600 7. 6.10 -4 1+2  1 C ~ 4  2• 102 10 -1 

cp = 0.26 cal/g ~ ~ = 7.10-  3 cm2/s 

Depth 

~: i:...:..,; ~.? x ( t )  +F_.lt) 

~ ' . , , ~ ' , ' . ~  PARTIALLY CRYSTALLIZED l x ( t )  - - - - -  

FULLY CRYNTALLIZED 

0 
O 1 qb 

Crystal content 

F NTERVAL 

- - -  RONT 
Fig. 1. Definition of the crystallization parameters. 
The crystallization front is the moving boundary 
between fully and partially crystallized magma, with 
coordinate X(t). The region where magma is partially 
crystallized is called the crystallization interval. It is 
defined to be such that 0.01 < (h <0.99 and has 
thickness s(t) 

The  Stefan n u m b e r  gives a measure  of the impor t ance  
of la tent  hea t  in the t empera tu re  equat ion .  If  it is small  
(o- ~ 1), the effects of  crystal l izat ion can  be neglected in the 
hea t  budget .  This  does  not  apply  to geological  cases, for 
which the Stefan n u m b e r  is close to 1, thus la tent  hea t  re- 
lease mus t  be t aken  into account .  

Because equa t ions  (6 b, c) are coupled,  the p rob l em has 
to be solved numerical ly .  W e  carry  out  three sets of  experi-  
ments  referenced in Tab le  1. In  the first set (A), the only 
vary ing  pa ramete r s  are the nuc lea t ion  and  g rowth  scales 
Im and Y,,. In  the second set (B), we invest igate  the role  
of a. In  the last set (C), we assess the influence of the shapes 
of the kinet ic  functions.  Paramete rs  ~: and cp are kept  con-  
stant  because they vary little for magmas ,  wi th  values  given 
in Tab le  1. 

III The evolution of crystallization 

All exper iments  show similar  effects which have  a l ready 
been  descr ibed in Brandeis  et al. (1984). W e  n o w  give d imen-  
sionless re la t ionships  for the crysta l l izat ion variables.  The  
evo lu t ion  of  crysta l l izat ion can  be fol lowed by that  of the 
b o u n d a r y  be tween  fully and par t ia l ly  crystal l ized m a g m a  
(Fig. 1). This  m o v i n g  b o u n d a r y  is called the crysta l l izat ion 
front  and  is such tha t  the crystal  con ten t  q~ is equa l  to  
0.99 (Fig. 1). Its coord ina te  is deno ted  by X(t). The  region 
where  m a g m a  is par t ia l ly  crystal l ized is called the crystall i-  
za t ion  interval ,  defined as the zone  where  0.01 < ~ < 0 . 9 9  
(Fig. 1). Its thickness is deno ted  by e(0. We  show below 
that  b o t h  X(t) and e(t) scale wi th  the crysta l l izat ion length-  
scale defined in equa t ion  (4b). T h r o u g h o u t  the fol lowing,  
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Fig. 2a, b, c. Position of the crystallization front versus time in 
dimensionless variables. Time t = 0 marks the emplacement of mag- 
ma in country rocks which are colder by an amount A T. a I,, 
and Y,~ are allowed to vary. All runs (see Table l) yield the same 
curve in dimensionless coordinates. This shows the validity of the 
dimensional analysis, b Curves for different values of the Stefan 
number or. e Variation of coefficient 2 in equation 9 as a function 
of Stefan number 
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we make X(t) and e(t) dimensionless according to the for- 
mulae:  

X=X'.dc (8a) 

e=e'.dc (8b) 

We then drop  the primes, as before. 

111.1 Evolution of the crystallization interval 

We first checked that  all the curves of X(t) are identical 
when Im or  Ym are the only variable parameters  (Fig. 2a). 
X(t) follows a power-law: 

x( t )  =,~ t" (9) 

where exponent  n is close to 1/2, but  slightly different. The 
1/2 power  law corresponds to the ideal case of latent heat 
release at a fixed melting point  (Jaeger 1968) or of a binary 
alloy without  kinetic effects (Worster  1986). The crystalliza- 
t ion kinetics do not  alter significantly this simple law, due 
to the control  by heat  diffusion. Coefficient 2 depends on 
~, increasing with decreasing a (Fig. 2c). This is because 
the smaller ~, the smaller latent heat  release. 

Figure 3 shows the evolution of the interval thickness 
e(t). The general trend is a slow increase with a few oscilla- 
tions which reflect the discontinuous behaviour  of crystalli- 
zation in transient conditions.  Brandeis et al. (1984) showed 
that  nucleation occurs as sharp pulses followed by longer 
periods of crystal growth, leading to temperature  fluctua- 
tions. The effect is described in more detail  below. 

When  varying the nucleation and growth scales, we 
found again that  all curves of e(t) are superposed, which 
shows the valididy of the scaling procedure.  Revert ing to 
dimensional  variables, this implies that  e is inversely propor -  
t ional  to Ira. It appears  that  the var ia t ion of log(e) as a 
function of log(t) is quasi-linear. In each case, the da ta  can 
be fit to a few percent with a law (in dimensionless vari- 
ables): 

e(t)  = ~ .  t ~ (10)  

Exponent /~  is about  to ---0.37 for c~= 1.65 and has a limit 
value of 0.29 for cr = 0. Coefficient c~ is close to 0.3. 
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Fig. 4a, b. Dimensionless undercooling at the crystallization front 
O(t) as a function of time (also dimensionless) when: alm and Ym 
are the only variable parameters (set A) b a is the only variable 
parameter (set B) 

Relationships (9) and (10) are dimensionless and can 
be used for any values of the nucleation and growth scales. 
They represent universal results extending those by Bran- 
deis et al. (1984). 

III.2 Thermal evolution 

To follow temperature in crystallizing magma, we use the 
dimensionless undercooling at the crystallization front: 

T L -  TEX(t), t 3 
O(t)= AT (11) 

We again verified the validity of the dimensional analysis 
by comparing results from different runs (Fig. 4a). 0 de- 
creases with a few oscillations due to the discontinuous 
character of nucleation. The oscillations are damped as 
there is a tendency to achieve a balance between latent 
heat release and heat loss. They are not of numerical origin, 
as shown by systematic checks on the convergence of the 
solutions. A simplified analysis of this problem can be found 
in Brandeis et al. (1984), which explains that oscillatory 
behaviour is the natural consequence of the coupling be- 

tween latent heat release and temperature. The analysis 
shows further that damping depends on the steepness of 
the nucleation and growth curves. 

In Fig. 4a, all curves are superposed. The calculations 
have been made with different parameters, time-steps and 
space-steps. The fact that all solutions fall on the same di- 
mensionless curve emphasizes that the oscillations are real, 
not numerical. The physical explanation is the following. 
Following emplacement in cold country rocks, undercool- 
ings are high and nuclei are formed in large numbers, releas- 
ing large amounts of latent heat. This increases the magma 
temperature and hence stops nucleation. Latent heat is then 
released at a reduced rate and cooling is allowed to proceed, 
promoting the formation of another batch of nuclei and 
hence of another temperature fluctuation. 

Note that 0 has not been calculated for times t < 1 (in 
dimensional variables, for times smaller than the crystalliza- 
tion time-scale), because crystallization has not started, and 
hence there is no crystallization front. This shows that zc 
is close to the time for crystallization to start in supercooled 
magma. 

Figure 4b, illustrates the influence of the Stefan number 
a. The larger o-, the larger the temperature oscillations, be- 
cause latent heat is conducted away with less and less effi- 
ciency. There are no oscillations for a=0 ,  as there is no 
latent heat effect. A striking fact is that the number of oscil- 
lations does not depend on a. We interpret this as the 
number of characteristic times needed to achieve quasi-equi- 
librium conditions. In other words, it takes a given number 
of crystallization times to forget the initial conditions. In 
the simplified analysis of Brandeis et al. (1984), the crystalli- 
zation behaviour depends on two parameters, one of which 
defines the intensity of damping and hence the number of 
oscillations which can be observed. The other parameter 
determines the intensity of oscillations and depends on the 
Stefan number, accounting for the effects described here. 

111.3 The crystal size 

We also calculate the crystal size. In dimensional variables, 
a unit volume of crystallized material comprises N crystals, 
with mean radius R: 

co 

N(z)= ~ [1 - ~(z, t)] . I ( t ) .d t  (12a) 
0 

R(z) = [4/3.7z-N(z)] - 1/3 (12b) 

A size-scale appears when equation (12) is made dimension- 
less: 

Re= { v.2I }1/4 (13) 

The dimensionless crystal size is obtained by: 

R 
R ' = - -  (14) 

Rc  

R varies as a function of the distance from the margin. 
Again, all dimensionless curves are identical proving that 
R c is the correct size-scale (Fig. 5 a). 

Extrapolating these results to a wide range of natural 
cases is difficult because, far from the margins, crystalliza- 
tion proceeds at small undercoolings in conditions where 
our knowledge of the nucleation process is poor. The labo- 
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ra tory  experiments of Fenn (1977), Swanson (1977) and Tsu- 
chiyama (1983) bring constraints only on the peak nuclea- 
t ion rate. The shape 1 function used so far relies on parame-  
ters derived from s tandard  kinetic theory (see Appendix).  
Fo r  such a function, the nucleation rate tends to zero con- 
t inuously with decreasing undercooling. The unavoidable  
consequence is that  the crystal size may eventually reach 
infinity. Specifically, what  is needed is some information 
on the shape of the nucleat ion function. 

O- = 0 SHAPE 
EFFECT ~ /  

(1,o .--J~" 
\ ~ / /  
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Fig. 6. Evolution of the interval thickness a(t) for different shapes 
of the kinetic functions (set C). The first and second number in 
brackets refer to the shapes of the nucleation and growth functions 
respectively. The Stefan number is set equal to 0. Non dimensional 
number D (dimensionless nucleation delay, equation 7b) takes 
values of 6.7 x 103 (plain curves) and 2 x 10 2 (dashed curve) 
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We investigate the effects of shape 2 kinetic functions (see ~_-~ 
the Appendix),  which represent the limit-case of discontin- o 
uous behaviour.  F o r  the nucleation process, this is not  un- 
reasonable and approximates  the effect of a finite energy ~ 7~ 
barr ier  for the format ion of a nucleus. Intuitively, these func- ~ 
tions represent the obvious way to achieve a constant  crys- 
tal size throughout  the crystall ization sequence. These func- 
tions are not  meant  to be realistic, but  to provide a test 
of how sensitive to the kinetic functions the crystall ization 
behaviour.  

We have made calculations for all possible combinat ions  
of shape 1 and shape 2 functions, keeping the same proce-  
dure for making variables dimensionless, cr is taken to be 
zero. This case is simpler, yet shows all the impor tan t  fea- 
tures as cr has no effect on the form of the relat ionship 
between the crystall ization parameters.  
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Fig. 8. Evolution of the front position X(0 for different shapes 
of the kinetic functions (set C). The Stefan number is equal to 
O. Plain and dashed curves are as in Figs. 6 and 7 
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For a shape 2 nucleation function, e decreases with time 
(Fig. 6), because undercoolings in the crystallization interval 
decrease towards limit 6 T (Fig. 7). The shape of the growth 
function has no influence on e or 0, having only a weak 
effect on the numerical values. This is an important fact 
to which we shall return. The crystallization front position 
follows exactly the square-root of time (Fig. 8). This agrees 
exactly with Jaeger's model (1968) because of the tendency 
to crystallize over an interval of negligible thickness. 

The effect on crystal sizes is more interesting. For a 
shape 2 nucleation function, the crystal size is constant after 
a small transient (Fig. 9). The value is close to the size-scale 
defined by (13), with a proportionality constant between 
0.5 and 0.7 depending on the shape of the growth function. 

We conclude that the shape of the nucleation function 
has a critical influence on the results, contrary to that of 
the growth function. It is nucleation which is responsible 
for temperature oscillations as well as the tendency to main- 
tain a constant crystal size. Crystal growth does play a 
role in determining the numerical constants in the various 
scaling laws, but does not have any effect on the crystalliza- 
tion behaviour. 

V Discussion 

A comparison between these results and those by Jaeger 
(1968) can be found in Brandeis et al. (1984). To make a 
quantitative model for petrological applications requires 
numerical values for the various parameters. The nucleation 
and growth scales have been factored out of the equations 
and need only be specified in a last step. One must specify 
the Stefan number. In conditions of intrusion into upper 
crustal rocks, the initial temperature contrast ranges from 
about 600 ~ C to 1000 ~ C, depending on the liquidus temper- 
ature. Latent heat values vary between 50 and 200 cal/g. 
Thus, a varies between about 0.2 and 1.3. For basaltic mag- 
mas with high temperatures, the range is smaller and a 
representative value is 0.4. The other non-dimensional 
number is D (7b). This second number is important because 
it determines the temperature range over which there is 
no nucleation. As crystallization proceeds, the dimension- 
less undercooling at the crystallization front tends towards 
D (Fig. 7). From available laboratory data, the nucleation 
delay 6 T never exceeds a few tens of degrees (Gibb 1974; 
Donaldson 1979), and hence is always much smaller than 

the initial temperature contrast. For the heat budget, 
number D is always small and plays little role, as shown 
by its weak influence on the front position and on the inter- 
val thickness (Figs. 6 and 8). 

We now discuss our assumptions. 

E1 The crystallization kinetics 

Crystal growth is affected by both chemical diffusion and 
the attachment kinetics. The rate controlling process is the 
slowest one. In rapidly cooled magma such as lava flows, 
chilled margins, or laboratory samples, spherulitic or den- 
dritic morphologies show that diffusion is limiting. In large 
intrusions, monomineralic layers thicker than 10 m are 
commonly observed (Wager and Brown 1968), indicating 
that the chemical evolution of crystallizing magma is not 
obvious. For example, compositional convection may occur 
in the porous cumulate pile (Morse 1969; Tait et al. 1984; 
Kerr and Tait 1986), bringing the required components to 
achieve adcumulate growth. We have shown that the shape 
of the growth function has no influence on the results. 
Therefore, only the magnitude of the growth rate is impor- 
tant. One needs only select an overall vahe  consistent with 
the rate of solute transport (by diffusion or else). 

Turning to the nucleation function, the most important 
result of this study is that its shape is a critical factor, 
especially at small undercoolings. In particular, it is reflected 
directly in the crystal size variation (Fig. 9). A key observa- 
tion is that the crystal size varies little in the interior of 
large igneous complexes. A shape 1 nucleation function im- 
plies large size variations, which does not seem compatible 
with observations. Further, crystal sizes from intrusions of 
all types, sizes and shapes are remarkably similar (Brandeis 
et al. 1984), even though cooling conditions must have been 
quite different. This suggests that the nucleation function 
does not vary rapidly when undercoolings are small, and 
hence, to be specific, differs from a shape 1 function. This 
raises the difficult problem of determining precisely the nu- 
cleation function close to the liquidus. For natural silicate 
compositions, nucleation rates in those conditions are very 
small implying extremely long crystallization times (see be- 
low), and hence making laboratory experiments difficult. 
The uniformity of crystal sizes suggests that the nucleation 
rate varies little in the interior of large intrusions. The limit- 
case is that of a constant, i.e., a shape 2 function, which 
is the best approximation at the moment. 

We conclude that, to explain both crystal size variations 
at the margins as well as their lack of variation in the interi- 
or, the simplest nucleation function is a combination of 
shape 1 and shape 2 functions. We show in Fig. 10 such 
a function, used in a final calculation. The corresponding 
crystal size curve is given in Fig. 11 and shows both features: 
a sharp increase at the contact, followed by convergence 
towards a limit value. In this example, one must carry out 
two separate scaling analyses. One for highly transient con- 
ditions pertaining to the margin, where shape 1 functions 
must be used. The other for quasi-equilibrium conditions 
prevailing in the interior, where a shape 2 nucleation func- 
tion must be used. 

V.2 Thermal regime 

We have considered cooling by conduction only, which is 
valid in thin dikes and sills, but also at the bottom of intru- 
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sions. There, crystallization occurs mainly in situ (Campbell 
1978; McBirney and Noyes 1979) in stagnant layers isolated 
from convection (Jackson 1961 ; Jaupart and Brandeis 1986). 

A more important limitation is boundary condition (3 c), 
where the magma temperature far from the margin is held 
constant. In reality, the intrusion must cool and its interior 
temperature must decrease. This invalidates the boundary 
condition which must be replaced by some function of time. 
However, the intrusion cooling occurs over a rather large 
time, for both conduction and convection (see, for example, 
Jaupart and Brandeis 1986), and hence the solutions derived 
above are valid over a large time and hence distance. It 
is not our purpose to dwell longer on the complex thermal 
evolution of magma chambers, which is not fully under- 
stood yet, but the general consequence is easy to predict: 
undercooling in the crystallization interval will be some- 
what larger than in our calculations, and hence the crystal 
size will be somewhat smaller. For example, dikes with de- 
creasing widths cool with increasing efficiency and should 
exhibit decreasing crystal sizes, which is indeed observed 
(Ikeda 1977). 

For large magma chambers, given the complexity of 
their thermal regime, it seems impossible to use the preced- 
ing analysis. Adding the difficulty of determining nucleation 
rates at small undercoolings, perspectives appear quite un- 
certain. However, we now show that our results can be 
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plausibly extended to a variety of more complex cases. Con- 
sider the evolution of the crystallization parameters: for 
example, the crystal size increase away from the margin, 
or the increase of the interval thickness with time. They 
reflect the evolution of undercoolings in the crystallization 
interval illustrated in Fig. 4.: as time increases, undercool- 
ings decrease. Thus, the nucleation and growth rates also 
decrease, implying the increase of crystal size and interval 
thickness which is found. More precisely, it is possible to 
use local scaling laws based on the mean undercooling 0* 
which prevails at the time each piece of magma crystallizes. 
From those, we define the local scales: 

R *  = [ Y(O*)/ I (O*)] 1/4 (15 a) 

"c* = [I(0")- Y(O*) 3] - 2/4 (156) 

d* = ~/Kr* (15 c) 

Using the value 0* from Fig. 4 in those relations yields 
the observed curves for the crystal size, the interval thick- 
ness, etc .... This is powerful because only the local values 
of the nucleation and growth rates are required, regardless 
of the whole kinetic functions. For example, following em- 
placement in cold rocks, undercoolings are the highest, and 
magma crystallizes at the peak rates. Indeed, we found that 
the dimensionless crystal size close to the margin was close 
to 1, which, in dimensional variables, means that the crystal 
size is given by equation (15a) using the peak rates. Ob- 
viously, the local scaling procedure is also valid for shape 2 
functions. 

We emphasize that the procedure holds in the very tran- 
sient conditions of our sudden cooling experiment. Even 
in those conditions, a piece of magma crystallizes fast en- 
ough so that it does not experience highly variable under- 
coolings. However, from one piece of magma to the neigh- 
bouring one, thermal conditions are slightly different, lead- 
ing to the systematic variation of crystallization parameters 
which is observed. The fact that the local scaling laws are 
successful in those transient conditions suggest that they 
can be applied to other cases as well, where the intrusion 
cools by processes other than conduction. Certainly, the 
crystallization time-scale can be found from the crystal con- 
tent equation (2) without any assumption on the thermal 
regime. The same is true for the crystal size-scale. The thick- 
ness of the crystallization interval is more sensitive, because 
it is directly related to the temperature gradient and hence 
to the heat transport mechanism (see Brandeis et al. 1984). 

The local scaling laws are very powerful because the 
crystal size can be measured and provides a direct constraint 
on the local nucleation and growth rates. A single additional 
constraint is therefore sufficient to determine both rates. 
This is attempted in the next section. 

VI Constraints on the kinetic rates from observations 

Two separate analyses can be made. One for the vicinity 
of margins where shape 1 functions can be used. The other 
with shape 2 functions for quasi-equilibrium condition in 
the interior. 

1/1.1 The  margins  

A few crystal size data are available for dikes and sills (sum- 
marized in Walker et al. 1976). We use measurements from 
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basic dikes (Gray 1970; Walker 1940) which show similar 
curves of crystal size as a function of distance to the margin. 
We use shape 1 functions, with the nucleation and growth 
scales denoted by 11 and Y1 respectively. 

The crystal size curve can be quite complex very close 
to the margin, with sometimes a chill zone forming (Bran- 
deis et al. 1984). Walker et al. (1976) proposed a relationship 
between crystal size R and the distance from the margin 
X of the form: 

R = k  1 X" (16) 

where n is usually between 0.3 and 0.6. As shown by Fig. 5, 
our results look similar to such a power-law relationship. 
For Stefan numbers smaller than 0.5, which should be the 
case of basic magmas (see above), we find that exponent 
n is about 0.8 far from the margin. Very close to the margin, 

results depart from a power-law. Forcing a power-law rela- 
tionship from the very margin inwards yields much lower 
values of n, similar to those proposed by Walker et al. 
(1976), but without a firm basis. 

The universal curves of Fig. 5 can be fit to the data 
of Walker (1940) and Gray (1970) by adjusting the size-scale 
and length-scale. As shown by Fig. 5b, the crystal size in 
the vicinity of the margin is very close to the size-scale. 
Thus, the measured value gives directly ratio (Y1/IO, which 
yields a relationship between the nucleation and the growth 
rate: 

I1 = Y1/R~ (17a) 

Away from the margins, the crystal size exhibits a ten-fold 
increase over a typical distance of 5 m, with lower and upper 
bounds of 4 and 7 m (Winkler 1949; Gray 1970; Walker 
1940). In our calculations, this increase occurs over a dimen- 
sionless distance of about 10, i.e., over ten times the crystalli- 
zation length-scale (Figs. 5 and 9). Thus, this length-scale 
(defined by equation 4b) is between 40 and 70 cm. Using 
a thermal diffusivity of 10-6 m2/s, this yields a second rela- 
tion between the nucleation and growth scales: 

11 = Y 1 3  .'l~c 4 (17b) 

The intersections of the two curves define a domain of 
plausible values. Estimates of 10 - 7  c m / s  and 1 c m  - 3  s -1  

are found for the growth and nucleation scales respectively, 
corresponding to a crystallization time scale of 2 x 105 s. 
The range of growth scales spans only one order of magni- 
tude, whereas that for the nucleation scale spans about two 
orders of magnitude (Fig. 12a). This growth scale is close 
to the values of Swanson (1977) and Swanson and Fenn 
(1986). The nucleation scale is compatible with the bounds 
of  10 - 2  and 10 2 cm -3 s-  1 obtained from laboratory experi- 
ments (Brandeis et al. 1984; Tsuchiyama 1983). 

VI.2 7he interior of magma chambers 

Consider now quasi-equilibrium conditions at small under- 
coolings. We use shape 2 functions with scales I2 and Y2. 
The crystal size yields again a relationship: 

12 ~- Y2/R** (18 a) 

The typical crystal size is 1 mm in basic intrusions and 
can vary between 0.5 and 2 mm. We report on Fig. 12b 
lz as a function of I12 according to this equation. 

It is possible to derive a second constraint from the 
local thickness of the crystallization interval e* which scales 
with the local length-scale d* (equation 15c). It cannot be 
measured directly for obvious reasons, but petrological ob- 
servations can be used for constraints. One concerns the 
lack of evidence for crystal settling. If the thickness of the 
crystallization interval was large, crystal settling would be 
significant and lead to visible sorting. Indeed, evidence for 
sorting exists in a small number of cases over vertical dis- 
tances less than 1 m (Irvine 1974; Brown and Farmer 1971). 
Another observation is the thickness of the crystal mush 
which is disturbed by magma currents. This mush is the 
pile of loosely consolidated crystals which lies at the 
chamber bottom. In our definition, it is simply the crystalli- 
zation interval. Several authors have inferred that its thick- 
ness is a few metres (Hess 1960; Parsons and Butterfield 
1981). 
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For  the sake of discussion, we consider that the thickness 
of the crystallization interval can vary between 50 cm and 
3 m. We therefore write the conditions:  

12 = y 2 -  3 . . c ,  - 4  (18b) 

and : 

d* 

where c~ is a coefficient varying between 1 and 10 depending 
on the shape of the nucleation function (Fig. 6). Assuming 
again a thermal diffusivity of 10 .6  mZ/s, we report on 
Fig. 12 b the corresponding relationship between the nuclea- 
tion and growth rates. Again, this defines a domain of plau- 
sible values. The uncertainties given by relation (18b) are 
greater than in the previous case, because of the large range 
of values for e* and therefore d*. 

We find that the growth rate must be between 10 -2~ 
and 10 .8  cm/s, and the nucleation rate between 10 .7  and 
10-3 c in-3  s-1 (Fig. 12b). This yields a range of crystalliza- 
tion times of 107-109  s. Note that, although the ranges 
of kinetic rates are large, they allow rather tight constraints 
on the crystallization parameters of interest: time-scale and 
length-scale. This is due to their weak dependence on the 
kinetic rates. 

These values can be compared to data obtained in natu- 
ral cooling conditions in Hawaiian basaltic lava lakes. In 
these, the thermal evolution is complex, with hydrothermal 
convection in the fractured crust and differs from that as- 
sumed in this study. However, the measured values corre- 
spond to some undercooling and must thus be bounded 
by the values 11 and 12 for nucleation and Y2 and Y2 for 
growth. Kirkpatrick (1977) estimated growth rates between 
10- 20 and 10- 9 cm. s - 2 for plagioclase crystals, and nuclea- 
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tion rates between 7.10 .3  and 2 cm 3.s 2. These are con- 
sistant with our estimates. 

VII Conclusion 

We have shown how the kinetics of nucleation and crystal 
growth determine the crystallization behavior. Scaling laws 
have been derived which allow simple definitions of the 
main crystallization parameters. For  crystallization, the 
most important  process is nucleation, which is unfortunate- 
ly not very well known at small undercoolings. We show 
that crystal size data yield simple constraints relating the 
nucleation and growth rates. Using petrological observa- 
tions, we have obtained bounds at 10-7 and 10-3 cm-3  s-2 
for the nucleation rate which prevail in the deep interior 
of basaltic magma chambers. The range is large and there- 
fore seems of little practical interest. However, it allows 
useful constraints on the crystallization parameters of inter- 
est. For  example, the crystallization time-scale must be be- 
tween 107 and 109 s. 

Appendix 

A.I The kinetics of crystallization 

A.I.1 The nucleation rate. The critical parameter is the temperature 
interval 6 T, called the nucleation delay, over which the nucleation 
rate is negligible (Dowty 1980). The 5 T does not exceed a few 
tens of degrees for magmas (Gibb 1974; Donaldson 1979). Using 
parameters suitable for heteregeneous nucleation we obtain, an ex- 
pression following Turnbull and Fisher (1949) and Turnbull (1950, 
1952): 

11 = K 1 �9 T. exp [-- K2/(To2)] -exp ( - K J T )  (A 1) 

where T is the absolute temperature and 0 the undercooling T L 
--T.K1, K2 and K3 determine respectively the peak nucleation 
rate, the nucleation delay 6 T and the temperature interval over 
which nucleation occurs. In this paper, K1 is allowed to vary while 
K2 and K 3 are kept constant. I~ is thus a function of the single 
variable undercooling ~ and its shape, referenced as shape 1, is 
fixed (Fig. 13). 

To investigate the influence of the shape of the function, we 
use a box-car function called shape 2:12 is zero for 0 < 5 T and 

> 200 ~ C, and has a constant value between these two tempera- 
tures (Fig. 13). 

A.I.2 The growth rate. In highly transient cooling conditions, crystal 
growth is controlled by the interface reactions with a growth rate 
depending on undercooling (Kirkpatrick 1975; Baronnet 1984). 
Chemical diffusion eventually becomes limiting on a small-scale 
(Lasaga 1982; Loomis 1982). For attachment-controlled growth, 
we take the simplest law as a function of temperature, following 
Kirkpatrick (1975): 

I11 = K4' [1 -- exp ( - K 5 tp/T)] .exp (-- K6/T ) (A2) 

In this paper, K4 is allowed to vary while K 5 and K 6 a r e  kept 
constant. This is the shape 1 function. 

We also consider a box-car function called shape 2: Y is con- 
stant over the undercooling interval [0.200 ~ C] and zero elsewhere. 
The two functions are represented on Fig. 13. 

A.I.3 Numerical values. For shape 1 functions, the values of param- 
eters K2, K3 and Ks, K 6 a r e  obtained with available data on 
silicate melts (for more details, see Dowty (1980)). We have taken 
Kz= 5x 105 K -3, K 3 = K 6 = 6 x  104K, and Ks=20. The nuclea- 
tion delay is equal to _~4 ~ C, close to measured values in basaltic 
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melts (Donaldson 1979). For those functions, the scales are ~ven 
by the peak values. For "shape 2" functions, the scale is simply 
the constant value taken by the function. 
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