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To interpret the many observations made on igneous complexes, a detailed understanding of the structure of the 
bottom boundary layer is necessary because it is there that most crystallization takes place. Magma chambers are 
characterized by turbulent convection and cooling through all sides. Focussing on the bottom boundary layer, its 
evolution is determined by two competing processes: cooling through the floor which yields a stable temperature 
gradient, and penetration by plumes from the convecting interior. To elucidate the physics of this interaction, we have 
made a series of laboratory experiments in high Prandtl number fluids undergoing transient turbulent thermal 
convection. At the start of the experiment, an initially isothermal plane layer of viscous silicone oil is cooled through 
both its upper and lower boundaries. We investigate a range of Rayleigh numbers of 106-108. We show that a stagnant 
layer grows at the bottom of the tank. This layer is not penetrated by convective plumes and is not affected by 
convective mixing. We develop a theory in good agreement with the observations and show that the stagnant layer 
thickness scales as Ra-1/6. The results allow a detailed model of the temperature regime prevailing at the floor. In a 
basaltic magma chamber, the stagnant layer reaches a thickness of several tens of meters. A closed chamber has both a 
well-mixed part and a stagnant part, which implies that crystallization and differentiation proceed in a complex 
fashion, even if there is no reinjection. 

I. Introduction 

A lot of interest has recently focussed on the 
evolut ion of magma reservoirs because they may 
provide the key to fundamenta l  processes operat-  
ing in the interior  of our planet:  sea-floor spread- 
ing at mid-ocean ridges [1], magmat ic  differentia- 
t ion and volcanic activity (for a review, see [2]). 
There are many  fossil magma chambers  at the 
Earth 's  surface which allow a direct evaluat ion of 
the processes which once operated in their mol ten 
interior. Since the pioneer ing studies of Bowen [3], 
petrologists have described m a n y  large-scale struc- 
tures in igneous rocks [4-9]. Among  the most 
spectacular are the fifteen cyclic layers found by 
Jackson [5] in the Ultramafic  Zone  of the Still- 
water Complex. These horizontal  layers are made 
of the same mineral  sequence of olivine-chromite- 
bronzite,  have an average thickness of about  50 m 
and  can be traced throughout  the whole complex 
over distances of more than 10 km. Jackson [5] 
a t t r ibuted them to occasional overturns  of a stag- 
n a n t  layer lying at the chamber  bot tom. More 
recently, following Hupper t  and Sparks [10], 
Raedeke and  McCal lum [11] have suggested that 
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they were in fact due to repeated injections of hot 
and  dense magma into the chamber.  This issue 
can be settled by a quant i ta t ive model reproduc- 
ing the field observations. This requires a proper  
knowledge of the structure and evolution of the 
bounda ry  layer lying at the bo t tom of magma 
chambers  since it is there that most  crystallization 
takes place. 

To date, studies on the physics of magma 
chambers  have taken two different directions. 
Some have used numerical  calculations to de- 
termine the various possible regimes for convec- 
t ion and differentiat ion in high-viscosity fluids 
[12,13]. Others have focussed on composi t ional  
effects due to fractional crystall ization and  on 
elegant analog laboratory experiments with aque- 
ous solutions [10,14-18]. These apply well to the 
tu rbulen t  interior of magma chambers,  but  do not  
represent accurately processes occurring in hori- 
zontal  bounda ry  layers where the effects of viscos- 
ity dominate .  Also, they do not  span a wide range 
of thermal regimes. This may represent a problem 
since the thermal regime is a critical parameter.  
For  example, Hupper t  and Turner  [16] have shown 
that crystallization at the bo t tom releases buoyan t  
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fluid which flows upward. In experiments with the 
same aqueous solutions, Copley et al. [19] found 
that such flows are suppressed when the thermal 
gradient is sufficiently large. For this reason, we 
have undertaken a detailed investigation of the 
thermal regime in the lower parts of a convecting 
chamber. We report laboratory experiments of 
transient thermal convection in a viscous fluid. 
We then discuss to what extent crystallization 
modifies the observed behaviour. 

Repeated influxes of magma into the chamber 
may perturb the thermal regime. However, as dis- 
cussed above, reinjection is not a continuous pro- 
cess and a finite length of time separates two 
successive influxes. We therefore study a closed 
chamber. From the thermal point of view, its 
fundamental characteristics is that it is cooled 
through all sides. Focussing on the bot tom 
boundary layer, there are two competing processes: 
a stabilizing temperature gradient (due to cooling 
through the bot tom boundary) and interaction 
with the convecting interior. To investigate this 
complex situation, we have made the following 
experiment. We start with a fluid layer which is 
hot and isothermal. At time t = 0, we lower the 
temperatures of both the upper and lower surfaces 
by a fixed amount AT. Convection develops from 
instabilities of the upper boundary layer. In a 
previous paper [20], we showed that a stagnant 
layer develops at the tank bottom. We now give a 
detailed account of several experiments carried 
out under different conditions. We then develop a 

m m  

Fig. 1. Description of the experimental setup (drawn to scale 
with dimensions in ram). Note the 11 platinum wires stretched 
horizontally across the tank. Note also the finer spacing close 
to the upper and lower boundaries. The wires are not attached 
to the plexigtas walls and are free from mechanical stresses due 
to thermal expansion. All electrical connections and circuits 
are located outside the tank. 

simple theory and show how to scale the stagnant 
layer thickness. 

The plan of the paper is the following. In 
section 2, we describe the experimental setup and 
discuss measurement errors. Section 3 is devoted 
to a detailed description of the results. In section 
4, we develop a theory valid for high Rayleigh 
numbers and compare it to the data. In section 5, 
we discuss the behaviour of convective plumes. 
We then scale our results to likely conditions in 
magma chambers and evaluate the general impli- 
cations for the crystallization regime. The full 
application of our results to magmas requires the 
consideration of latent heat and of the kinetics of 
nucleation and growth [21,22], and will be post- 
poned to a future paper for purposes of brevity. 
The present results are of general interest since 
there are very few laboratory experiments of tran- 
sient convection [23-25]. 

2. Experimental details 

2.1. General description of the apparatus 
We use a plexiglas tank with 2 cm thick walls, 

25 cm x 25 cm horizontal dimensions and 10 cm 
height (Fig. 1). The upper and lower boundaries 
are 3 cm thick copper plates through which ther- 
mostated water circulates. Temperature regulation 
is achieved through one H A A K E  thermostat and 
one H A A K E  cryostat which maintain temperature 
to better than 0.1°C over several days. Two ther- 
mocouples are buried in each copper plate close to 
the fluid in order to measure directly the boundary 
temperatures. 

We use two kinds of visualisation techniques. 
First, the common shadowgraph technique which 
gives a picture of the whole system. Second, dif- 
ferential interferometry with a 4 cm diameter laser 
beam. Both were used to determine the structure 
of convection in the fluid layer [20]. The quantita- 
tive interpretation of the pictures is difficult be- 
cause of light refraction effects (typical tempera- 
ture contrasts exceed 10°C). 

We also carry out measurements of the hori- 
zontally averaged temperature at several depths in 
the layer. 11 platinum wires were stretched across 
the tank with a spacing of 1 cm in the interior and 
0.5 cm near the boundaries (Fig. 1). The wires 
have a diameter of 0.2 mm and do not disturb the 
flow significantly. They are part of an electrical 



circuit made of a stable precision tension genera- 
tor (25 mV) and a precision resistance of 1 fL The 
tension generator is good to better than 2 / tV over 
several days. Ohmic dissipation is totally negligi- 
ble. The electrical tension across the precision 
resistance is measured to better than 1 /tV with a 
6-point Schlumberger Solartron voltmeter. This 
tension varies as a function of the platinum wire 
resistance and hence temperature. A temperature 
difference of 0.1°C leads to an average tension 
variation of 1.5/~V. Each wire is calibrated inde- 
pendently. Due to fluctuations in the reference 
tension and contact effects when switching from 
one wire to the next, tension variations of + 3 #V 
lead to uncertainties of +0.2°C.  The main prob- 
lem is due to thermal expansion of the tank walls 
which tend to stretch the wires, thereby changing 
their resistance. To alleviate this, the wires are 
attached to soft springs which compensate for any 
mechanical stress. We discuss the experimental 
errors later. 

2.2. The experiments: procedure and parameters 
We used silicone oils manufactured by Rhone 

Poulenc (Table 1). The values of viscosity were 
measured in our laboratory with a H A A K E  falling 
ball viscometer. The values of all the other physi- 
cal properties are those given by the manufac- 
turer. 

In order to simulate conditions of instanta- 
neous cooling, we proceeded as follows. Both 
copper plates were left at high temperature T i for 
a time long compared to the thermal constant of 
the fluid layer (d2/x, where d is the layer thick- 
ness and x thermal diffusivity). The fluid was thus 
initially isothermal. There were no detectable 
side-wall heat losses (no visible motions in the 
fluid, Fig. 2). During the same period, the cryostat 
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was maintained in closed circuit at a much lower 
temperature of about 4°C. At the initial time 
t = 0, both copper plates were switched to the 
cryostat. After a short transient of about 3 minutes, 
the temperature of both copper plates dropped by 
about 20°C. By setting the temperature of the 
cryostat close to that new value, we were able to 
stabilize the temperature to within 0.1°C in less 
than 6 minutes. The difference between values of 
temperature at 3 minutes and in steady-state was 
always less than 10%. The temperature of both the 
upper and lower boundaries were thus maintained 
at a constant value Tf after 6 minutes. We always 

TABLE 1 

Physical properties for the silicone oils 

Oil p v ~x ~ P r  

type (m2/s) ( K -  1 ) (m2/s) 

47V20 0.965 2 x 1 0  - s  9.45×10 -4 1.14×10 -7 175 
47V100 0.965 10 -4 9.45X10 -4 1.13x10 -7 877 
47V500 0.970 5 x 1 0  -4 9.45x10 -4 1.13x10 -7 4425 
47V1000 0.970 10 -3 9.45x10 -4 1.13x10 -7 8850 

© 

Fig. 2. Time sequence of the development of convection in 
experiment 1. Times are, from top to bottom: 2', 2 '7"  and 
2'14". The photographs show the whole tank. Convective 
instability of the upper boundary layer occurs after a finite 
time. Note that there is no detectable motion in the interior at 
the start of the experiment (top photograph). The scale is given 
by the wire spacing which is 1 cm. 
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used temperature drops of about 20°C, so that the 
accuracy of the temperature measurements was 
+ 1% at the start of the experiment. The tempera- 
ture contrast is A T =  T~-  T r. These conditions 
approximate those of instantaneous cooling, i.e. a 
temperature drop AT at time t = 0. 

For our experiments, the governing equations 
are the following in the standard Boussinesq ap- 
proximation. The vertical axis 0-z is positive up- 
wards: 

V . u = 0  (la) 

Du 
- ~Tp + ffV 2u + p~Tgn ( lb)  

P D t  

D T  
o C , - ~  = k v 2 T  ( lc)  

In these equations, u denotes velocity, n the verti- 
cal unit vector and T temperature, p is the devia- 
tion from hydrostatic pressure, p is the reference 
value of density (at T i), a the thermal expansion 
coefficient, Aa viscosity, Cp heat capacity and k 
thermal conductivity. We shall assume that all 
physical properties are constant. This is not ex- 
actly true for viscosity (Table 2), which varies as a 
function of temperature by less than 30%. The 
reference value of viscosity is taken at the initial 
temperature T~, since we focus on the early stages 
of the experiment. 

Using the following characteristic scales: d for 
spatial coordinates, d2/K for time, AT for tem- 
perature, the two parameters which characterize 
the experiments are the Rayleigh and Prandtl 
numbers: 

Ra = ga ATd 3 (2a) 

TABLE 2 

Parameters for the experiments 

No. Oil T i T r AT g(Ti) u(Tr) R a  i 

(°C)  (°C)  (°C)  (10-6mZ/s)  

1 V500 54.4 32.2 22.2 312 466 
2 V100 45.3 27.0 18.3 71 98 
3 V100 45.5 25.7 19.8 71 101 
4 V100 60.0 34.5 25.5 55 86 
5 V100 3 1 . 5  19.5 12.0 91 113 
6 V100 6 4 . 1  37.8 26.3 51 81 
7 V1000 36.5 2 1 . 3  15.2 810 1080 
8 V20 49.4 27.6 21.8 14 22 
9 V20 59.4 22.9 26.5 12 23 

5.96 × 106 
2.16×107 
2.35×107 
3.89 × 107 
1.11×107 
4.32×107 
1.58×106 
1.28×108 
1.83 x l0 b 

Pr = u/K (2b) 

where ~ is kinematic viscosity. We report data 
from nine different experiments (Table 2). Experi- 
ments were repeated in similar conditions to check 
the reproducibility of the results. The range of Pr 
investigated is 175-8850 (Table 1) which corre- 
sponds to the values for magmas [26]. The range 
of Rayleigh numbers is 1.6 x 106-1.8 x 10 ~, 
covering two orders of magnitude. The convection 
regime for such high-Pr fluids can be defined 
according to Kraichnan [27]. It is characterized by 
instability of the thermal boundary layer which 
generates plumes (Fig. 2). Each plume first evolves 
in a laminar regime, with its velocity determined 
by the balance between viscous drag and buoyancy. 
The field of plumes is chaotic because of the 
process of plume generation. In a very thick fluid 
layer, each plume eventually becomes turbulent at 
some distance for the boundary. It then entrains 
surrounding fluid, which implies a change of dy- 
namics [28]. According to Kraichnan [27], the 
transition to such fully developed turbulence oc- 
curs when the following condition is met: 

Ra > 4.5 × 104 X (Pr)  3/2 (3) 

In our experiments, this is never the case. The 
regime is thus one of thermal turbulence, with 
velocities depending on viscosity. We shall return 
to the plume characteristics in section 5. 

2.3. Temperature measurements 
We measured the resistance of each wire, which 

is a function of the horizontal average of tempera- 
ture. The data were taken manually and then fed 
to a computer. We made one profile (11 readings) 
every 3 minutes. The average time needed for one 
profile was 40 seconds. From the time series for 
each wire, the values were smoothed with a 3-point 
running average and corrected for the finite time 
taken to make 11 readings. We thus had instanta- 
neous profiles where all temperature measure- 
ments correspond to the same time. The measure- 
ments were usually taken for about half an hour 
and the system was left to come to equilibrium. 

These data allow the computation of the con- 
vective heat flux. Temperature is written as: 

T(x ,  y, z, t ) =  T(z,  t ) +  O(x, y, z, t) (4) 

where the overbar denotes the horizontal average. 
0 is the temperature fluctuation. Throughout the 



following, we drop the overbar and T denotes the 
horizontally averaged temperature. We assume that 
our data are values of T and we neglect heat 
losses through the vertical boundaries. Averaging 
the heat equation (lc) and using equation (4), the 
equation for the horizontally averaged tempera- 
ture is (see for example [23]): 

OT 0 [ k OT } 
pCp Ot - Oz [ Oz - pCp-W--O (5) 

where wO is the product of vertical velocity and 
temperature fluctuations, pCpw8 is the convective 
heat flux. In Writing (lc) and (5), we have ne- 
glected the heat production term due to viscous 
dissipation. Equation (5) can be rearranged: 

02T OT 
~z ~ - pCp--~ (6) 

Integrating this equation between heights 0 and z, 
we get: 

oc, (z) - pC, wO(O) = f [  I, OT) 
"101 0 z2 - p C p - ~  dz 

(7a) 

At the lower horizontal boundary, wS(O)= 0, and 
(6) can be reduced to: 

pCp-~( z ) = k OT k OT t z OT 
Oz ( Z ) -  ~z  ( O ) - J o P C p ~ -  dz  

(7b) 

Using the temperature data, we compute all de- 
rivatives using standard second-order finite-dif- 
ference formulae. The integration is made using 
Simpson's formula. 

Accurate determinations of the wires vertical 
coordinates are necessary. We used a calliper- 
square which allows measurements to 0.1 mm. The 
wires were found to be horizontal to better than 
0.5 mm, or about _+ 0.2 mm. Adding all possible 
errors, the heat flux data are good to about 4% at 
the start of the experiment. At later times, the 
temperature difference between the fluid and the 
horizontal boundaries decreases, thus the accuracy 
on temperature and heat flux also decreases. 

There are other sources of errors. One is the 
finite time to read all 11 temperature data. In the 
very early transient stages, the method applied for 
correction is not accurate. Another source of error 
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is of a more fundamental nature: heat losses 
through side-walls. In order to minimize them, we 
worked at temperatures close to room tempera- 
ture. Starting with a fluid hotter than ambient air, 
we did not notice any side-wall flows (Fig. 2). 
Throughout the experiment, transient heat con- 
duction in the plexiglas walls can be neglected 
because it has a characteristic time of several 
hours, or more than the duration of the experi- 
ment. One way to look at this problem is to 
integrate the heat equation (5) over the whole 
layer. Neglecting side-wall heat losses, and using 
the fact that the convective heat flux is zero at 
horizontal boundaries, this equation yields: 

fo d OT OT. OT pCp--~ d z =  k~-z ( d ) -  k ~ z  (0) (8) 

Because all terms can be computed independently 
from the T data, the overall error on (8) can be 
determined. This closure error was found to be 
10-15%, corresponding to systematic underesti- 
mation of heat loss terms (RHS) compared to the 
enthalpy decrease term (LHS). Because it is sys- 
tematic, it cannot be blamed on the temperature 
data. Part of it can be due to side-wall heat losses, 
but we attribute it to an error in the computation 
of the temperature gradient at the upper boundary. 
There, the temperature profile is very steep [29] 
and there are not enough data points to allow a 
good determination of the gradient. This implies a 
systematic underestimation which is of the same 
order as the calculated closure error. As cooling 
proceeds, the upper boundary layer thickens and 
the accuracy of the gradient estimate should im- 
prove. Indeed, we find that the closure error de- 
creases. We conclude that the errors on heat flux 
are those listed above, except in the upper 
boundary layer. As will be seen later, we are not 
interested in the absolute values of convective heat 
flux, but rather on how it varies with depth in the 
well-mixed layer. We shall show results from two 
similar experiments which make it clear that re- 
producibility is better than 4%, in agreement with 
the error estimate. 

3. General description 

All experiments behave similarly as discussed 
in [20]. We now describe the salient features. At 
time t = 0, the temperature of both the top and 
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bo t tom boundaries are lowered. After a finite 
length of time, the upper  boundary  layer goes 
unstable and descending plumes are generated 
(Fig. 2). This first instability occurs when a 
Rayleigh number  defined locally with the thermal 
boundary  layer thickness reaches a critical value 
(Appendix 1). 

The plumes almost reach the tank bot tom, but 
not quite. As shown in our  previous report  [20], a 
stagnant layer is observed to grow there. This 
layer is not  penetrated by the downgoing plumes 
and is therefore isolated from the convecting inte- 
rior. Using differential interferometry, we gave in 
this report additional visual demonstra t ion that 
there is no penetration. By carrying out the reverse 
experiment, i.e. heating a cold layer from both top 
and bot tom, we were further able to show that the 
temperature variation of viscosity plays no role in 
the process [20]. Initially, the stagnant layer grows 
very fast, and slows down as time increases (Fig. 
3). We did not use the photographs  to measure 
systematically the stagnant layer thickness because 
of  light refraction effects. We now focus on the 
numerical data. 

Temperature  and heat flux data for two differ- 
ent experiments are given in Figs. 4 and 5. The 
reproducibility of the results is assessed in Figs. 4b 
and 4c. Note  that heat flux values differ by less 
than 8% everywhere. This is partly due to the 12% 
contrast  in Rayleigh number,  and the remaining is 
entirely compatible with the 4% error estimate. 

Several features must  be noted on the tempera- 
ture profiles. First, the presence of two thermal 
boundary  layers. The top one is unstable and is 
the site of  plume genesis. The bot tom one is 
associated with a stable density gradient. The aim 
of  this study is to develop a model for this layer. 
The second feature is that temperature is ap- 
proximately uniform in the middle: this is a well-  
mixed layer. To the experimental error, it is not  
possible to detect whether the mean temperature 
profile is slightly stable or not there. The third 
feature is the transient behaviour of temperature: 
the fluid layer is cooling continuously.  

The heat flux profiles (Figs. 4b and 5b) show 
two features of interest. First, heat flux decreases 
linearly with depth in the well-mixed layer. This is 
analogous to the results of Deardorf f  et al. [23] 
and easy to understand from equation (5). In the 
well-mixed layer, temperature is independent  of  z 

Fig. 3. Time sequence of the evolution of convection in experi- 
ment 8. Times are, from top to bottom: Y, 4' and 7'. A dark 
region is seen to grow at the bottom which is not penetrated by 
convective plumes. This is the stagnant layer. Due to the strong 
refraction of light in the boundary layers, the wire located at a 
height of 1 cm is seen at the very bottom of the pictures (in the 
white area). In the last photograph, the top of the stagnant 
layer is at a height of about 1.6 cm, or 0.16 in non-dimensional 
units. 

and has a value Tm(t ). The equation therefore 
reduces to: 

pcpdTm 8 
dt - 8z { pCp-w-O} (9) 

This equation shows that the vertical gradient of  
the convective heat flux is independent  of  z and is 
proport ional  to the cooling rate. The second fea- 
ture is that heat flux is zero over a certain thick- 
ness at the bo t tom (Figs. 4b and 5b). This is 
consistent with the observation that convective 
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Fig. 4. (a) Vertical profiles of temperature in experiment 4. Numbers along the curves are values of non-dimensional time t* 
(equation (17b)). Dots indicate the measured values. The smooth curves were drawn arbitrarily. (b) Vertical profiles of convective 
heat flux in the same experiment and for the same times. Convective heat flux is made dimensionless according to equation (16). Note 
the linear decrease in the middle of the fluid layer and the small values (not significantly different from zero) at the bottom. (c) 
Vertical profiles of heat flux for experiment 6 which corresponds to a similar Rayleigh number. Note the good agreement with (b). 

p lumes do not  reach the tank bo t tom where a 
s tagnant  layer grows. Because of the errors in the 
heat flux values, it is not  possible to state this as 
proof  that there is indeed no convect ion in that 
layer. The proof was given in our  previous report 
[20] using visualizat ion techniques. 

The errors are too large to show that heat flux 
is really zero in the bo t tom bounda ry  layer. How- 
ever, we can compare our measured values to 
those reported by Deardorff  et al. [23] in their 
experiments.  They showed marked penet ra t ion  in 
a stable temperature  gradient  with negative heat 

flux values reaching ten per cent of the max imum 
heat flux into the layer. Such high values are ruled 

out by our data. The reason is of course that 
Deardorff  et al. [23] used water where inertial  
effects dominate.  In  the viscous oils of our experi- 
ments,  these are negligible and the plumes stop 
when they reach surroundings  with the same tem- 
perature. In  the lower parts of the well-mixed 
layer, the data  suggest that heat flux departs from 
a l inear  profile and  tends to zero without  changing 
sign (Fig. 4b). This again differs from the results 
of Deardorff  et al. [23]. 

(a )  1 

Z ~-' 

0 , , , , j , I , ,  

T 

1 (b)  t [ I 

Ra =1.3x10 8 

I [ 
-0.1 0.0 

t,c we 
05 

Fig. 5. (a) Vertical profiles of temperature in experiment 8. I~oth the upper and lower boundary layers are thinner than in experiment 
4. (b) Vertical profiles of convective heat flux in the same experiment. 
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H O R I Z O N T A L L Y  A V E R A G E D  
TEMPERATURE 

y 
C O N V E C T I V E  H E A T  F L U X  

Fig. 6. (a) Schematic illustration of the basic physical aspects of the experiments. Left: cold plumes travel downwards in hotter 
surrounding fluid until they reach the lower boundary layer. There, they encounter fluid with colder temperature and their buoyancy 
decreases. They stop at the level where their temperature equals that of surrounding fluid. Right: Simplified profile of convective heat 
flux showing the decrease to zero in the lower boundary layer. (b) Idealized profiles for both temperature and heat flux used in 
theoretical considerations. The mean horizontal temperature corresponds to an average of the temperatures of plumes and 
surrounding fluid. The top of the stagnant layer is defined at height 8 where heat flux drops linearly to zero. 

F rom these considerations,  we draw the follow- 
ing model for convective plumes in a high Prandtl  
number  fluid (Fig. 6a). When  they reach the stable 
temperature  gradient, they slow down as their 
buoyancy  decreases. They stop when they reach 
the level of zero buoyancy,  i.e. where their temper- 
ature equals that of the sur rounding  fluid (Fig. 6). 
This level is the top of the s tagnant  layer. 
Throughout  the following, we refer to an idealized 
model based on a simplified profile for the con- 
vective heat flux. We compute  the height 8 at 
which the linear port ion of the profile intersects 
the vertical axis (Fig. 6b). 8 is equated to the 
s tagnant  layer thickness. This provides an unam-  
biguous defini t ion in good agreement with the 
observations. For  example, consider Fig. 3. The 
earliest computa t ion  of 8 at the time of 12', slightly 
later than the bo t tom photograph, gives 0.17, which 
compares well with the observed value of about  
0.16. 

The impor tant  point  is that " s tagnant"  means 
no motion,  i.e. there is no convection below height 
6. Fig. 7 shows the evolution of 8 as a funct ion of 
time for the whole range of Rayleigh numbers  
investigated. Note that the s tagnant  layer gets 
th inner  as the Rayleigh number  increases. Note 
also the fast rate of growth in the beginning.  We 
now use simple theoretical considerat ions to de- 
rive an expression for 8(t). 

4. A s i m p l e  m o d e l  

4.1. The evolution of temperature 
The heat equat ion (5) can be integrated be- 

tween heights 6 and d: 

cdOT~ dz=k[-~-z ( d ) -  ~-z (8)] PCpL aT OT 

-pCp{~(d) -~(8) }  (10) 
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Fig. 7. Thickness of the stagnant layer versus non-dimensional 
time for experiments spanning the whole range of Rayleigh 
numbers. Note that the stagnant layer gets thinner as the 
Rayleigh number increases. 



By definition (Fig. 6), 3 T / 3 z ( 3 )  = 0 at the edge of 
the well-mixed layer, and also w O ( 3 ) =  wO(d) = O. 
Hence equation (10) reduces to: 

fsd 3T  OT dz = K--~-z ( d )  (11) 

W e  treat the case of high Rayleigh numbers. I n  

this limit, both the upper and lower boundary 
layers are of negligible thickness, hence: 

~ J 3 T  dT  m (12) 
- ~  d z = d  d t  

where T m is the temperature in the well-mixed 
layer. To close the problem, we need a formula for 
the heat flux through the upper boundary, Q ( d )  
= - k  3 T / ~ z ( d ) .  Dimensional considerations led 
Townsend [30] and Deardorff et al. [23] to the 
following expression: 

~__.(d) = - k  OT { g ~ } l / 3 T m 4 / 3  
Oz ( d ) =  - C k  G (13t 

where C is some constant. Howard [31] gave a 
simple physical model to justify this expression. 
Lower values for the (1/3)  exponent have been 
suggested by many authors. Katsaros et al. [29] 
made a careful laboratory study to investigate this 
specific problem and concluded that the exponent 
was indeed 1/3,  down to Rayleigh numbers of 
106. More recently, Ho-Liu et al. [32] have used an 
improved method to compute heat flux in 
numerical calculations of convection and found a 
value of 0.327 for Rayleigh numbers ranging from 
10  4 t o  10  6 . These results confirm the validity of 
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expression (13). From their experiments, Town- 
send [30] and Deardorff et al. [23] found values of 
constant C ranging from 0.19 to 0.23. We shall 
take a mean value of 0.21, remembering that the 
error introduced by this choice is small (10%). 
Expression (13) will be used to make heat flux 
dimensionless with the following heat flux scale: 

= A T  4/3 (14) 

Using equations (12) and (13), we find: 

d T m - d t  C r--f ga } t x~, (15) 

Throughout the following, temperature is calcu- 
lated with reference to that of the two boundaries, 
i.e. it is initially AT in the interior and zero at the 
boundaries. Equation (15) can be made dimen- 
sionless using AT as temperature scale and the 
following time-scale: 

3 d 2 
"r = - -  - -  R a -  1/3 (16a) 

C x 

The dimensionless temperature and time are: 

Tm* = TIn~AT (16b) 

t* = t / ~  (16c) 

Equation (15) is integrated for the initial condition 
T*(O) = 1: 

T * = ( l + t * )  3 (17) 

This dimensionless function is plotted in Fig. 8a 
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Fig. 8. Evolution of T m, the temperature in the well-mixed layer, versus non-dimensional time t*. (a) Experiment 5. The solid curve is 
theoretical estimate from equation (19). The discrepancy between the theoretical prediction and the measured value is mainly due to 
the non-instantaneous cooling conditions at the experiment start. The dashed curve is obtained by translating the solid curve along 
the time axis, which amounts  to shifting the initial time. (b) Same as (a) for experiment 1. The theoretical prediction is not as good as 
in (a) because the Rayleigh number  is smaller. 
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together with data from experiment 5. Rather than 
collapsing all data onto a single curve, we prefer 
to report individual cases so that each experiment 
can be appreciated on its own. The misfit of Fig. 
8a is due to the fact that our laboratory conditions 
do not correspond exactly to the instantaneous 
conditions assumed to obtain (17). The experi- 
mental data can be superimposed onto the theo- 
retical curve by a translation along the time-axis, 
i.e. changing the initial time to allow for the fact 
that temperature did not drop instantaneously. 
For comparison, the time of 6 minutes corre- 
sponds to a non-dimensional time of 0.064 for the 
experiment of Fig. 8a (experiment 5). It would be 
of course possible to integrate equation (11) with 
the experimental conditions, but we feel it is not 
worth the effort. Rather than making a theory to 
reproduce the data perfectly, we prefer to show 
that simple concepts are sufficient to understand 
the experiments. Fig. 8b gives an example of tem- 
perature data for a lower Rayleigh number of 
6.0 X 10 6, for which the high Ra approximation is 
less valid. 

4.2. The growth of the stagnant layer 
We have shown that there is no convection 

below height 8 (Fig. 6b). Thus, in the stagnant 
layer, heat transfer is by conduction only and the 
temperature equation is: 

~T 02T 
- (18) 

3t Oz 2 

This equation must be solved for the following 
initial and boundary conditions (in dimensionless 
form): 

T(z ,  0) = 1 (19a) 

T(0, t) = 0 (198) 

v ( a ,  t) = v ,o(t )  (19c)  

3T/~z (8 ,  t)  = 0 (19d) 

8(0) = 0 (19e) 

Boundary condition (19c) states that the tempera- 
ture at the edge of the stagnant layer is that of the 
well-mixed layer, i.e. the known function (17). 
Solving (18) with conditions (19) leads to a mov- 
ing-boundary problem with 6(t)  as unknown. 
Rather than going through a numerical method, 
we use the integral method which gives an ap- 
proximate solution sufficient for our purposes. We 

integrate (18) over the vertical between z = 0 and 
z = 6. This yields, using (19d): 

f0 a aT aT dz = -x-~-z (0) (20) 

We approximate T(z, t) with a second-degree 
polynomial with time dependent coefficients. In 
the case of instantaneous cooling of a half-space, 
the error function solution, this method has an 
accuracy of 3%. The profile is thus, using boundary 
conditions (19b, c, d): 

Substituting this into the integral equation (20), 
we get: 

dTm T 6 d6 = 6xT m + 282 (22) 
m dt dt 

This simple equation shows that the evolution of 
the stagnant layer depends on two competing 
processes. The first is conduction cooling (first 
term on the RHS), which tends to thicken the 
stagnant layer. The other process is due to the 
convective plumes (second term on the RHS), 
which tend to erode the stagnant layer. We call 
this process "convective erosion". If conduction 
dominates (small dTm/dt) ,  the stagnant layer 
grows unhampered by what happens above. If 
convective erosion is strong (large dTm/dt) ,  cool- 
ing yields colder plumes which reach deeper and 
deeper levels in the lower boundary layer, hence 
leading to the disappearance of the stagnant layer. 

The trick of this analysis is that, at high 
Rayleigh numbers, the boundary layers are negli- 
gible in the overall heat budget, hence the temper- 
ature of the well-mixed layer can be determined 
independently of what happens in the stagnant 
layer. Of course, it would be possible to take into 
account the boundary layers in the equations and 
proceed in an exact fashion. The aim of this 
simple theory is to allow an understanding of the 
data and not to reproduce them exactly with a 
model as complex as the experiment itself. 

Substituting (17) into (22), we get: 

- 13 d 2 ( (1  + t*)  - (1 + t*)  - '2}  (23)  

which can be recast as: 



a_ 3~l~c R a -  ' /6 ~ ( l + t * ) - ( l + t * ) - z2 

(24) 

Or, using the value of 0.21 for constant C (see 
above): 

- ( 3 . 6 3 ) R a - ' / 6 ~ ( 1  + t * )  - (1 + t*)  - ' 2  (25) 
d 

The theoretical curves for several experiments at 
high Rayleigh numbers are reported in Fig. 9 
together with measured values. For Rayleigh num- 
bers smaller than 10 7 , a s  shown above, the high 
R a  approximation is not valid. We show again the 
experiments separately to allow an evaluation of 
each case. The small misfit is again attributable to 
non-instantaneous cooling conditions, and shifting 
the time axis would lead to better agreement. To 
compare all our experiments, we plot the stagnant 
layer thickness at the dimensionless time of 0.2 
against Rayleigh number (Fig. 10). We chose this 
particular t* value because we had data from all 
experiments. Note that the agreement with the 
theoretical expression is good, and also that the 
reproducibility of the measurements is better than 
5%. The data show that the stagnant layer thick- 
ness scales as R a - 1 / 6 .  

In this analysis, the thickness of the stagnant 
layer depends on the shape of the temperature 
profile (see Fig. 6). The shape assumption de- 
termines both the multiplying factor (3.63) and 
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Fig. 9. Thickness of the stagnant layer versus non-dimensional 
time at high Rayleigh number. Solid curves are derived from 
theoretical equation (25). 
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Fig. 10. Thickness of the stagnant layer at t* = 0.2 for all 
experiments. Solid line is theoretical estimate from equation 
(27) and has a slope of -1/6.  Note the good fit at Rayleigh 
numbers higher than 10 7. Three pairs of data at similar Ra 
values allow a check of the reproducibility. 

the exponent ( - 1 2 ) ,  but has no effect on the 
R a  - ] / 6  dependence. To illustrate the error in- 
troduced by the shape profile, we have taken the 
worst possible assumption, that of a constant tem- 
perature gradient in the stagnant layer (linear 
temperature profile). The expression for 8 then 
becomes: 

8_ = ( 2 . 8 6 ) R a _ 1 / 6 ~ / (  1 + t*  ) - (1 + / . ) - 6  (26) 
d 

The difference between expressions (25) and (26) 
is never more than 22%. By analogy with the case 
of conduction cooling in a half-space, equation 
(25) should not be wrong by more than 3%. The 
agreement with our experimental data is of this 
order. 

This theory was based on experiments with 
moderate  Rayleigh numbers where viscosity 
dominates the whole flow structure [27]. However, 
it should hold to much higher Rayleigh numbers 
when eddy viscosity becomes important because it 
only depends on two specific assumptions: (1) the 
absence of inertial effects in the lower boundary 
layer at the bottom, and (2) equation (13) for the 
heat flux through the upper boundary. Both are 
valid at any high Rayleigh number. 

5 .  T h e  c o n v e c t i v e  p l u m e s  

We now study in some detail the downward 
movement of plumes. As shown in section 2.2, all 
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Fig. ll. Height of plume cap versus time at two stages of 
experiment 9 (values of the non-dimensional time are indicated 
along the curves). In the well-mixed layer, the curves are linear, 
which suggests that the plumes travel at constant velocity. The 
thick horizontal bars mark the edge of the stagnant layer. The 
plumes slow down in the lower boundary layer as they ap- 
proach the stagnant layer. 

our experiments are in regimes dominated by 
viscosity, which implies that the plumes are 
laminar. Looking at their fine structure (see the 
photographs  in [20]), they are characterized by a 
large cap trailing a pipe, hence their dynamics 
must be controlled partly by those of  the cap. 
They can be defined as laminar starting plumes, 
similar to those studied by Olson and Singer [33] 
by injecting fluid of low density into a deep layer. 

We have followed their downward progression 
by measuring the times at which their visible tip 
passes each horizontal wire. Examples of such 
determinations are given in Fig. 11. Until  they 
reach the lower boundary  layer, they seem to 
move at constant  velocity, contrary to an isolated 
turbulent starting plume [34]. Our measurements 
are too crude to demonstrate  this fact, but  inde- 
pendent  studies support  it. There are two factors 
of  importance when assessing the behaviour of 
these plumes. First, they entrain little surrounding 
fluid. Shlien [35,36] made very careful experiments 
on isolated laminar starting plumes by heating a 
deep layer of fluid at a constant  rate and found 
that they travel at a constant  velocity. The second 
factor is that the plumes are not isolated and 
interact with neighbouring ones. Their dynamics 

are different since for example they cannot  grow 
freely. Indeed, we observed that the cap does not 
grow noticeably during descent. Farmer  [37] re- 
ported that plumes travel at a constant  velocity in 
a lake heated by solar radiation beneath an ice 
cover. 

F rom our data, it is clear that the plumes 
become slower as cooling proceeds, i.e. as the 
temperature difference across the upper boundary  
layer decreases (Fig. 11). This evolution parallels 
that of the convective velocity scale defined as 
follows [27]: 

r l  gctTm l ~/3 
w, = ~ /  (27) 

For  each determination of plume velocity, we 
computed  w,  using the measured values of  T m 
and u at the same time. The data suggest that the 
plume velocity scales with w,  (Fig. 12) and yield 
the following result: 

w = (5.6 _ 0 .9 )w ,  (28) 

This represents a s tandard deviation of  16%. Con- 
sidering the spread of available data, from about  
0.5 to 3 (Fig. 12), this result cannot  be considered 
as experimental proof  that the scaling is correct. 
At  any given time, all plumes do not have exactly 
the same size, and this dispersion is responsible 
for a lot of  scatter. Looking at the data in greater 
detail, we found a systematic decrease of ratio 
w / w ,  during the course of an experiment. We 
attribute this to the "crowding"  effect in a field of 
plumes. At the start of  the experiment, the upper  
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Fig. 12. Plume velocity versus velocity scale w, (equation (29)). 
The solid and dashed lines correspond to relationship w / w ,  = 
5.6_+0.9. 



boundary layer is thin and the plumes are numer- 
ous. At the end, convection is sluggish and few 
plumes are seen. Thus, the dynamics of mutual 
interaction are changed. Selecting data from only 
the first few minutes of the experiments would 
provide a better relationship than (28), but at the 
expense of fewer data. 

6. Implications for basaltic magma chambers 

The experiments were made with the simplest 
thermal conditions to limit the number of parame- 
ters and for purposes of clarity. They were de- 
signed to show how penetration occurs in viscous 
fluids and how temperatures can be calculated at 
the bottom of a convecting chamber. The analysis 
of section 4.2 can be generalized to various cases. 
We now review the implications for crystallization 
in a basaltic magma chamber. We first discuss the 
values for the various variables of importance and 
then evaluate the effects of fractional crystalliza- 
tion. 

6.1. The stagnant layer in a basaltic magma 
chamber 

To apply the results to a true magma chamber, 
one must specify the boundary conditions at the 
top and bottom, which breaks down into two 
problems. One is that the initial temperature con- 
trasts at the roof and floor are probably not equal, 
with a higher value at the roof because country 
rocks are colder there. The other is that the 
boundary condition at the roof is probably closer 
to one of constant heat flux, since heat flow is 
limited in country rocks of finite conductivity and 
permeability. A related problem is the lack of 
knowledge of the initial magma temperature upon 
intrusion. These preclude the determination of the 
Rayleigh number. It is commonly assumed to be 
very large, with values in excess of 1012 [16]. 
However, Marsh [38] has argued that its maximum 
value must be about 1 0  7 because of the heat flow 
value through country rocks. We note that even an 
error of several orders of magnitude has a small 
effect on the stagnant layer thickness which scales 
as Ra 1/6. 

These difficulties are not limiting and it is 
possible to describe in a simple and general way 
the conditions prevailing at the floor of a magma 
chamber. For small times t*, less than 0.1, say, 
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convection can be neglected and the problem is 
reduced to one of pure Conduction cooling in a 
half-space. In other words, the solution depends 
only on local conditions, without any influence 
from those at the other boundaries and in the 
interior. We shall see that such small times allow 
crystallization over a thickness which is compara- 
ble to that of igneous layering. The stagnant layer 
evolution is determined by the two competing 
processes defined in equation (22). For small times, 
the layer grows freely because the process of con- 
vective erosion is negligible. At later times, this 
process becomes important and impedes the layer 
growth. Its intensity depends on the difference 
between the temperature contrasts at the roof and 
floor. In the likely case where the contrast is 
smaller at the floor, convective erosion would be 
stronger than in our experiments. The stagnant 
layer would grow at the same rate initially and 
more slowly later. It could even get thinned pro- 
gressively if convective erosion is particularly 
strong. We emphasize that convective erosion acts 
over the characteristic time ~', which is large, and 
hence that the stagnant layer exists for a long 
time. 

Because of these difficulties, we cannot com- 
pare our results to field conditions in detail. Nev- 
ertheless, it is instructive to have in mind the 
magnitudes reached by the variables in a basaltic 
magma chamber. Values for the relevant parame- 
ters are listed in Table 3. The magma viscosity is 
102 Pa s, which is in the upper range for basalts 
[26], and the temperature difference is 100 ° C. The 
chamber thickness is 5 km. For this set of parame- 
ters, the Rayleigh number is 2.5 × 1017, and the 
characteristic time r (equation 16a) is 8.1 × 108 s, 
or about 26 years. The stagnant layer reaches a 
thickness of 33 m by time T (Fig. 13a). Fig. 13b 
shows that the bottom heat flux remains large 

T A B L E  3 

P a r a m e t e r s  fo r  a basa l t i c  m a g m a  c h a m b e r  

Parameter Symbol Value 

Chamber  thickness d 
Thermal expansion coefficient a 
Viscosity /~ 
Density p 
Temperature contrast A T 
Thermal diffusivity 

5 km 
5×10 -5 
102 Pa s 
2.8 × 10 3 kg/m 3 
100°C 
7>(10 -7  m2/s  
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Fig. 13. (a) Th ickness  o f  the s t a g n a n t  l ayer  versus  t ime for  the  set of  p a r a m e t e r s  g iven in Tab le  3. Th i s  case  shou ld  be  close to t ha t  o f  

a basa l t i c  m a g m a  c h a m b e r .  (b) H e a t  flux t h r o u g h  the b o t t o m  b o u n d a r y  versus  t ime for  the s ame  case.  N o t e  tha t  values  r e m a i n  la rge  

b y  geologica l  s t a n d a r d s :  more  t han  1 W / m  2 over  the cha rac te r i s t i c  t ime ~'. 

with values of several W / m  2 throughout. At time 
~-, according to the calculations of Brandeis et al. 
[21], the floor crystallization sequence would reach 
a thickness of several tens of metres. As argued 
above, all these numerical estimates depend weakly 
on the assumptions. For example, at the dimen- 
sionless time of 0.1, when convective erosion is 
negligible, the thickness of the stagnant layer is 
already 18 m and crystallization has developed 
over about 10 m. These values depend solely on 
local cooling conditions and their order of magni- 
tude is inescapable. In later times, convective ero- 
sion becomes important, but the evolution is slow. 

In this quantitative analysis, all parameters do 
not have the same importance. For example, equa- 
tion (16a) shows that the characteristic time for 
convective cooling ~- depends weakly on both 
magma viscosity and temperature contrast, but 
that it is proportional to the chamber thickness. 
This implies that, regardless of uncertainties in the 
parameters and in the exact convective regime, the 
very large Stillwater magma chamber (10 km thick) 
cooled slowly and had a stagnant layer for a 
significant length of time. Here, "significant" 
means allowing crystallization over more than a 
few tens of meters. 

6.2. Implications for crystallization 
Most crystallization occurs at the floor in a 

region which moves inwards at a rate controlled in 
part by the crystallization kinetics and in part by 
the thermal regime [21,39]. In this region, the 

presence of crystals changes the viscosity [40]. 
However, crystallization requires undercooling and 
thus develops mostly in the lower parts of the 
stagnant layer. This implies that the characteristics 
of penetration are not affected. Crystallization 
introduces other effects. The most important is 
probably that it determines the effective tempera- 
ture difference which drives convection [22]. For 
basaltic magma, Brandeis and Jaupart [22] have 
shown that it cannot exceed about 100°C. 

To determine the complications introduced by 
crystallization would involve many effects: latent 
heat release, the kinetics of nucleation and crystal 
growth and fractional crystallization. These are 
outside the scope of the present study and we 
restrict ourselves to general statements. At the 
chamber bottom, the growth of the thermal 
boundary layer is impeded by convective erosion. 
A large temperature gradient is therefore main- 
tained, which has implications for the crystalliza- 
tion regime [21]. Part of the magma is stagnant 
and isolated from the rest, which has implications 
for the development of compositional instability. 

The fractional crystallization of most basaltic 
liquids results in the formation of light residual 
liquid [10,41] which is unstable and leads to "com- 
positional convection". The density contrast due 
to composition usually outweighs that due to tem- 
perature, which has led many workers to neglect 
the thermal aspect of the problem. However, for 
crystallization to occur, there must be cooling and 
it is clear that the importance of compositional 



effects depends directly on the rate of crystalliza- 
tion and hence on the cooling rate. Further, it 
must be stressed that even a large density dif- 
ference does not lead to instability if it exists over 
too small a thickness. Consider the experiments by 
Copley et al. [19] on the ammonium-chloride-water 
system. They are similar to those by Hupper t  and 
Turner [16] but focus on early stages of crystalliza- 
tion. The experimental set-up is that of a base-chill, 
i.e. a quiescent solution is cooled through the 
bot tom only. Copley et al. [19] observed that 
compositional instability does not start until some 
time, i.e. until crystallization has been achieved 
over a critical thickness. Sample and Hellawell 
[42] have shown that this thickness corresponds to 
the position at which the rate of advance of the 
crystallization front has declined to a critical value. 
This value depends on the thermal regime at the 
bottom. The results of this paper represent a first 
step towards a complete analysis applicable to a 
convecting reservoir. 

An important point is that Sample and Hella- 
well [42] have demonstrated that compositional 
instability develops out of the chemical boundary 
layer which lies at the top of the moving crystalli- 
zation front. In their experiments, this chemical 
boundary layer is able to grow by chemical diffu- 
sion because the solution is quiescent. Although 
magma chambers are undergoing turbulent con- 
vection, we have shown that their bot tom is stag- 
nant. This means that the basic physical situation 
is the same and that the same mechanism for 
compositional instability can operate. The prob- 
lem is to determine the time needed to induce it. 

We conclude that compositional convection 
does not operate throughout the evolution of a 
magma chamber and that careful analysis is re- 
quired to determine when it starts and at which 
level in the crystallization sequence its effects are 
felt. A final remark is that each cyclic layer of the 
Stillwater Ultramafic Zone extends over a few 
tens of meters, which is close to the stagnant layer 
thickness. In a chamber which was about 10 km 
thick [4,5], cyclic layering is therefore a small-scale 
phenomenon. Given the complex structure of a 
closed chamber which has both a well-mixed part  
and a stagnant part, it may be premature to 
attribute cyclic layering to periodic reinjections. It 
could be due to peculiar characteristics of crys- 
tallization in the stagnant layer. These characteris- 
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tics cannot be reproduced in aqueous solutions 
since there can be no stagnant layer: convective 
plumes would penetrate deep into the stable tem- 
perature gradient, as shown by Deardorff  et al. 
[23]. This difference reflects the role of viscosity 
and raises the problem of whether magmas and 
aqueous solutions can be treated as dynamically 
equivalent. 

7. Conclusion 

We have investigated transient thermal convec- 
tion in a horizontal layer of viscous fluid cooled 
from both its upper and lower boundaries. We 
have shown that a stagnant layer develops at the 
bot tom of the tank. This layer is not penetrated by 
the convective plumes coming from the top and is 
thus isolated from the convecting part of the layer. 
Simple theoretical considerations account for the 
experimental data. The thickness of the stagnant 
layer scales as Ra -1/6, where Ra is a Rayleigh 
number. 

The aim of this paper was to study the simplest 
case of transient thermal convection of relevance 
to magma chambers. Under such conditions, the 
closed system includes both a well-mixed part  and 
a stagnant part. This structure implies that mag- 
matic crystallization and differentiation proceed 
in a complex fashion, even if there is no reinjec- 
tion. 
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Appendix I--The onset of convective instability in 
the upper boundary layer 

The onset of convection is not instantaneous 
(Fig. 2). According to Howard [31], the critical 
time is such that a Rayleigh number defined lo- 
cally in the thermal boundary layer reaches a 
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critical value: 

ga A r ( e ( t c ) )  3 
Raj = = Ra c (A-1) 

where e(t¢) is the bounda ry  layer thickness at the 
critical time t c. In  previous studies, Howard [31] 
and  Sparrow et al. [43] referred to ins tantaneous  
cooling condit ions where e(tc) is given by: 

e ( t c )  = ~ (A-2) 

We d id  not achieve ins tan taneous  cooling condi-  
tions. The temperature profile in the fluid was 
therefore not  given by the error funct ion solution 
explicitly used to derive (A-2). Instabil i ty usually 
occurred at a time when the surface temperature 
was still decreasing. For  simplicity, suppose that 
this decrease follows a t 1/2 law. This corresponds 

to a constant  heat flux and has the essential 
features of the observed evolution: sharp decrease 
followed by slow convergence towards steady- 
state. The temperature profile next to the surface 
at the critical time is thus given by [44, p. 63]: 

T ( x ,  t c ) = A T { 1 - - ~ / ~ . i e r f c [ x / 2 ~ ]  } (A-3) 

where x is the distance to the surface. AT is the 
temperature  difference between the surface and 
the interior at time t c. Note that it may not  be 
equal to the final temperature difference. Using 
the same defini t ion for the thermal bounda ry  layer 
thickness as in (1-2),  i.e.: 

AT 
e( t ) - OT/Ox(O) (1 -4 )  

We obtain  for the profile given by (A-3): 

e ( t c )  = 2 ~  (A-5) 

This is smaller than (A-2), which shows that the 
local Rayleigh number  must  be defined with care. 
In fact, for the condi t ions  used to derive (A-5), the 
upper  boundary  condi t ion is one of constant  heat 
flux, and it is more rigorous to define the Rayleigh 
n u m b e r  in terms of the heat flux Q rather than the 
temperature  contrast  AT: 

Q = _ k  OT 
0x (0) (A-6a) 

g a Q {  e( t¢)}  4 (A-6b) 
Ral xuk  

Because of the way e(tc)  is defined (equation 
(A-4)), the two definit ions for the Rayleigh num-  
ber (A-1) and  (A-6b) are equivalent. However, the 
change in bounda ry  condi t ion implies a change of 
critical value [45]. In experiment  1 (Fig. 2), the 
critical time is 2' and the corresponding tempera- 
ture contrast  is about  20°C.  Using (A-5), we find 
that Ra c is 433. Using (A-2), it is 1680. The first 
value is the correct one, close to theoretical esti- 
mates for constant  heat flux boundary  condit ions 

[451. 

References 

1 C.R.B. Lister, On the intermittency and crystallization 
mechanisms of sub-sea floor magma chambers, Geophys. 
J.R. Astron. Soc. 73, 351-365, 1983. 

2 A.R. McBirney, Igneous Petrology, 504 pp., Freeman 
Cooper & Co., San Francisco, Calif., 1984. 

3 N.L. Bowen, The Evolution of Igneous Rocks, 332 pp., 
Princeton University Press, Princeton, N.J., 1928. 

4 H.H. Hess, Stillwater igneous complex, Geol. Soc. Am. 
Mem. 80, 230 pp., 1960. 

5 E.D. Jackson, Primary textures and mineral associations in 
the Ultramafic Zone of the Stillwater Complex, Montana, 
U.S. Geol. Surv. Prof. Pap. 358, i06 pp., 1961. 

6 L.R. Wager and G.M. Brown, Layered Igneous Rocks, 588 
pp., Oliver & Boyd, Edinburgh, 1967. 

7 S.A. Morse, The Kiglapait layered intrusion, Labrador, 
Geol. Soc. Am. Mem. 112, 1969. 

8 A.R. McBirney and R.M. Noyes, Crystallization and layer; 
ing of the Skaergaard intrusion, J. Petrol. 20, 487-554, 
1979. 

9 T.N. Irvine, Terminology for layered intrusions. J. Petrol. 
23, 127-162, 1982. 

10 H.E. Huppert and R.S.J. Sparks, The fluid dynamics of a 
basaltic magma chamber replenished by influx of hot, 
dense ultrabasic magma, Contrib. Mineral. Petrol. 75. 
279-289, 1980. 

11 L.D. Raedeke and I.S. McCallum, Investigations of the 
Stillwater complex, II. Petrology and petrogenesis of the 
Ultramafic series, J. Petrol. 25, 395-420, 1984. 

12 F.J. Spera, D.A. Yuen and D.V. Kemp, Mass transfer along 
vertical walls in magma chambers and marginal upwelling, 
Nature 310, 764-767, 1984. 

13 F.J. Spera, D.A. Yuen, S. Clark and H.J. Hong, Double 
diffusive convection in magma chambers: single or multiple 
layers?, Geophys. Res. Lett. 13, 153-156, 1986. 

14 C.F. Chen and J.S. Turner, Crystallization in double diffu- 
sive systems, J. Geophys. Res. 85, 2573-2593, 1980. 

15 J.S. Turner, A fluid dynamical model of differentiation and 
layering in magma chambers, Nature 285, 313-215, 1980. 

16 H.E. Huppert and J.S. Turner, A laboratory model of 
replenished magma chamber, Earth Planet. Sci. Lett. 54, 
144-152, 1981. 



17 S.R. Tait, H.E. Huppert and R.S.J. Sparks, The role of 
compositional convection in the formation of adcumulate 
rocks, Lithos 17, 139-146, 1984. 

18 R.C. Kerr and S.R. Tait, Convective exchange between 
pore fluid and an overlying reservoir of denser fluid: a 
post-cumulus process in layered intrusions, Earth Planet. 
Sci. Lett. 75, 147-156, 1985. 

19 S.M. Copley, A.F. Giamei, S.M. Johnson and M.F. Horn- 
becker, The origin of freckles in unidirectionally solidified 
castings, Metall. Trans. 1, 2193-2204, 1970. 

20 C. Jaupart, G. Brandeis and C.J. All~gre, Stagnant layers at 
the bottom of convecting magma chambers, Nature 308, 
535-538, 1984. 

21 G. Brandeis, C. Jaupart and C.J. All~gre, Nucleation, crystal 
growth and the thermal regime of cooling magmas, J. 
Geophys. Res. 89, 10161-10177, 1984. 

22 G. Brandeis and C. Jaupart, On the interaction between 
convection and crystallization in cooling magma chambers, 
Earth Planet. Sci. Lett. 77, 145-161, 1986. 

23 J.W. Deardorff, G.E. Willis and D.K. Lilly, Laboratory 
experiments of non-steady penetrative convection, J. Fluid 
Mech. 35, 7-31, 1969. 

24 F.A. Kulacki and 'M.E.  Nagle, Natural convection in a 
horizontal fluid layer with volumetric heat sources, ASME 
J. Heat Transfer 97, 204-211, 1975. 

25 F.A. Kulacki and A.A. Emara, Steady and transient con- 
vection in a fluid layer with uniform volumetric heat sources, 
J. Fluid Mech. 83, 375-395, 1977. 

26 T. Murase and A.R. McBirney, Properties of some common 
igneous rocks and their melts at high temperatures, Geol. 
Soc. Am. Bull. 84, 3563-3592, 1973. 

27 R.H. Kraichnan, Turbulent thermal convection at arbitrary 
Prandtl number, Phys. Fluids 5, 1374-1389, 1962. 

28 J.S. Turner, Buoyancy Effects in Fluids, Cambridge Uni- 
versity Press, Cambridge, 1973. 

29 K.B. Katsaros, W.T. Liu, J.A. Businger and J.E. Tillman, 
Heat transport and thermal structure in the interracial 
boundary layer in an open tank of water in turbulent free 
convection, J. Fluid Mech. 83, 311-335, 1977. 

30 A.A. Townsend, Natural convection in water over an ice 
surface, Q. J. R. Meteorol. Soc. 90, 248-259, 1964. 

199 

31 L.N. Howard, Convection at high Rayleigh number, in: 
Proc. l l t h  Int. Cong. Applied Mechanics, H. Gortler, ed., 
pp. 1109-1115, Springer Verlag, Berlin, 1966. 

32 P. Ho-Liu, B.H. Hager and A. Raefsky, An improved 
method for computing heat flux in convection calculations, 
EOS Trans. Am. Geophys. Union 66, 1070, 1985. 

33 P. Olson and H. Singer, Creeping plumes, J. Fluid Mech. 
158, 511-531, 1985. 

34 J.S. Turner, The starting plume in neutral surroundings, J. 
Fluid Mech. 13, 356-368, 1964. 

35 D.J. Shlien, Some laminar thermal and plume experiments, 
Phys. Fluids 19, 1089-1098, 1976. 

36 D.J. Shlien, Relations between point sources buoyant con- 
vection phenomena, Phys. Fluids 22, 227-228, 1979. 

37 D.M. Farmer, Penetrative convection in the absence of 
mean shear, Q. J. R. Meteorol. Soc. 101, 869-891, 1975. 

38 B.D. Marsh, Convective regime of crystallizing magma, 
Trans. Geol. Soc. Am., 1985. 

39 G. Brandeis and C. Jaupart, The kinetics of nucleation and 
crystal growth and scaling laws for magmatic crystalliza- 
tion, submitted to Contrib. Mineral. Petrol., 1986. 

40 H.R. Shaw, T.L. Wright, D.L. Peck and R. Okamura, The 
viscosity of basaltic magma: an analysis of field measure- 
ments in Makaopuhi lava lake, Hawaii, Am. J. Sci. 266, 
225-264, 1968. 

41 R.S.J. Sparks and H.E. Huppert, Density changes during 
the fractional crystallization of basaltic magmas: fluid dy- 
namic implications, Contrib. Mineral. Petrol. 85, 300-309, 
1984. 

42 A.K. Sample and A. Hellawell, The mechanisms of forma- 
tion and prevention of channel segregation during alloy 
solidification, Metall. Trans. 15A, 2163-2173, 1984. 

43 E.M. Sparrow, R.B. Husar and R.J. Goldstein, Observa- 
tions and other characteristics of thermals, J. Fluid Mech. 
41,793-800, 1970. 

44 H.S. Carslaw and J.C. Jaeger, Conduction of Heat in 
Solids, 510 pp., Oxford University Press, Oxford, 1959. 

45 D.T.J. Hurle, E. Jakeman and E.R. Pike, On the solution of 
the Benard problem with boundaries of finite conductivity, 
Proc. R. Soc. London, Ser. A 269, 469-475, 1967. 


