Nitrogen biogeochemical cycling in ferruginous Lake Pavin

OANEZ LEBEAU1*, VINCENT BUSIGNY1, DIDIER JEZEQUIL1, CARINE CHADUTEAU1, SEAN CROWE2 AND MAGALI ADER1

1Univ. Paris Diderot-IPGP, Sorbonne Paris Cité, UMR7154 CNRS, Paris, France *correspondence: olebeau@ipgp.fr
2 Nordic Center For Earth Evolution, University of Southern Denmark, Odense, Denmark

Over geological timescales, the Earth’s oceans were affected by several periods of total or partial anoxia. The timing, causes and consequences of ocean oxygenation are intimately linked to paleo-N cycling. Studies on modern analogues are essential for interpreting biogeochemical signals recorded in ancient sediments. Lake Pavin (French Massif Central) is permanently stratified with anoxic Fe-rich deep waters (from 60 to 92m depth) overlain by oxic shallow waters (from 0 to 60m depth) and can be regarded as an analogue for the ocean during periods of redox stratification with ferruginous deep waters. Such ferruginous conditions were prevalent during the Precambrian and may also have been important during Phanerozoic Ocean Anoxic Events (OAEs). In order to determine if the primary N isotope signatures are preserved or modified in this type of environment, we analyzed bulk N isotope compositions in 6 sediment cores from different depths in Lake Pavin: in the oxic zone (31.5, 26.8 and 19.5m depth), at the oxic-anoxic boundary (60m depth), at the peak of H2S production from SO4 reduction (65m depth) and at the bottom of the lake (90m depth). Complementary analyses of sediment traps set up at 4 different depths in the water column (25, 56, 67 and 88m depth) provide a reference frame for organic matter deposited in the sediments and allow us to test diagenetic N evolution in the water column. For the traps and cores of the anoxic layer, the N isotope composition is not significantly affected by diagenetic processes with δ15Ntot values around -1 ‰. Such unusually low δ15N values suggest a dominance of N2-fixers in the water column, which is expected in a stratified system where nitrate is strongly depleted by denitrification at the redox boundary and N2 is the major source of N for organisms living in the photic zone. For each core of the oxic layer, δ15Ntot increases with depth within the sediment, from values as low as -3.3 ‰ up to +0.3 ‰. These variations are not compatible with purely oxic diagenesis but require a migration of the sediment oxycline through time, possibly due to an increase in the organic matter flux associated with eutrophication in Lake Pavin.

Stretching, Coalescence and Mixing in Porous Media

TANGUY LE BORGNE1, MARCO DENTZ2 AND EMMANUEL VILLERMAUX3

1 Geosciences Rennes, UMR 6118, Université de Rennes 1, CNRS, Rennes, France
2 Spanish National Research Council (IDAEA-CSIC), Barcelona, Spain
3 Institut de Recherche sur les Phénomènes Hors Equilibre, Aix-Marseille Université, 13384 Marseille Cedex 13, France

We study mixing in heterogeneous permeability fields, whose structural disorder varies from weak to strong. We propose a unified framework to quantify the overall concentration distribution predicting its shape and rate of deformation as it progresses towards uniformity in the medium. The concentration field is represented by a set of stretched lamellae whose rate of diffusive smoothing is locally enhanced by kinematic stretching. Overlap between the lamellae is enforced by confinement of the scalar line support within the dispersion area. Based on these elementary processes, we derive analytical expressions for the concentration distribution, resulting from the interplay between stretching, diffusion and random overlaps, holding for all field heterogeneities, residence times, and Peclet numbers. We discuss consequences for effective chemical reaction kinetics in heterogeneous media.