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Abstract

In this paper we investigate three Lagrangian methods that have been recently proposed to quantify mixing in
chaotic and time-aperiodic geophysical flows. The analytical method proposed by Haller [e.g., G. Haller, Chaos 10
(2000) 99^108] has a strong mathematical foundation and seeks to determine the location of stable (i.e., most
attracting) and unstable (i.e., most repelling) material lines. The main hyperbolic lines describe the spatial
organization of chaotic mixing. The finite-size Lyapunov exponents estimate the local mixing properties of the flow
using the finite dispersion of particles, while the finite-time Lyapunov exponents have been often used to locate
dynamically distinguished regions in geophysical flows. Mantle stirring is induced by the repeated action of stretching
and folding, thus requiring to follow the strain history of a fluid element along a trajectory. We calculate the
trajectories of more than half a million passive tracers forward and backward in time. The Eulerian velocity field is
computed using a finite element code for solid state convection. We focus on a thermochemical model with a
chemically denser layer at the base of the Earth’s mantle. This case allows us to test the ability of the Lagrangian
techniques to detect the location of a dynamical barrier that inhibits mass exchanges and delimits domains
characterized by different efficiency of stirring. We find that the Lagrangian techniques provide a satisfactory
description of the main structures governing stirring, and enlighten different and complementary aspects: the methods
based on the Lyapunov exponents provide a clear picture of mantle domains characterized by different strength of
stirring, while the method proposed by Haller identifies the skeleton of the main structures around which stirring is
organized. Our paper builds toward a more rigorous analysis of the stirring processes in the Earth’s mantle, which is
required to understand the existence of geochemical reservoirs under a dynamical prospective.
< 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The understanding of convective mixing is fun-
damental for the interpretation of geochemical

heterogeneities observed in surface rocks. Pioneer-
ing papers by Ho¡man and McKenzie [1] and by
Gurnis and Davies [2] attempted to determine the
mixing time scales in the Earth’s mantle. The
estimated ‘lifetime’ of heterogeneities diverged
widely, ranging from 0.5^1 Ga [1] to 1^2 Ga [2]
or more, in such case implying the possible sur-
vival of primitive mantle [3]. Christensen [4] shed
light on the problem by identifying that for kine-
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matic models poorly mixed ‘islands’ of material
may survive, while for consistent dynamical mod-
els the size of the heterogeneities always decreases
exponentially with time, leading to e⁄cient mix-
ing. Further studies in two dimensions (for a
review see [5]) quanti¢ed mixing rates by using
in¢nitesimal elliptical strain markers and by mon-
itoring the progressive dispersal of passive tracers.
More recent studies in three dimensions [6] use
Lyapunov exponents and Poincare¤ maps to de-
scribe stirring induced by a time-periodic, kine-
matic £ow.

Although these models improved our knowl-
edge of mantle mixing we still lack a thorough
understanding of the dynamical processes leading
to the existence of geochemical heterogeneities in
the Earth’s mantle. A widely accepted way to in-
terpret the geochemical signature of surface lavas
is to invoke variable degrees of mixing of distinct
geochemical reservoirs. In the last 20 years several
geochemical end-members have been de¢ned [7]
based on the isotopic ratios of Sr, Nd and Pb.
From a geochemical stand point it is possible to
explain a large range of observed isotope ratios by
invoking only four distinct reservoirs [8]. How-
ever, some isotopic systems such as helium require
to postulate the existence of another reservoir
with high 3He/4He [9].

The existence of geochemical reservoirs should
also be investigated under a dynamical prospec-
tive to understand: (1) How is it possible to gen-
erate and preserve distinct reservoirs in a vigo-
rously convective mantle? (2) What dynamical
processes govern the mass exchange between res-
ervoirs, in other words, how does mixing between
reservoirs actually occur? (3) Are the reservoirs
geochemically distinct since they experienced a
distinct dynamical evolution? A necessary prereq-
uisite to address such questions is a thorough
understanding of mantle stirring.

In this paper we compare recent algorithms
that have been used to quantify transport and
mixing of geophysical £uids. For example they
have been applied: (i) to the atmospheric £ows,
to investigate the dynamics of the stratospheric
polar vortex [10,11], (ii) to the oceanic £ows to
analyze £uid particle paths of the Gulf Stream
[12], and (iii) to laboratory experiments of £uid

mixing [13]. However, to our knowledge, they
have never been applied to the £ow of Earth’s
mantle.

One of the most challenging aspects of real geo-
physical £ows is that they are time-aperiodic.
Poincare¤ maps provide a useful tool for identify-
ing chaotic zones in £ows with a periodic or qua-
si-periodic time dependence [14]. However, they
cannot be applied to £ows with a general time
dependence. It is only recently that theoretical
work [15^17] has been developed to describe the
transport and mixing behavior of a chaotic and
aperiodic £uid £ow.

Two approaches can be used to de¢ne the co-
herent structures in two-dimensional turbulent
£uid £ows (for a review see [16], and references
therein). The Eulerian approach is based on the
instantaneous distribution of a scalar ¢eld, such
as vorticity, kinetic energy and strain. The La-
grangian approach is based on the advection of
passive tracers, which allows to identify regions
displaying di¡erent dynamical behavior. An ini-
tially circular blob of passive tracers will reveal
the Lagrangian coherent structures through
stretching, thinning and folding around them.
The objective of this approach is to determine
the nature of the Lagrangian coherent structures,
and to study their location and interaction.

In this paper we consider only the Lagrangian
approach and we investigate (1) the method pro-
posed by Haller [15,16], thereafter called the hy-
perbolic persistence time method, which enables
to identify stable and unstable material lines, (2)
the method based on the ¢nite-size Lyapunov ex-
ponents, (3) the method based on the ¢nite-time
Lyapunov exponents. We calculate the £ow ¢eld
for solid state convection in the Earth’s mantle
using a two-dimensional ¢nite element code in
Cartesian geometry. This is an obvious limitation
that does not allow us to catch the complexity of
a fully three-dimensional £ow, however some La-
grangian techniques become technically challeng-
ing in 3-D. For example, 10 di¡erent categories of
attracting and repelling material surfaces should
be identi¢ed in 3-D [18], as opposed to only two
categories in 2-D.

Our main interest here is to understand the
ability of di¡erent Lagrangian techniques to cap-
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ture the location of barrier regions and of stirring
regions, and to quantify the strength of stirring.

2. Convection model

The code for solid state convection of a New-
tonian, incompressible viscous £uid at in¢nite
Prandtl number [19] solves the non-dimensional
equations using the Boussinesq approximation:

conservation of mass:

9 Wu ¼ 0; ð1Þ

conservation of momentum:

vu ¼ 39 p3Raa z!; ð2Þ

conservation of energy:

D a

D t
þ uW9 a ¼ va þH ð3Þ

where u is the velocity vector, a is the potential
temperature, t is time, p the dynamic pressure, H
is the internal heating, Ra is the Rayleigh number
and z! is a unit vector in the vertical direction.
The equations are non-dimensionalized by scaling
distance over the box depth D, temperature ac-
cording to the temperature contrast between the
top and the bottom surfaces va, time according to
D2/U, and the internal heating to bD2/kva. Nu-
merical values of the scaling parameters are given
in Table 1.

The thermal expansion coe⁄cient is depth de-
pendent and varies from 5U1035 K31 at the sur-
face to 1U1035 K31 at the bottom of the box.

The equation used is K(z) = exp(Ah), where h is
non-dimensional height above the bottom of the
box and A=1.61 is a constant chosen to best
reproduce experimental data [20]. The viscosity
is reduced one order of magnitude from 100 km
depth to 660 km depth, in order to simulate a
relatively low viscosity upper mantle (Rum =
8U1020 Pa s).

Using the physical parameters given in Table 1
the Rayleigh number is :

Ra ¼ gbK svaD3

U R

¼ 1:7U107: ð4Þ

The size of our domain in the X and Z direc-
tions is 8700U2900 km. It is meshed by 435U145
elements, providing a constant element size of 20
km/element.

At the top and bottom surfaces we impose zero
vertical velocity and horizontal free slip (uz =0=
Dux/Dz). The boundary condition for the temper-
ature ¢eld is constant (atop = 0 and abottom = 1). At
the side walls we impose periodic boundary con-
ditions.

We conducted a purely thermal convection cal-
culation and a thermochemical convection calcu-
lation. The latter is actually a very interesting test
case to assess the ability of the Lagrangian tech-
niques to detect regions characterized by di¡erent
transport and stirring properties. In the case of
thermochemical convection we introduce two
families of active tracers: one to simulate the sub-
ducted oceanic crust (10 km thick), which is con-
sidered to be 3% denser than the surrounding
mantle, and a second one to simulate a layer of
denser material at the base of the Earth’s mantle.

Table 1
Physical parameters

Symbol Parameter Value Unit

D mantle depth 2900U103 m
va temperature contrast 2800 K
g gravitational acceleration 10 m s32

b mantle density 4000 kg m33

R mantle viscosity 8U1021 Pa s
Ks surface thermal expansion coe⁄cient 5U1035 K31

U thermal di¡usivity 1036 m2 s31

k thermal conductivity 4.8 W m31 K31

H dimensional internal heating 8.0U10312 W kg31
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Such layer occupies an initial volume correspond-
ing to 20% of the whole mantle volume and it is
1.8% chemically denser than the overlying mantle.
The buoyancy number B for the layer is the chem-
ical density contrast over the thermal density con-
trast :

B ¼ vb ch

bK layerva
¼ 0:6: ð5Þ

For thermochemical convection the buoyancy
force in the right-hand side of Eq. 2 is modi¢ed
to include the e¡ect of active tracers present at
each time step in each element (for more details
see [21]). Since we use 16 active tracers per ele-
ment, more than 2U105 tracers are used to follow
the evolution of the dense layer. The number of
crustal tracers increases with time, since we con-
sider that new oceanic crust is continuously
formed at divergent zones. A careful description
of the method used to insert and to advect active
tracers is given in [21], where we also provide the
results of a benchmarking for thermochemical
convection.

3. Transport calculations for Lagrangian methods

Stirring involves the repeated action of stretch-
ing and folding of a £uid element, while mixing
also involves di¡usion at small scales [14]. The
term stirring is more appropriate for the mantle,
since rocks chemical di¡usivity is only 10315^
10320 m2 s31.

The Lagrangian methods used to describe stir-
ring require to advect passive tracers forward in
time (from time t0 to t0þvT , where vT is a given
time interval) and backward in time (from time t0
to t03vT ). Transport calculations are performed as
a post processing, using the velocity ¢eld saved at
each time step and for each node of the grid. The
advection is performed using a second-order
Runge^Kutta method for the time scheme and
the two-dimensional bicubic spline interpolation
scheme by Akima [22], which minimizes spurious
over- and under-shoots better than a cubic spline
[10]. Passive tracers are distributed regularly in
each grid element, since we generally use nine
tracers per element, more than half a million tra-

jectories are calculated forward and backward in
time.

3.1. Hyperbolic persistence time method

A material line is called unstable (or repelling)
if in a given time interval, forward in time, all
nearby £uid trajectories separate from it. A ma-
terial line is called stable (or attracting) if in a
given time interval, backward in time, all nearby
£uid trajectories separate from it. The location of
the attracting and repelling material lines is used
to de¢ne the boundaries of the coherent structures
of the £ow.

Haller [15] has derived an analytical method to
locate attracting and repelling ¢nite-time hyper-
bolic material lines for two-dimensional, non-pe-
riodic, time-dependent velocity ¢elds. Note that
the unstable and stable hyperbolic material lines
are the ¢nite-time generalizations of the stable
and unstable hyperbolic manifolds1, respectively,
which they approach as time goes to in¢nity
[10].

Following [15] we calculate at each time t and
for each advected tracer located in x(t) the deter-
minant of the velocity gradient tensor:

DxuðxðtÞ; tÞ ¼

D ux
D x

D ux
D z

D uz
Dx

D uz
D z

2
64

3
75 ð6Þ

The sign of the determinant characterizes the
£ow in the neighborhood of each particle : the
£ow is separated into elliptic regions (if detDxu
s 0), in parabolic regions (if detDxu=0) and in
hyperbolic regions (if detDxu6 0). Elliptic regions
represent an obstacle to e⁄cient stirring, since
they translate and rotate conserving their identity
[23], while hyperbolic regions represent the main
skeleton governing large-scale stirring. In other
words, the main hyperbolic lines (i.e., the material
lines that are locally the most attracting or repel-
ling) describe the spatial organization of chaotic
stirring.

1 It is easy to see that the stable manifold of a hyperbolic
point is repelling all nearby trajectories.
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We should remark that Okubo and Weiss (e.g.,
[24]) have been the ¢rst ones to recognize the sig-
ni¢cance of the determinant of the velocity gra-
dient tensor and to propose the elliptic^hyperbolic
partition, albeit for a £ow constant with time.

For each tracer trajectory we calculate the time
period over which the determinant of the velocity
gradient tensor is strictly negative. Tracers that
exhibit detDxu6 0 for long time are on, or
asymptotic to a uniformly ¢nite-time hyperbolic
trajectory. We calculate the local maxima of hy-
perbolic persistence de¢ned for forward integra-
tion as:

dþT ðx0; t0Þ ¼ maxfðt3t0ÞMdetDxuðxðd ; x0Þ; d Þ60g

for tn½t0; t0 þ vT 
 and t09d6t ð7Þ

Local repelling material lines can be obtained
by forward advection, while local attracting ma-
terial lines are obtained by backward advection,
once again by requiring detDxu6 0:

d3T ðx0; t0Þ ¼ maxfðt03tÞMdetDxuðxðd ; x0Þ; d Þ60g

for tn½t03vT ; t0
 and t6d9t0 ð8Þ

The local maxima of dþT and d3T are respectively
mapping the repelling and attracting material
lines which intersect at the hyperbolic points [15].

Haller’s ¢rst condition, explained above, simply
requires to calculate the time interval during
which the determinant of the velocity gradient
tensor, for each tracer trajectory, is negative. Hal-
ler [15] has a second condition on the rotation of
the Eulerian eigenvectors. The additional condi-
tion is explained in the Appendix but is not
used throughout the paper, since we ¢nd that by
including it the results become more di⁄cult to
interpret. Such lack of improvement may be due
to various reasons: (i) in our £ow the coherent
structures do not change very rapidly with time,
(ii) the second condition is particularly sensitive to
small numerical errors, thus the results may look
worse for numerical reasons (Haller, personal
communication). Therefore, although the second
condition should be in principle evaluated,
whether or not it will improve the results depends
on the speci¢c type of £ow and on the resolution.

Lapeyre et al. [25] propose to non-dimension-

alize the calculated hyperbolic persistence time by
the strain rate. To do this we calculate the eigen-
values V of the strain rate tensor:

_OO ij ¼
1
2

D ui
Dxj

þ D uj
D xi

� �
: ð9Þ

Using the incompressibility Eq. 1 we ¢nd the
eigenvalue V for each tracer, which is then used to
non-dimensionalize the hyperbolic persistence
time dþT and d3T calculated above.

3.2. Finite-size Lyapunov exponents

This method estimates the local stirring proper-
ties of the £ow using the ¢nite dispersion of par-
ticles [10,11,26]. Consider a pair of particles at an
initial distance N0 at time t and at initial location
x thus: N(x,t,0) = N0. We want to ¢nd the time d

required to increase the separation between the
two particles by a growth factor Q, so that at
time t+d the separation is : N(x,t,d) = QN0.

The ¢nite-size Lyapunov exponent is then de-
¢ned as:

V Q ðx; t; N 0Þ ¼
1
d

ln Q ð10Þ

We advect more than 2.5U105 passive tracers
forward and backward in time over a ¢nite-time
interval vT. At each time step we calculate the
distance between each tracer and its four neigh-
boring tracers, initially equally spaced in the four
cardinal directions. We keep track of the elapsed
time d at which the distance between each tracer
and its four neighboring tracers becomes greater
than the prede¢ned threshold distance (QN0). We
then calculate the ¢nite-size Lyapunov exponent
(FSLE) of the tracer using the equation given
above. The FSLE of a tracer is set to zero if the
threshold distance is not reached during the ¢nite-
time interval considered.

3.3. Finite-time Lyapunov exponents

Finite-time Lyapunov exponents have been em-
ployed to locate dynamically distinguished regions
in geophysical £ow data [27], in kinematic mantle
convection models [6] and to study deformations
in mantle plumes [28]. The Lyapunov exponents
are a convenient indicator of the sensitivity to
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small perturbations of the initial position and pro-
vide the exponential rate of divergence of in¢ni-
tesimally nearby initial trajectories.

To calculate the ¢nite-time Lyapunov expo-
nents we consider a trajectory starting at the po-
sition x0 at time t0 and ending at the position x1
at time t1. The in¢nitesimal displacement hh0 at
time t0 is transformed into hh1 at time t1 by:

h 1 ¼ Mðx0; t0; x1; t1Þh 0; ð11Þ

where M is a linear operator given by the integra-
tion of:

dM
dt

¼ DxuðxðtÞ; tÞM ð12Þ

along the trajectory, where Dxu(x(t),t) is the ve-
locity gradient evaluated along the trajectory. At
the initial time t0 the matrix M corresponds to the
identity matrix.

The variation of the displacement over the in-
terval [t0,t1] is given by the ratio:

Mh 1M

Mh 0M
¼ MMh 0M

Mh 0M
¼ h

T
0M

TMh 0

h
T
0 h 0

� �1=2

ð13Þ

This ratio is governed by the real eigenvalues
cþ and c3 of MTM, the right Cauchy^Green
strain tensor [14] and the projection of hh0 onto
its eigenvectors.

An in¢nitesimal circular blob of tracers with a
non-dimensionalized unit radius, surrounding x0
at time t0 is turned into an ellipsoid surrounding
x1 at time t1 with semi-axes of lengths cþ and c3.
Conversely, an in¢nitesimal circular blob of trac-
ers with a non-dimensionalized unit radius, sur-
rounding x1 at time t1 was an ellipsoid with axes
1/cþ and 1/c3 surrounding x0 at time t0.

The ¢nite-time Lyapunov exponents or ¢nite-
time deformations are de¢ned as:

V þ ¼ 1
t13t0

ln cþ; V 3 ¼ 1
t13t0

ln c3; ð14Þ

and are calculated by numerical integration of
Eq. 12.

4. Results

The objective of this study is to test the ability

of di¡erent Lagrangian techniques to detect the
main structures governing the stirring properties
of the £ow. Therefore, the convection calculations
are used only to provide a velocity ¢eld for a
chaotic and aperiodic £ow. It is out of the pur-
pose of this paper to represent a realistic mantle
£ow, which would require a fully three-dimen-
sional spherical model with strongly tempera-
ture-dependent viscosity and surface plates.

Under these restrictive conditions we can use a
fairly simple convection model and we consider its
evolution for a limited time interval compared
with the age of the Earth. We let the convection
code run form an initial linear temperature pro¢le
to steady state. This temperature ¢eld represents
the initial condition for the thermochemical con-
vection calculation, which is then conducted over
a time interval of 1500 Myr. We show the results
of the thermochemical convection model only at
two time periods: after 500 Myr (thereafter called
‘early stage’) and after 1500 Myr (thereafter called
‘late stage’)2

Fig. 1a shows the temperature and the velocity
¢eld for the early stage. Convection is organized
in two separate domains: the denser basal layer
gradually heats up, due to the bottom heating,
and convects internally. Convection in the over-
lying mantle is organized around cold subducting
slabs. Fig. 1b shows the location of tracers used
to model the denser layer, di¡erent colors repre-
sent the initial depth of the tracers. We see that
plumes form inside the layer and contribute to the
internal stirring. Only a small fraction (1.5%) of
denser material is entrained by viscous coupling,
forming narrow ¢laments into rising plumes. Fig.
1c shows the active tracers representing the sub-
ducted oceanic crust which sinks to the top of the
denser layer.

At the late stage we see more prominent hot
plumes rising from the dense layer (Fig. 1d), en-
training denser material (Fig. 1e). 21% of the
basal tracers have escaped the dense layer, show-
ing that the density strati¢cation acts as a partial
barrier to mass exchange. Fig. 1f shows also that

2 Find the complete set of results at http://www.ipgp.jus-
sieu. fr/Vcinzia/EPSL2003.
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subducted crust may occasionally de£ect the dens-
er layer and sink into it.

Finally, we remark that a careful inspection of
the velocity ¢eld shows a di¡erent behavior be-
tween the low viscosity upper mantle and the
underlying lower mantle. For example, at the
late stage the rms of the vertical velocity compo-
nent is: 2.0 cm/yr in the upper mantle, 1.6 cm/yr
in the lower mantle above the denser layer and 0.2
cm/yr inside the denser layer.

4.1. Hyperbolic persistence time method

When applying the hyperbolic persistence time
method we need to de¢ne the ¢nite-time interval
vT for forward and backward advection, but un-
fortunately there is no clear rule to establish it.
For the early stage we have tested three ¢nite-time

intervals in order to ¢nd empirically the most ap-
propriate vT for our £ow. Fig. 2 shows the initial
location of passive tracers satisfying detDxu6 0
during the whole time interval vT of forward ad-
vection. For vT=40 Myr (Fig. 2a) large zones of
the domain satisfy detDxu6 0 and it is di⁄cult
to sort out the main structure a¡ecting stirring.
For vT=80 Myr (Fig. 2b) fewer tracers satisfy
detDxu6 0, in particular tracers initially close to
the interface between the dense layer and the
overlying mantle persist with detDxu6 0. Finally,
for vT=150 Myr (Fig. 2c) the remaining tracers
seem to better locate the interface between the
two £ow domains and the more persistent sub-
duction zones. For longer time intervals (not
shown) the number of tracers may be severely
reduced, making the results di⁄cult to interpret.
Therefore, although the choice of the time interval

Fig. 1. Left: early stage (i.e., after 500 Myr). Right: late stage (i.e., after 1500 Myr). (a, d) Temperature and velocity ¢elds. (b, e)
Active tracers for the denser layer. Colors represent the initial height above the bottom: from 0 to 193 km (cylan), 193^386 km
(blue), 386^579 km (gray). (c, f) Tracers for the subducted crust. Subducted crust younger than 150 Myr is indicated in black.
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is arbitrary, from now on we will consider a ¢nite-
time interval vT=150 Myr. Given the rms of the
vertical velocity component given above this time
corresponds to a vertical motion of 2400 km.

Fig. 3 shows the results of forward and back-
ward advection over vT=150 Myr. For the early
stage we see that the method captures fairly well
the location of the boundary between the dense
layer and the overlying mantle, in both forward
(Fig. 3a) and backward advection (Fig. 3b). The
dominant features emerging from forward advec-
tion correspond to the zones where the descending
£ow, associated to the slabs, impinges on the
denser layer. The £ow is here diverging and we
clearly identify the unstable (or repelling) material
lines. The dominant features emerging from back-
ward advection correspond to the main upwelling
zones located just above the dense layer. It is use-
ful to remind that plumes would correspond to
diverging £ow, when integrated backward in
time. In other words backward advection shows
the location of stable (or attracting) material lines.
Flow regions dominated by subduction often
show high strain rate-normalized hyperbolic per-
sistence time. For the late stage (Fig. 3c and d)
the method still captures the main features of the
£ow, although the interface between the dense
layer and the overlying mantle is less clear. This

Fig. 2. Hyperbolic persistence time method: Initial location
of tracers which have detDxu6 0 over the entire time interval
vT of forward integration. (a) vT=40 Myr, (b) vT=80
Myr, (c) vT=150 Myr. For temperature and velocity ¢eld
see Fig. 1a.

Fig. 3. Hyperbolic persistence time method: Initial location of tracers which have detDxu6 0 over the entire time interval
vT=150 Myr. Early stage: (a) forward integration, (b) backward integration. Late stage: (c) forward integration, (d) backward
integration. Tracers with high strain rate-normalized persistence time are in dark blue.
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Fig. 4. Finite-size Lyapunov exponents. Early stage: (a) forward integration, (b) backward integration. Late stage: (c) forward in-
tegration, (d) backward integration. Tracers are in their initial location.

Fig. 5. Finite-time Lyapunov exponents. Early stage: (a) forward integration, (b) backward integration. Late stage: (c) forward
integration, (d) backward integration. Tracers are in their initial location. For graphical purpose values are normalized over the
maximum value FTLEmax and the color scale is saturated (i.e., all FTLEs 0.5FTLEmax are in magenta).
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is not surprising, since at this time the interface is
not a complete barrier to the £ow but allows for
some mass exchange.

4.2. Methods based on Lyapunov exponent

The results of the ¢nite-size Lyapunov expo-
nent method (FSLE) are shown in Fig. 4, where
we attribute to each tracer the value of the FSLE
calculated for forward and backward advection
over vT=150 Myr, using a growth factor Q=2.
This method shows very clearly regions with dif-
ferent stirring properties : inside the dense layer

convection is sluggish and often the threshold dis-
tance (QN0) is not reached. On the contrary, the
upper mantle is a region of high deformation and
e⁄cient stirring, where the threshold distance is
rapidly attained. Although we present the results
only for a given value of vT and Q we veri¢ed that
the results are robust also for a possible range of
the growth factor and of the time interval. Clearly
there is a trade-o¡ between vT and Q : for a rela-
tively short vT and a large Q, we will see only the
fastest stretching regions, while in the rest of the
domain the threshold distance will not be at-
tained.

Fig. 6. Finite-time Lyapunov exponents. Thermochemical convection model, (a) forward advection for 500 Myr, (b) for 1500
Myr. Purely thermal convection model, (c) forward advection for 500 Myr, (d) for 1500 Myr. Color scheme as in previous ¢gure.
Tracers are in their initial location. Bottom: Histogram of Lyapunov exponent V normalized over the maximum value VM after
1500 Myr, (e) for thermochemical model, (f) for purely thermal model. (g) Elapsed time vs. normalized surface heat £ux for the
thermochemical model.
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The results of the ¢nite-time Lyapunov expo-
nent method (FTLE) are shown in Fig. 5. Also in
this case we attribute to each tracer the value of
the FTLE calculated for forward and backward
advection over vT=150 Myr. Tracers are in their
initial location to facilitate the comparison with
the previous ¢gures. This method allows to visual-
ize regions with di¡erent dynamical behavior:
most of the deformations and stirring are local-
ized in the mantle overlying the dense layer.
Highly deformed material is associated with sub-
duction zones, both in the upper mantle and at
the boundary with the denser layer, where the
subducted material folds. Within the dense layer
the FTLE have the lowest values and the bound-
ary between the two domains is clearly visible.
For both backward advection panels (Fig. 5b
and d) the ascending £ow of plumes is character-
ized by fairly low values (violet^blue colors),
which correspond well to the location of the sta-
ble material lines of Fig. 3b and d. With respect to
previous methods the FTLE method seems to
provide a detailed image of the stretching and
folding events undergone by the £uid particles.

In Fig. 6 we show the FTLE for forward ad-
vection over two time intervals vT=500 Myr and
vT=1500 Myr. For thermochemical convection
(Fig. 6a and b) regions with di¡erent stirring
properties can survive for long time periods:
even after 1500 Myr tracers initially belonging
to the dense layer still have relatively low FTLE
and are clearly distinct from the overlying £uid
which instead shows pronounced stirring. The bi-
modal distribution of the FTLE is also shown in
the histograms (Fig. 6e), the lowest values char-
acterize the denser layer. For purely thermal mod-
els (Fig. 6c and d) the FTLE indicate a fairly
homogeneous stirring in the whole mantle, with
only some ‘islands’ of less stirred material in the
lower mantle. The corresponding histogram after
1500 Myr (Fig. 6f) shows a Gaussian shape.

Finally, for the thermochemical model we cal-
culate the time evolution of the surface heat £ux
Q normalized by the initial value Qini. Fig. 6g
shows that Q/Qini varies signi¢cantly with time,
mainly due to hot plumes rising to the surface.
This indicates that the advective component of
heat transfer between the denser layer and the

overlying £uid is important. Such result, even if
preliminary, casts some doubts on the applicabil-
ity of parametrized models at relatively low buoy-
ancy numbers. Parametrized models in fact as-
sume that the heat £ux between the denser layer
and the overlying £uid is entirely conductive, with
the obvious consequence of a signi¢cant temper-
ature increase in the denser layer [29].

5. Conclusions

The problem of characterizing mixing of a £uid
£ow is a di⁄cult one. First of all, most of the
geophysical £ows are not periodic in time and
the mathematical criteria necessary to describe
mixing in aperiodic £ows have been developed
only in the last few years. Second, stretching of
a £uid element results from the history of the
strain along the trajectory [30], thus requiring
the use of a Lagrangian description. However,
connecting the Eulerian properties of a given ve-
locity ¢eld to the Lagrangian properties of a
trajectory is not an easy task [26]. In fact, even
simple Eulerian velocity ¢elds can generate un-
predictable Lagrangian trajectories which may
be indistinguishable from those obtained in a
complex turbulent £ow (see [26] and references
therein).

Here we investigated three di¡erent Lagrangian
techniques, requiring to compute the trajectories
of more than half a million passive tracers for-
ward and backward in time. We restricted our
attention to two dynamical models and focussed
on the model with a chemically denser layer at the
base. This allowed us to test the ability of the
Lagrangian techniques to detect the location of
the dynamical barrier which inhibits mass ex-
changes and delimits domains characterized by
di¡erent e⁄ciency of stirring.

We found that Lyapunov exponents identify
the sluggish denser layer by having the lowest
¢nite-time Lyapunov exponents and the lowest
¢nite-size Lyapunov exponents within the whole
layer. Therefore, the location of the boundary be-
tween layers corresponds to the region of sharp
contrast (i.e., high gradients) of Lyapunov expo-
nent. The hyperbolic persistence time method in-
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stead is able to detect the location of the bound-
ary itself.

Methods based on the Lyapunov exponents
clearly show the di¡erent dynamical behavior be-
tween the upper mantle and the underlying more
viscous lower mantle. The upper mantle has the
highest FSLE and FTLE (Figs. 4 and 5), indicat-
ing fast stretching rates and high deformations,
mainly in subduction zones. The FTLE seem to
be the best method to capture the ¢ne structure of
deformations induced by the £ow. Since stirring
results from the repeated action of stretching and
folding, the distribution of FTLE provides a
means to evaluate the e⁄ciency of stirring.

The method based on the hyperbolic persistence
time instead detects the skeleton of the main dy-
namical structures governing stirring. Forward
calculations detect the location of the unstable
(repelling) material lines, while backward calcula-
tions detect the location of stable (attracting) ma-
terial lines. The features clearly shown are the
subduction zones, also characterized by the high-
est strain rate-normalized hyperbolic persistence
time, and the ascending plumes which form at
the top of the denser layer.

Our results show that chemically heterogeneous
material has a profound e¡ect on stirring. We ¢nd
well distinct FTLE between the dense layer and
the overlying £uid either when we consider a ¢-
nite-time interval (arbitrarily set at 150 Myr), or
when we integrate forward in time for 1500 Myr.
This indicates that denser material at the base of
the Earth’s mantle may remain distinct over long
time periods. From a geochemical stand point this
would imply that a distinct geochemical signature
may develop, as shown by [31], or may be pre-
served, as shown by [21]. On the contrary, purely
thermal models are more uniformly stirred, thus
hampering the survival of distinct material, in
agreement with previous results on mantle mixing.

We ¢nd that all of the Lagrangian techniques
considered in our study provide a satisfactory de-
scription of the main structures governing stirring,
and that they are able to evidence di¡erent and
complementary aspects: the methods based on
the Lyapunov exponents provide a clear picture
of mantle domains characterized by di¡erent
strength of stirring, while the method proposed

by Haller identi¢es the skeleton of the main struc-
tures around which stirring is organized.

We are tempted to speculate that long lived
geochemical heterogeneities may develop and sur-
vive only if the dynamics and stirring properties
of the ‘reservoirs’ are distinct. In this respect
chemically denser material may play an important
role : it tends to segregate and it is entrained in
form of ¢laments by mantle plumes. Therefore,
the more heterogeneous geochemical signature of
oceanic island basalts, with respect to mid-ocean
ridge basalts may be largely due to incomplete
stirring of entrained heterogeneous material.

We cannot speculate further about geochemical
reservoirs, since in this study we did not calculate
the time evolution of isotope ratios and element
concentrations, as previously done by Samuel and
Farnetani [21]. Moreover, our convection model
has several simplifying assumptions: (i) We used a
constant viscosity model which hinders the segre-
gation of dense subducted crust [31]. (ii) We used
a two-dimensional geometry. Although it is
widely accepted that the third spatial dimension
in£uences mixing, diverging conclusions have
been drawn: according to Schmalzl et al. [32] mix-
ing is reduced in 3-D, while for Ferrachat and
Ricard [6] mixing is enhanced by surface toroidal
forces, otherwise absent in 2-D. (iii) We modeled
a Newtonian £uid. Non-Newtonian rheology
would have been more appropriate for the mantle
and it is expected to induce a less uniform defor-
mation ¢eld, thus leading to the formation of
regions with sharp di¡erences in £ow character
[33].

Work is in progress to relax all of the above
assumptions, with the objective to de¢ne the exis-
tence of geochemical reservoirs simultaneously
under a dynamical point of view, by using the
Lagrangian techniques described in this paper,
and under a geochemical point of view, by follow-
ing the evolution of element concentrations and
isotope ratios.
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Appendix. Generalized criterion in the strain basis

The algorithm proposed by Haller [15] has two
steps: First, calculating the maxima of hyperbolic
persistence time along each Lagrangian trajectory,
as explained in Section 3.1. Second, testing that
the eigenvectors of Dxu(x(t),t) do not rotate too
fast along the Lagrangian trajectory over the du-
ration of hyperbolic persistence. In order to take
into account the rotation of strain axis we follow
the method by [25], which is a variant of the al-
gorithm given by [17]. For each tracer trajectory

we need to calculate the eigenvalues V of the
strain rate tensor _OO ij . Due to the incompressibility
condition V1 =3V2. To each eigenvalue we asso-
ciate a normalized eigenvector, for example,
e1 = (cosP, sinP) and e2 = (3sinP, cosP). The rota-
tion matrix R= [e1,e2] is de¢ned in the orthonor-
mal basis of the eigenvectors, RT is its transpose,
and R	 is its time derivative. As explained by [25]
we need to calculate the sign of the determinant
of:

RTDxuðxðtÞ; tÞR3RT _RR ð15Þ

to obtain the new hyperbolic persistence time
dT Pþ and dT P3. The new hyperbolic persistence
time ¢eld is shown for forward (Fig. 7a) and
backward (Fig. 7b) advection only for the early
stage. For comparison Fig. 7c and d show the
hyperbolic persistence time ¢eld calculated by re-
quiring only the ¢rst condition, as done in Section
3.1. (Note that the darker colors correspond to
the tracers shown in Fig. 3a and b.) The region
of high persistence time which marks the top of
the denser layer (Fig. 7c and d) is absent in Fig.
7a and b, making the detection of the barrier
more di⁄cult.

Fig. 7. Hyperbolic persistence time ¢eld. Left: Calculated with the condition on rotation given in the Appendix. Right: Calcu-
lated with the condition detDxu6 0. (a, c) Forward advection. (b, d) Backward advection.
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