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Thermal evolution of telluric planets is mainly controlled by secular cooling and
internal heating due to the decay of radioactive isotopes, two processes that are
equivalent from the standpoint of convection dynamics. In a fluid cooled from
above and volumetrically heated, convection is dominated by instabilities of the
top boundary layer and the interior thermal structure is non-isentropic. Here we
present innovative laboratory experiments where microwave radiation is used to
generate uniform internal heat in fluids at high Prandtl number (>300) and high
Rayleigh–Roberts number (ranging from 104 to 107), appropriate for planetary mantle
convection. Non-invasive techniques are employed to determine both temperature
and velocity fields. We successfully validate the experimental results by conducting
numerical simulations in three-dimensional Cartesian geometry that reproduce the
experimental conditions. Scaling laws relating key characteristics of the thermal
boundary layer, namely its thickness and temperature drop, to the Rayleigh–Roberts
number have been established for both rigid and free-slip boundary conditions. A
robust conclusion is that for rigid boundary conditions the internal temperature is
significantly higher than for free-slip boundary conditions. Our scaling laws, coupled
with plausible physical parameters entering the Rayleigh–Roberts number, enable us
to calculate the mantle potential temperature for the Earth and Venus, two telluric
planets with different mechanical boundary conditions at their surface.
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1. Introduction
The secular evolution of the Earth through geological time is best tackled from a

thermal perspective because geological events are driven by internal heat dissipation.
The present-day energy budget is such that the rate of heat loss is approximately
twice as large as the amount of heat released by the radioactive decay of long-lived
radioactive isotopes (238U, 235U, 232Th and 40K), implying that the Earth is currently
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cooling down at a bulk rate of approximately 100 K Gyr−1 (Jaupart, Labrosse
& Mareschal 2007). Extrapolating this budget back in time is fraught with many
uncertainties. Although it is recognized that mantle convection is the main physical
process involved in the cooling of the Earth, there is still considerable debate about
the relationship between heat loss and internal temperature. The difficulty stems from
the complexity of the Earth’s mantle system, which loses heat through three different
mechanisms: depletion of primordial heat that was accumulated during the accretion
process, depletion of internal heat sources through radioactive decay and, last but
not least, loss of radioactive elements to continental crust that does not participate
in convective overturn. Although this is seldom discussed, the latter plays a major
role. According to present estimates, the mantle may have lost as much as half of its
radioactive elements to the continental crust (Jaupart et al. 2007). In such conditions,
convection has become increasingly sensitive to heat supply from the core. The
extraction of radioactive elements from the mantle is effected mostly in subduction
zones where downgoing plates lose their radioactive elements to fluids and magmas
that get incorporated in continental crust (Taylor & McLennan 1985). Downgoing
plates therefore act as local sources of depleted material and are responsible for
a heterogeneous distribution of mantle heat sources. Yet another consequence of
continental growth is a change of upper boundary conditions. Whereas surface
motions occur in the oceanic domain, a situation that can be approximated by a free
surface, continents behave as rigid boundaries instead. One might therefore expect a
gradual change of behaviour of the upper boundary through time, from that of a free
surface in early stages to that of a rigid one later on. Our sister planet Venus, for
example, currently does not allow surface motions (Turcotte 1995).

Dealing with the secular evolution of the Earth requires the handling of many
different processes. Important goals include the rate of surface renewal and the rate
of volcanism and degassing so that one can deduce the mass of the atmosphere from
that of the solid planet. These require estimates of both heat loss, which sets the net
rate of surface renewal, and internal temperature, which sets the depth range and rate
of melting, as a function of time. Because of the variety of conditions that come
into play, for want of an all-encompassing physical model that is presently beyond
our reach, calculations are best tackled using a so-called ‘parametrized’ approach,
such that the physics of convection is collapsed into a single equation relating the
surface heat flux to the temperature difference across the upper boundary layer. This
approach has been used in many natural systems, including lava flows (Garel et al.
2012), magma reservoirs (Jaupart & Brandeis 1986; Worster, Huppert & Sparks 1990),
silicate planets (McKenzie & Weiss 1975; McNamara & van Keken 2000; Deschamps
et al. 2012), the atmosphere (Krishnamurti 1997) and lakes (Neralla & Danard 1975),
amongst others. Recently, it has also been used to study the evolution of super-Earths,
i.e. massive planets in remote planetary systems (Kite, Manga & Gaidos 2009). The
‘parametrized’ approach relies on a scaling law, first introduced by Townsend (1964),
which states that the surface heat flux φ is determined locally by the dynamics of
the upper boundary layer independently of the total thickness of fluid

φ =Cλ
(
ρgα
κµ

)1/3

1T4/3
TBL, (1.1)

where C is a proportionality constant, λ is the thermal conductivity, ρ is the
density, g is the acceleration of gravity, α is the thermal expansion coefficient, κ
is the thermal diffusivity, µ is the dynamic viscosity of the fluid and 1TTBL is the
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temperature contrast across the upper thermal boundary layer (TBL). A large number
of studies, both theoretical and experimental, have been devoted to delineate its
domain of validity with a focus on the power-law exponent. However, the effects of
the boundary conditions (Grasset & Parmentier 1998; Choblet & Parmentier 2009)
and of the mode of heating of the fluid layer (Hansen, Yuen & Malevsky 1992;
Sotin & Labrosse 1999; Parmentier & Sotin 2000) have received less attention, but
they clearly deserve scrutiny. For example, for free surface boundary conditions, the
constant of proportionality C changes by 25 % between the two modes of heating (i.e.
internal heating due to distributed heat sources or heating from below). According
to the small number of studies available, the impact of the mechanical boundary
conditions is more important and may be as large as 50 % (Jaupart & Mareschal
2011). Such differences may seem small but they cannot be ignored, all the more so
because the boundary conditions and dominant heating mode may change with time
in a telluric planet, as explained above. Changing the value of C by 50 % implies a
36 % change of 1T , or ≈360 K for 1T ≈ 103 K. In comparison, the total amount
of cooling of the Earth over the last 3 Gyr is only ≈200 K (Herzberg, Condie &
Korenaga 2010).

The characteristics of Rayleigh–Bénard convection at the high values of the
Rayleigh number relevant to telluric planets have been investigated extensively both
in the laboratory and with numerical calculations. In addition, a comprehensive
theoretical framework leading to scaling laws for the main variables of interest over
wide ranges of Rayleigh and Prandtl numbers is available (Grossmann & Lohse
2000). The vast majority of these studies, however, have dealt with rigid boundaries,
which is not appropriate for the Earth. Except for the study by Katsaros et al.
(1977), free surface boundary conditions have only been investigated using numerical
calculations. As regards the characteristics of convection in fluid layers that are
internally heated, our current knowledge is more fragmentary. Numerical calculations
are only available for free surface boundary conditions in the limit of infinite Prandtl
number (Parmentier, Sotin & Travis 1994; Grasset & Parmentier 1998; Sotin &
Labrosse 1999; Parmentier & Sotin 2000) and there have been very few laboratory
experiments owing to difficulties in controlling the distribution of the volumetric
heating rate in a large volume. Most of these experiments aimed at documenting
the planform of convection (Tritton & Zarraga 1967; Schwiderski & Schwab 1971;
Kulacki & Goldstein 1972; Tasaka et al. 2005; Takahashi et al. 2010) and only
one of them involved temperature and heat flux measurements (Kulacki & Nagle
1975). That latter study was conducted in water, a fluid with a Prandtl number of
order 1, with a very small number of temperature probes. The experimental set-up
allowed the determination of a scaling law for the heat flux but was ill-suited to
the measurement of the vertical temperature profile through the layer, which is of
interest in itself. The dearth of studies on internally heated fluids has motivated us
to develop a novel experimental technique that achieves a uniform rate of volumetric
heating in a fluid layer. The technique can also be used in other configurations,
including a heterogeneous distribution of heat sources in controlled conditions. In
order to validate the technique, the present work has been limited to a homogeneous
distribution.

Our novel experimental design relies on the absorption of microwave (MW)
radiation in a fluid layer with rigid boundaries. We are able to achieve high values
of the Rayleigh–Roberts number, which is the analogue of the Rayleigh number
for an internally heated fluid, at high Prandtl numbers. Non-invasive techniques are
used to measure both temperature and velocity fields within the fluid layer and to
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determine the horizontal planform of convection. We determine vertical profiles of the
horizontally averaged temperature and convective heat flux and we derive scaling laws
for the temperature difference and for the thickness of the upper thermal boundary
layer. In order to assess the accuracy of the laboratory measurements, we carry out
high-resolution numerical calculations in exactly the same three-dimensional (3D)
configuration using the convection code Stag3D (Tackley 1993). These calculations
account for the exact temperature dependence of the working fluid physical properties.
For comparison with previous studies, we also carry out numerical simulations for
free boundaries with constant fluid properties. Scaling laws for the main variables of
interest are derived for the two types of boundary conditions. We show that, for a
given bulk heat flux, the temperature difference across the upper boundary layer is
significantly higher below a rigid boundary than below a free one. The importance
of this is illustrated by comparing predictions for planets with free boundaries, like
the Earth, and planets with rigid ones, like Venus.

2. Laboratory experiments and numerical simulations
2.1. Relevant dimensionless numbers

Convection generated by bottom heating and top cooling (Rayleigh–Bénard convection)
is described by two dimensionless numbers: the Rayleigh number and the Prandtl
number. The Rayleigh number, Ra, defines the vigour of convection and represents the
ratio of the driving thermal buoyancy forces over the thermal and viscous dissipation,

Ra= ρgα1Th3

κµ
, (2.1)

where 1T is the temperature difference between the top and bottom of the layer
and h is the layer thickness. Convection starts when Ra exceeds a critical value
(Chandrasekhar 1961), and follows a sequence of transitions toward chaos as
Ra increases. The second parameter, the Prandtl number, represents the ratio of
momentum diffusivity over heat diffusivity,

Pr= ν
κ
, (2.2)

where ν =µ/ρ is the kinematic viscosity. When Pr� 1 inertial effects are negligible
compared to viscous ones and the fluid motion stops as soon as the heat source is cut
off. This is the case for telluric mantles, where Pr> 1023.

In the purely internally heated case, the temperature scale for convection is related
to the internal heating rate,

1TH = Hh2

λ
, (2.3)

where H is the heat generated per unit volume. The resulting Rayleigh–Roberts
number (Roberts 1967) is

RaH = ρgαHh5

λκµ
. (2.4)

Predicting the behaviour of complex natural systems such as planetary mantles
requires the determination of scaling laws derived from fundamental physical
principles that have been tested against experimental or numerical results. These
scaling laws are applicable to natural systems only if the dynamic similarity is
respected, i.e. the same boundary conditions (mechanical, thermal, aspect ratio), same
rheology and similar balances between the various physical effects described by the
dimensionless numbers.
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FIGURE 1. (Colour online) Scheme of the microwave-based convection experiment.

2.2. Laboratory experiments in the microwave oven
Figure 1 shows the structure of the MW oven, which includes a power generator
driven by an embedded control system and an antenna through which the MW
radiation propagates towards the working fluid, where it is uniformly absorbed. Our
innovative design of the MW circuits guiding the MW radiation into the fluid ensures
that a uniform MW field distribution is continuously maintained throughout the
heating process (Surducan et al. 2014). The volumetrically heated fluid is cooled
from above with an aluminium heat exchanger, which is temperature-controlled by a
thermostatic bath. The tank (30× 30× 5 cm3) is made of poly(methyl methacrylate),
so the bottom and side boundaries are as close as possible to adiabatic. The
experimental mechanical boundary conditions are rigid.

The experimental fluids are transparent hydroxyethylcellulose–water mixtures whose
viscosity can be varied within a wide range, depending on the polymer concentration.
The fluid rheology was characterized with a Thermo Scientific Haake rheometer
RS600, its density and thermal expansion were measured with a DMA 5000 Anton
Paar densimeter (Limare et al. 2013) and its thermal diffusivity was measured by the
photopyroelectric method (Dadarlat & Neamtu 2009). Values of 1TH and RaH as well
as fluid properties for the 30 experiments are listed in table 1. Experimental values
of Pr (3× 102 < Pr< 3× 104) are large enough for viscous effects to dominate over
inertial ones (Davaille & Limare 2007). The experimental RaH is between 5 × 104

and 2 × 107. The fluid properties are temperature-dependent: over the range of
experimental conditions, the strongest viscosity reduction is 0.15 with respect to the
value at surface temperature T0, thermal expansion increases by a factor of maximum
5.2, whereas the temperature variation of thermal diffusivity is negligible.

During the experiments, the convecting fluid was scanned with a laser sheet over
half of the tank size. The scattered light is registered by a charge-coupled device
(CCD) E-lite camera (1.4 Mpixels, 17 Hz) from LaVision, allowing the measurement
of both temperature and velocity fields without perturbing the flow. More specifically,
to measure the temperature field we seeded the fluid with six types of thermochromic
liquid crystal (TLC) evenly distributed between 19.3 and 36.6 ◦C. Each TLC produces
one bright contour (i.e. an isotherm) when illuminated by a monochromatic light
(Davaille et al. 2011). We calculated the temperature field of each two-dimensional
(2D) cross-section by interpolating the isotherms. The surface temperature T0 was
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1TH (K) RaH 1TTBL/1TH δTBL/h µ0 (Pa s) µ0/µTmax α0 (K−1) α0/αTmax

94 5.01× 104 0.1905 0.318 10.6 2.63 1.75× 10−4 0.46
142 8.22× 104 0.1604 0.292 13.9 3.43 1.11× 10−4 0.30
148 9.17× 104 0.1754 0.332 15.3 3.95 8.77× 10−5 0.23

72 1.03× 105 0.1634 0.340 3.04 2.01 1.91× 10−4 0.58
114 1.48× 105 0.1557 0.301 3.04 2.10 1.70× 10−4 0.46

81 2.99× 105 0.1355 0.288 0.740 1.44 1.75× 10−4 0.58
154 3.05× 105 0.1594 0.271 4.71 3.79 1.03× 10−4 0.27
167 3.47× 105 0.1643 0.271 5.54 4.59 6.49× 10−5 0.17

75 4.02× 105 0.1545 0.308 0.789 2.10 1.63× 10−4 0.55
83 4.21× 105 0.1189 0.232 0.761 1.93 1.71× 10−4 0.60
94 6.58× 105 0.1183 0.261 0.744 2.04 1.75× 10−4 0.52
94 6.69× 105 0.1127 0.208 0.761 2.56 1.71× 10−4 0.59

144 1.07× 106 0.1007 0.229 0.769 2.51 1.68× 10−4 0.51
136 1.11× 106 0.1139 0.225 0.769 2.66 1.68× 10−4 0.49
131 1.32× 106 0.1121 0.214 0.585 2.52 1.82× 10−4 0.53

57 1.44× 106 0.1185 0.245 0.108 1.49 1.72× 10−4 0.69
248 2.47× 106 0.0800 0.195 0.839 3.31 1.50× 10−4 0.41
153 2.50× 106 0.0946 0.220 0.334 2.39 1.66× 10−4 0.51
145 3.05× 106 0.0826 0.169 0.650 2.47 4.06× 10−4 0.75
170 3.13× 106 0.0927 0.201 0.332 2.57 1.67× 10−4 0.49

94 3.14× 106 0.0849 0.182 0.108 1.83 1.72× 10−4 0.66
100 3.34× 106 0.0975 0.169 0.108 1.75 1.72× 10−4 0.64
131 4.01× 106 0.1067 0.233 0.381 5.74 1.36× 10−4 0.47
108 4.04× 106 0.0871 0.177 0.108 1.97 1.72× 10−4 0.62
141 4.88× 106 0.0733 0.199 0.106 1.76 1.75× 10−4 0.61
150 5.62× 106 0.0639 0.157 0.108 1.95 1.71× 10−4 0.59
126 6.04× 106 0.0898 0.200 0.313 7.13 1.80× 10−4 0.59
138 7.18× 106 0.0645 0.144 0.198 1.94 3.78× 10−4 0.80
249 1.04× 107 0.0702 0.136 0.368 6.79 1.44× 10−4 0.44
256 1.47× 107 0.0655 0.148 0.307 6.82 1.83× 10−4 0.50

TABLE 1. Laboratory experimental parameters: 1TH is calculated with H determined from
the heat flux at the top surface at steady state; RaH is calculated with fluid parameters
at mean temperature Tmean at steady state; µ0 and α0 are the viscosity and the thermal
expansion at surface temperature T0. We also indicate the ratios of viscosity and thermal
expansion at T0 with respect to their values at Tmax to quantify the departure from the
Boussinesq approximation.

chosen so that most of the 2D cross-sections contained several isotherms, thereby
ensuring a good resolution of the thermal boundary layer. This is important because
the temperature structure of the TBL is used to calculate the surface heat flux φ, and
hence the actual volumetric heat source H, since at steady state φ =H × h, where h
is the tank height.

To measure the velocity field, we seeded the fluid with small hollow glass spheres,
behaving as passive tracers. Using particle image velocimetry (package DaVis from
LaVision) we calculated the velocity field by cross-correlating successive images. We
derived the 3D vertical velocity field by interpolation of a large number of vertical
cross-sections obtained at different laser positions during an experiment. We then
determined the horizontal planforms by contouring the distribution of vertical velocity
in a horizontal plane. Figure 2 shows a vertical cross-section of the convecting
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FIGURE 2. Vertical cross-section through the convecting fluid: isotherms (a) and the
associated velocity field (b) for RaH = 3× 105.

fluid for an experiment at RaH = 3.0 × 105. The thermal structure revealed by the
isotherms (figure 2a) clearly indicates that convection is characterized by several
cold instabilities originating from the top boundary layer. The corresponding velocity
field (figure 2b) shows that cold instabilities generate a localized downwelling flow,
whereas broad zones of non-buoyant upwellings are associated with the return flow.

2.3. Numerical simulations
To validate the laboratory experiments, and to further extend the parameter space,
we conduct numerical simulations in 3D Cartesian geometry using the parallel code
Stag3D by Tackley (1993). This well-known code solves the equations governing
convection in the limit of infinite Prandtl number and has been benchmarked
successfully on several occasions: the mass conservation

∇ · u= 0, (2.5)

conservation of momentum

2∇ · µ̄e−∇p= RaHᾱ(T − T0)̂z, (2.6)

and conservation of energy

∇ ·∇T +H = ∂T
∂t
+ u · ∇T = DT

Dt
, (2.7)

where u is the velocity vector, e is the strain rate tensor, p is the dynamic pressure,
T is the temperature and ẑ is a unit vector in the vertical direction. Fluid properties
are assumed constant except for the thermal expansivity and dynamic viscosity, which
are normalized to their values at top temperature T0 (ᾱ and µ̄ are the dimensionless
thermal expansivity and viscosity, respectively). The Cartesian domain is divided into
512 × 512 × 64 elements, with the same aspect ratio of 6 as in the experimental
tank, corresponding to a horizontal and vertical resolution of 0.6 mm and 0.8 mm,
respectively. The top boundary condition is isothermal whereas the bottom one is
adiabatic. The vertical sides of the domain are reflecting.

Our first set of simulations is designed to reproduce the experimental conditions, in
particular the rigid mechanical boundary conditions at top and bottom and the fluid
properties. Thermal expansion and viscosity are temperature-dependent following the
measurement made on laboratory fluids (table S1 in the supplementary material
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FIGURE 3. Convection planforms obtained from the 2D horizontal cross-section of the
vertical velocity: downwellings (black) and upwellings (white); (a–c) experimental results;
(d–f ) numerical simulations; (a,d) RaH = 6× 104, (b,e) RaH = 1.5× 105, (c,f ) RaH = 106.
Lateral dimensions are in millimetres. Gray shades are scaled to ± root mean squared
velocity.

available at http://dx.doi.org/10.1017/jfm.2015.347), while other fluid properties
are constant. Figure 3 shows convection planforms that have been derived from
the horizontal distribution of the vertical velocity component in both laboratory
experiments (a–c) and numerical calculations (d–f ). Three different patterns can be
defined using either method. For RaH < 105 a steady spoke-like pattern is found, in
agreement with previous studies (Ichikawa et al. 2006; Takahashi et al. 2010). For
RaH > 106 the pattern is time-dependent and involves numerous isolated plume-like
downwellings. In the intermediate Rayleigh–Roberts number range (105 < RaH < 106),
the complex pattern is best described as a combination of residual spoke features and
sheet-like downwellings.

For the sake of comparison with simple theoretical scalings, we have also carried
out a second set of numerical simulations with rigid boundary conditions but with
constant physical properties of the fluid. In a third set of calculations with constant
fluid properties, we have investigated the effect of free-slip boundary conditions (see
tables S2 and S3 in the supplementary material). Finally, we have changed the bottom
boundary condition (no slip versus free slip) independently of the upper boundary
condition and found no impact on the thermal structure and thickness of the upper
boundary layer. This may be expected at large values of the Rayleigh–Roberts number
because the dynamics of the upper boundary layer are locally determined. Figure S1
in the supplementary material illustrates this conclusion.

3. Scaling laws for the thermal boundary layer

Figure 4(a) shows the vertical profile of the horizontally averaged temperature at
steady state. The thermal structure of the convecting layer can be split into an upper
boundary layer and a convective interior; there is no basal thermal boundary layer, as
no heat is supplied from below. An important feature is that the fluid interior has a
slightly negative temperature gradient.

http://dx.doi.org/10.1017/jfm.2015.347
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FIGURE 4. (Colour online) Numerical simulation using constant fluid parameters and
rigid boundary conditions at RaH = 106. (a) Vertical profile of the horizontally averaged
temperature. (b) Vertical profiles of the three components of the heat balance (3.3):
conductive heat flux (blue), cumulative heat generated (red) and convective heat flux
(green). The thickness of the upper thermal boundary layer δTBL is determined as the
vertical position corresponding to the maximum convective heat flux. The temperature
difference across the upper thermal boundary layer 1TTBL corresponds to the temperature
at a depth z= δTBL.

If the local temperature is decomposed into its horizontal average T(z, t) and a
fluctuation θ , then the horizontally averaged heat equation can be written as

ρCp

[
∂T
∂t
+ ∂wθ

∂z

]
= λ∂

2T
∂z2
+H, (3.1)

where w is the vertical velocity and Cp is the heat capacity. At steady state,
the horizontally averaged temperature does not depend on time and (3.1) can be
reduced to

0=− d
dz

(
−λdT

dz
+ ρCpwθ

)
+H. (3.2)

By integrating (3.2) between z= h (the base of the fluid layer) and z= 0, we obtain
the convective heat flux at any depth z

ρCpwθ = λdT
dz
+H(h− z). (3.3)

This equation involves three components, the convective and conductive heat fluxes
and also the cumulative heat generation, which are illustrated in figure 4(b).

We derive scalings for the characteristics of the upper boundary layer using the
viscous dissipation–buoyancy flux balance. For the large values of the Prandtl number
of relevance here, the kinetic boundary layer extends over the whole fluid layer. The
integral buoyancy flux for the layer is∫ h

0
ραgwθ dz= αg

Cp

∫ h

0

[
λ

dT
dz
+H(h− z)

]
dz= αg

Cp

(
−λ1T +H

h2

2

)
. (3.4)



Microwave experiments for planetary mantle convection 59

For large values of the Rayleigh number, we may neglect λ1T compared to Hh2/2.
To derive the kinetic dissipation scale, we use velocity scale U and assume that the
relevant length scale for the flow is the fluid layer depth h (Grossmann & Lohse 2000).
The kinetic dissipation equation can now be written as∫ h

0
ραgwθ dz∼µ

(
U
h

)2

h∼ αg
Cp

Hh2, (3.5)

where dissipation balances buoyancy. At steady state the surface heat flux φ=Hh and
is such that

φ ∼ λ1TTBL

δTBL
, (3.6)

where 1TTBL and δTBL are the temperature difference and thickness of the upper
thermal boundary layer, respectively (see figure 4). For a closure equation, we use
the balance between horizontal advection and vertical diffusion in the boundary layer
and obtain

δTBL ∼
(
κh
U

)1/2

. (3.7)

Substituting (3.7) in (3.6) we obtain

Hh∼ λ1TTBL

(
U
κh

)1/2

(3.8)

and
Hh2

λ
∼1TTBL

(
U
h

)1/2 h
κ1/2

. (3.9)

Using the definition of the temperature scale in (2.3), the dissipation equation (3.5)
and κ = λ/Cp, we finally obtain

1TTBL

1TH
∼
(

h
U

)1/2
κ1/2

h
∼
(
µCp

αgHh

)1/4
κ1/2

h
∼
(
µλκ

αgHh5

)1/4

. (3.10)

We therefore obtain the explicit dependence of the dimensionless temperature contrast
1TTBL/1TH as a power function of RaH ,

1TTBL

1TH
=CTRaβH, (3.11)

where CT is a constant scaling coefficient and β =−1/4.
One can determine a scaling law for the boundary layer thickness in two different

ways. The first one is to use the heat flux and temperature drop (3.6), which leads
to the same power-law scaling as the temperature drop. Alternatively, one can rely
on the characteristics of the vertical convective heat flux profile and define the base
of the thermal boundary layer where the convective heat flux (green curve) reaches
its maximum value (Davaille & Jaupart 1993). This second method has the advantage
of allowing us to check that the experimentally determined heat flux profile changes
as a function of the Rayleigh number in a self-consistent manner. This leads to the
following scaling law for the TBL thickness:

δTBL

h
=CδRaβH, (3.12)

where Cδ is a constant scaling coefficient.
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FIGURE 5. (a,b) Dimensionless TBL temperature (a) and thickness (b) versus RaH for
experiments (full circles) and numerical simulations (empty squares) obtained with rigid
boundary conditions and temperature dependence of the fluid parameters. (c,d) Numerical
simulations results for the dimensionless TBL temperature (c) and thickness (d) versus
RaH . Black lines are power-law best fits with β=−1/4. Legends indicate the implemented
conditions.

Figure 5(a,b) shows the dimensionless TBL temperature and thickness for laboratory
experiments (full circles) and corresponding numerical simulations (empty squares)
also provided in table 1 and table S1–S3 in the supplementary material. The
experimental and numerical results are in good agreement over a large range of
Rayleigh number. The larger scatter of the laboratory determinations can be attributed
to errors inherent in the interpolation of discrete isotherms to obtain the temperature
field. The power-law scalings that have been derived above capture the main trends
of the data for both the temperature contrast and the boundary layer thickness. As
discussed below, these scalings rely on the Boussinesq approximation, which is not
entirely valid for these experiments. For β = −1/4 we can estimate the best-fitting
scaling coefficients: CT = 3.56, Cδ = 7.36 for the experiments, and similar values
(CT = 3.58, Cδ = 7.50) are found for the numerical simulations (table 2). The linear
fit was calculated using standard linear regression analysis performed in Matlab with
input data log(RaH) and log(1TTBL/1TH) and log(δTBL/h), respectively.

The next issue we want to address is to what extent these coefficients are affected
by the mechanical boundary conditions and by the departure from the Boussinesq
approximation. Figure 5(c,d) shows our three sets of numerical simulations: with
rigid boundary conditions and temperature-dependent fluid properties (empty squares),
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Conditions CT Cδ

Numerical: free slip, α = α0, µ=µ0 2.49 5.90
Numerical: rigid, α = α0, µ=µ0 3.41 7.08
Numerical: rigid, α = f (T), µ= f (T) 3.58 7.50
Experimental: rigid, α = f (T), µ= f (T) 3.56 7.36

TABLE 2. Scaling law constants for the thermal boundary layer when β =−1/4.

Conditions βT CT βδ Cδ

Numerical: free slip, α = α0, µ=µ0 −0.246± 0.012 2.35 −0.232± 0.011 4.51
Numerical: rigid, α = α0, µ=µ0 −0.241± 0.013 2.96 −0.235± 0.009 5.63
Numerical: rigid, α = f (T), µ= f (T) −0.215± 0.041 2.21 −0.195± 0.037 3.50
Experimental: rigid, α = f (T), µ= f (T) −0.222± 0.042 2.47 −0.167± 0.040 2.32

TABLE 3. Scaling law constants for the thermal boundary layer when the β value is left
to vary.

with rigid boundary conditions and constant fluid parameters (full squares), and with
free-slip boundary conditions and constant fluid parameters (full triangles). For rigid
boundary conditions, the use of constant fluid parameters significantly reduces the
scatter, and the best-fitting coefficients are CT = 3.41, Cδ = 7.08 (table 2). The most
striking result is the difference between rigid and free-slip boundary conditions: at
all values of RaH , the ratio 1TTBL/1TH is always lower for free-slip than for rigid
boundary conditions, so that the best-fitting coefficient for free slip is CT = 2.49, a
value in agreement with Parmentier & Sotin (2000). In other words, CT for free slip
is 37 % lower than for rigid boundary conditions, and Cδ = 5.90 is 22 % lower. This
result has important implications for the interior temperature of planets as discussed in
the following section. Here we note that the scaling laws (3.11) and (3.12) are valid
from particularly low values of Rayleigh–Roberts number (RaH ∼ 6× 104), for which
convection is time-independent, to the highest values explored (RaH = 109). Values
for the power-law coefficients have also been obtained with β left to vary (table 3).
We focus on 1TTBL because it is determined more precisely than δTBL (the peak value
can be determined more precisely than the location of the peak). In the example
of figure 4(a), the spatial resolution of our set-up (0.6 mm) leads to an uncertainty
of approximately 12 % for the boundary layer thickness, whereas the measurement
error on the temperature difference is only 0.3 %. We find that, within the range
of uncertainty, values for exponent β are consistent with the result of our simple
analysis (3.11). As expected, for constant fluid properties, the exponent β is closer to
−1/4 than for the experiments and numerical simulations with temperature-dependent
fluid properties.

4. Planetary application: mantle potential temperature for the Earth and Venus
Our scaling laws can be used to estimate mantle potential temperature in telluric

planets dominated by internally heated convection. We are aware that our analysis
ignores the depth and temperature dependence of mantle properties, yet it is
worthwhile to investigate the impact of the boundary conditions on the internal thermal
structure of the Earth and Venus, and this can be done in a first step with a simple
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Parameters Earth Venus

Thermal expansion coefficient (K−1) 3× 10−5 3× 10−5

Thermal conductivity (W K−1 m−1) 3 3
Thermal diffusivity (m2 s−1) 10−6 10−6

Mean mantle density (kg m−3) 4000 3500
Viscosity (Pa s) 1021 1021

Gravitational acceleration (m s−2) 9.81 8.87
Surface temperature (◦C) 0 462
Mantle depth (km) 2890 2932
Bulk silicate radioactive heating (TW) 19 16
Crust radioactive heating (TW) 8 (?)
Mantle radioactive heating (TW) 9–17 (?)
Present-day mantle cooling/heating (TW) 1–29 (?)
Heat flux from the core (TW) 5–17 3–14
Total mantle heat Q (TW) 38± 2 3–30

TABLE 4. Parameters for the Earth and Venus used in our estimation.

physical system. These two telluric planets share many similarities, but the mechanical
top boundary conditions differ, since on Venus there is no active plate tectonics. On
both planets, the bottom boundary condition is set by the liquid outer core and hence
is closer to free-slip behaviour than to a rigid one. However, as explained in § 2.3,
the characteristics of the upper boundary layer are not sensitive to the behaviour
of the lower boundary. The same is true for the internal thermal structure, except
for a thin lower region, which is not relevant to the present discussion. Additional
differences between our experiments and planetary mantles are the presence of
sidewalls and geometrical characteristics (i.e. a horizontal layer and a spherical shell).
In a large-aspect-ratio tank such as ours, however, the bulk convection characteristics
are affected only weakly by local sidewall motions. This is shown by comparing
our results with those of Parmentier & Sotin (2000), for example, who carried out
high-precision numerical calculations in domains with different values of the aspect
ratio. We also expect that the spherical shell geometry does not influence the upper
boundary layer characteristics greatly (see Jarvis, Glatzmaierand & Vangelov 1995).

For the Earth, the total mantle heat source available for convection is known:
Q = 38 ± 2 TW (Jaupart et al. 2007). Using the parameters given in table 4, we
obtain RaH = 3 × 109 and 1TH = 105 K. We calculate 1TTBL according to (3.11)
for the range of CT previously determined, since low CT values (free-slip condition)
are more appropriate to moving oceanic lithosphere whereas high CT values (rigid
condition) better apply to continents. Figure 6(a) illustrates the mantle potential
temperature versus the coefficient CT , showing an increasing trend from free slip to
rigid. Grey rectangles represent a compilation of mantle potential temperature values
(1280–1450 ◦C) from McKenzie & Bickle (1988), Jaupart et al. (2007) and Putirka
et al. (2007) and temperatures (1450–1550 ◦C) at the base of the continents (Jaupart &
Mareschal 2011). These temperature ranges superpose well on our estimates, showing
that a simple temperature scaling law is able to describe the present thermal state
of the Earth, as inferred by geological models. Our scaling laws are based on a
homogeneous distribution of internal heat sources, and it is not clear whether or not
this is also true for planetary mantles. It has been proposed that the Earth’s mantle
is stratified, with a lower region that is enriched compared to the bulk, but current
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FIGURE 6. (Colour online) (a) Estimates of the Earth’s potential temperature using the
temperature scaling law, as a function of the coefficient CT . The solid line was obtained
for a value of total mantle heat source Q= 38 TW, and dashed lines for Q= 38± 2 TW.
Rectangles represent estimates of the potential oceanic and continental upper mantle
temperatures (McKenzie & Bickle 1988; Jaupart et al. 2007; Putirka, Perfit, Ryerson &
Jackson 2007; Jaupart & Mareschal 2011). (b) Estimates of Venus’s potential temperature
using the temperature scaling law for rigid (solid line) and free-slip (dashed line) boundary
conditions, as a function of the total mantle heat source. Red curves represent the solidus
potential temperature at a pressure corresponding to the thermal boundary layer thickness:
rigid (solid line) and free slip (dashed line).

constraints on the uranium and thorium contents of the Earth are not sufficiently
precise for a definitive conclusion (see the discussion of mantle heat production
in Jaupart et al. (2007)). Radioactive decay is not the only energy source driving
convective motions in the interior of planets, and its contribution is probably not
as large as the loss of sensible heat (Jaupart et al. 2007). In all cases, one may
reasonably expect that the dynamics of the upper boundary layer are not sensitive
to the details of the vertical (or radial) distribution of heat sources. This deserves
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an independent study with a degree of stratification that is left to vary because, as
mentioned above, current constraints on the Earth’s mantle are not robust. In fact, as
stated in the introduction, one motivation for our experimental design was to allow
us to investigate the consequences of a heterogeneous distribution of heat sources.

Surface boundary conditions on Venus may alternate between rigid, as present day,
and free-slip during short periods of resurfacing (Turcotte 1995; Armann & Tackley
2012). Contrary to the Earth, the total mantle heat source is poorly constrained
(3–30 TW; see table 4). The bulk silicate radioactive heat source, scaled to the
Earth’s mass, is 16 TW (Smrekar & Sotin 2012). The crustal radioactive heating
is unknown, although the five measurements by Vega and Venera landers indicate
concentrations of heat-producing elements similar to mid-oceanic ridge basalts and
oceanic islands basalts (Turcotte 1995). Therefore, Venus’s present-day crust might
contain a non-negligible quantity of radioactive elements that do not contribute to
mantle convection. Heat flux from the core, estimated by Nimmo (2002) to be
between 1.2 and 3.7 TW, could be as high as 3 and 14 TW if recalculated with
recent thermal conductivity values (Gomi et al. 2013). Given all these uncertainties,
we calculate Venus’s potential temperature over a range of total mantle heat sources
to be between 3 and 30 TW (figure 6b).

For rigid boundary condition (CT = 3.4, black, solid line), the potential temperature
is higher than for free slip (CT = 2.5, black, dashed line). High potential temperatures
may lead to widely spread zones of partial melting beneath the thermal boundary layer.
To check this hypothesis, we calculate the dry peridotite solidus temperature (Smrekar
& Sotin 2012) at the pressure corresponding to the base of the TBL. Equation (3.12)
gives a TBL depth between 75 and 140 km for free slip and 90–170 km for rigid
boundary conditions. Solidus temperatures are then converted to potential temperatures
(red lines in figure 6b). We find that in the free-slip case, partial melting would occur
for mantle heat source values >19 TW, whereas for the rigid case, partial melting
would start at values >14 TW. Another implication is that a change of the top
boundary condition from free slip to rigid favours partial melting since the increase
in potential temperature is larger than the increase in solidus temperature induced by
the thermal boundary layer thickening.

5. Conclusion
We present a new experimental method to generate internal heating by microwave

absorption. This prototype offers the ability to reach high RaH and Pr numbers,
relevant for planetary convection. Our experimental results are compared with
numerical simulations conducted in 3D Cartesian geometry, thereby providing the
first cross-validation of experimental and numerical studies of convective viscous
systems heated from within. We find that thermal boundary layer temperature and
thickness scale with Ra−1/4

H as theoretically predicted by scaling arguments on the
dissipation of kinetic energy (Jaupart & Mareschal 2011). We further test numerically
the effect of the top mechanical boundary condition. At a given RaH , the boundary
layer temperature is 37 % higher for rigid than for free-slip boundary condition and
its thickness is 22 % greater.

Temperature scaling laws are used to evaluate the mantle temperatures of the
Earth and Venus. For the Earth, our estimates match well the potential temperature
of the oceanic upper mantle and the temperature at the base of continents inferred
from geological data. For Venus, our results indicate the probable presence of partial
melting underneath its lithosphere.
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Finally, our specific microwave-based method offers the new perspective, unattained
up to now experimentally, to selectively heat different zones of a convecting fluid,
analogous to heterogeneous convection in the presence of chemical reservoirs with
distinct concentration of radioactive isotopes.
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