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Abstract

A two dimensional model for the erosion generated by viscous free-surface flows, based on shallow-

water equations and the lubrication approximation is presented. It has a family of self-similar

solutions for straight erodible channels of invariant section, with an aspect ratio that increases in

time. It is also shown, through a simplified stability analysis, that a laminar river can generate

various bar instabilities very similar to those observed in natural rivers. This theoretical similarity

reflects the meandering and braiding tendencies of laminar rivers indicated by F. Metivier, and P.

Meunier, (Journal of Hydrology, 271, pp 22-38 (2003)). Finally, we propose a simple scenario for

the transition between patterns observed in experimental erodible channels.

PACS numbers:
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I. INTRODUCTION

Natural rivers seldom form straight beds. Instead, they usually develop braids or mean-

ders as a consequence of current-induced sediment transport. The understanding of such

river sedimentation mechanisms can also help to characterize the spatial heterogeneity of al-

luvial rocks, which is a key parameter when simulating aquifer flows or oil traps in petroleum

reservoirs [1]. The theoretical work of [2], [3] and [4] introduced among geomorphologists the

fruitful idea that such patterns may originate in the linear instability of the flow, bed and

bank system. Two-dimensional turbulent shallow water equations associated with a simple

sediment transport law are able to predict the formation of alternate bars in channels of

constant width. Such bars have been commonly accepted as a key phenomenon for braids

and meander formation [5]. Numerous refinements of this theory may be found in the liter-

ature: [6] performed the bar stability analysis in three dimensions, while [5] focused on the

differentiation between braids and meanders. Later [7] and [8] relaxed the rigid-banks hy-

pothesis. [9] and more recently [10] modelled the non-linear evolution of free bars. All these

works (and to our knowledge, every study in this field) considered turbulent flows, which is

entirely legitimate as far as natural rivers are concerned (the average Reynolds number of

the Seine river in Paris is about 106). However, one should not conclude from this ubiquity

of turbulence that braiding and meandering are inherently turbulent phenomena. [11] very

recently accumulated experimental evidences showing that laminar flumes may generate

many patterns created by real rivers. In particular, the constant flow of a thin liquid film

down an homogeneous granular bed initially crossed by a straight channel exhibits rather

complex pattern dynamics as the flume is deformed by erosion (see [12]). First, the channel

widens while remaining straight. Then a meander-like instability develops, which deforms

both the bed and the banks. Eventually, more bars develop in the middle of the channel and

the river starts to braid[32]. This behavior is qualitatively comparable to the one of larger

channels, at higher Reynolds number (see the two meters-wide experiment of [13]). To our

knowledge, no quantitative experimental results have been published about river erosion

instabilities in the laminar regime. As a consequence, the results presented here can only be

compared to the qualitative evolution described in [12]. Reference to turbulent experiments

can only illustrate the sound similarity with the laminar case.

Our objective is to comfort the idea that micro-rivers can be an intermediate step toward

2



the understanding of natural rivers morphodynamics. We do not claim that quantitative

results from micro-rivers could be extrapolated to field results (see section IIA). We are

rather convinced that such small-scale experiments share with larger ones many features

still under investigation (non-linearity of the flow-sediment interaction, equilibrium shape

of the bed, behavior and influence of the bank). Such laminar flow approach can also help

to disentangle the role of the turbulence in the river morphodynamic. Moreover, theoretical

as well as numerical river models could be easily tested against micro-rivers data, before

adding the complexity of turbulence and switching to larger experiments and natural rivers.

In a first section, a two-dimensional evolution model for laminar flumes is presented. It is

based on the assumption that the velocity profile is close to Nußelt’s one. A rather general

erosion law is then discussed and compared to the experiments of [14]. The following section

is devoted to the study of a straight river widening process, and an analytical solution is

proposed in a simple case. In the third section, the linear stability analysis of a straight

laminar flume with solid banks is presented.

II. A TWO-DIMENSIONAL MODEL

Let us consider an experiment during which an initial channel incised into a uniform and

non-cohesive sand layer is eroded by a viscous flow. If the slope of the sand bed remains

small enough, one may use two-dimensional equations to model both the water flow and

the sediment transport. A rather general assumption (commonly used in river mechanics)

consists in the time-scale separation between the flow and erosion process: the bed evolves

slowly enough for the flow to be quasi-static (see [5], [4], [6] and [8]). Of course, this

hypothesis fails during such violent events as roll-waves .

In the present article the following notations are used (see also figure 1):

• x and y are the coordinates in the plane of the experiment, the first aiming toward

the main slope. z is the coordinate normal to the plate;

• h is the elevation of the sand surface and d is the water depth (η = h + d is thus the

water level);

• u = (u, v) is the vertically averaged water velocity, the horizontal water flux compo-

nents being ud and vd;
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FIG. 1: Sketch of a riverbed.

• S is the plate tilt;

• g is the magnitude of gravity, and ν is the kinematic viscosity of water.

A. Water flow

The present micro-river model requires that the water flow is laminar, so that it can be

approximated by a vertical velocity profile of Nußelt type. For this assumption to hold, the

Reynolds number Re = u0d0/ν must remain low enough (d0 and u0 are the typical height

and velocity scales respectively). The water velocity û is thus approached by a parabolic

velocity profile which adapts instantaneously to the topography:

û(x, y, z, t) ≈ 3

2
ξ(2− ξ)(u(x, y, t), v(x, y, t), 0), (1)

where ξ = (z − h)/d. This mehtod corresponds to the lubrication approximation. Different

approaches may be found in [15] or [16], though in one dimension. Secondary currents are

thus neglected, although many authors believe they strongly influence erosion in developed

meanders (see for example [17]). The effect of secondary currents is sometimes taken into

account in the Saint Venant frame by mean of a ad hoc term in sediment transport equations

(see [8]). Since the present study is restricted to straight channels, we will hereafter assume

that the curvature of the flow remains small enough for the secondary currents to remain

negligible (this argument is developed by [18]). This approximation is actually correct for

any curvature, provided the Reynolds number is low enough.

The vertical integration of the Navier-Stokes equations, associated with (1), leads to the
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viscous shallow water equations:

6

5
(u · ∇)u = g (−∇(d + h) + Sex)− 3ν

d2
u, (2)

∇ · (ud) = 0, (3)

where ex is the unit vector parallel to the x-axis. These equations are very similar to those

used for turbulent rivers. The only differences lie in the coefficient 6/5 which becomes 1

in the turbulent case, and in the friction term −3νu/d2 which becomes −Cf‖u‖u/d (Cf is

the Chézy friction coefficient). One cannot thus expect micro-rivers to be scaled models for

natural ones, since the laminar flow equations cannot be reduced to the classical turbulent

ones. On the other hand, it is interesting to point out similarities and differences between

these two different (although not too far) cases, turbulent and laminar.

B. Sediment transport

The river bed evolves under the influence of both erosion and avalanches. In the present

context erosion consists of flow-induced bed-load transport of sand grains. On the other

hand, avalanches are collective phenomena triggered by an excess slope of the sand surface.

In the continuous model developed here, we can only handle the average effects of erosion

and avalanches. This approximation allows for the definition of a total volumic sediment flux

q(x, y, t) integrated along the vertical direction. Assuming a strong time scale separation

between erosion and avalanches, one may consider the associated fluxes (respectively qe and

qa) as independent. The continuity equation for sand then reads:

∂h

∂t
= −∇ · q, (4)

where q = qe + qa. Finally, closure relations have to be deduced, either on dimensional,

physical or empirical grounds in order to link (4) to the flow equations.

Erosion contribution. Most of the relations between the sediment flux and the flow are

proposed in the literature as functions of the Shields number θ, which expresses the ratio

between hydrodynamic forces exerted on a grain to its apparent weight :

θ =
|τ |

ds(ρg − ρw)g
, (5)
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where ds, ρw, ρg and τ are respectively the typical particle diameter, the density of water,

the density of a grain and the bottom shear stress. As suggested by [19], we propose the

following expression as a classical relationship (see the review of [20]) for small slope:

qe = φ(θ)

(
τ

|τ | −G · ∇h

)
, (6)

where φ is a growing function that may include a threshold value, and G is a diagonal

operator.

To determine a plausible form for φ(θ) we shall use recent experimental results obtained

by Charru, Mouilleron and Eiff for grain transport in the viscous flow regime[14]. Their

results on grain transports are partially reproduced on figure 2 and these authors suggest

then the following transport law :

Npd
2
s

Vs

= 0.85 θ(θ − 0.12)H(θ − 0.12), (7)

where Np is the particle flux, and Vs is the Stokes settling velocity of a particle (Vs =

(ρs− ρw)d2
s/(ρwν)). H is the Heavyside function. Np is linked to q through q = NpV , where

V is the volume filled by a particle in the sediment layer. According to this expression, no

sediment is transported at Shields number values below a threshold. However, [14] indicates

that some particles remain in motion at Shields numbers lower than 0.12 during a transition

regime, and will eventually settle after an “armoring time [. . . ] very large compared to the

hydrodynamic time scales”. Maybe due to this armouring time, their measurements of the

sediment flux do not exactly vanish below the threshold (see figure 2). It is thus tempting,

as already proposed earlier to model sediment transport under turbulent flow (such as [10]

for instance) to use a pure power law functional instead of formula (7). Such a law may be

adjusted to fit the data of [14] (see again figure 2) and it gives:

Npd
2
s

Vs

= 5.13 θ3.75. (8)

Relations (7) and (8) cannot be in fact clearly separated by the experiments of [14]. Thus, for

simplicity reasons, we will use the second one in what follows. This choice will be discussedd

again in sections III and IV. The general form of the erosion law is then taken as:

φ(θ) = φ0θ
β, (9)

reminding that φ0 ≈ 5.13 VVs/d
2
s and β ≈ 3.75 in [14].
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The second term in (6) reproduces the slope-induced deviation of the sediment flux. [10]

sets G = γI where γ is a constant of order one. This isotropic approximation is questionable,

but should not influence qualitatively the results. This term is mathematically essential to

cut-off short wavelength instabilities (see Section IVB). In the frame of the laminar Saint-

Venant approximation, the above sediment transport equation becomes then

qe = Ee

( |u|
d

)β (
u

|u| − γ∇h

)
, (10)

with Ee = φ0(3ρwν/((2r)(ρg − ρw)g))β.

Avalanches. The full dynamics of avalanches is far out the scope of this study. Instead,

we may propose a simple model which reproduces the following features:

• the sand mass is conserved through the avalanche process;

• there are no avalanches under a critical slope α;

• above the critical angle, qa is directed toward the main slope and increases with the

slope value.

Considering these criteria, we propose the following expression :

qa = −EaF (|∇h|) ∇h

|∇h| , (11)

where F(·) = (·−α)H(·−α) and Ea is a constant. Indeed, similar law has been successfuly

employed for eolian dunes by [21].

Finally, it is important to notice here that these fluxes qe and qa do not account for the

saltating grain dynamics. In a simplified approach, the grains motions would end up into a

settling distance at which the fluxes developp (see [22] and references herein for a discussion

of these terms). It manifests in the dynamics through a phase shift between the shear stress

and the fluxes. By sake of simplicity, we do not take into account such a term although it

could be implemented easily. Such approximation corresponds somehow to a limit where

the density ratio between grains and water is high. In the following, it is in fact remarkable

that the instability exists without such phase shift.
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FIG. 2: Different transport laws compared with the experimental results obtained by [14]. The

grains are transported by a viscous flow in a circular Hele-Shaw cell. Np is the particule flux,

and Vs is the settling velocity of a particle. Dashed : threshold law proposed by [14], Npds/Vs =

0.85 θ(θ − 0.12)H(θ − 0.12). Solid line : power-law fit, Npds/Vs = 5.13 θ3.75.

C. Boundary conditions

Flow equations (2) and (3) together with sediment transport equations (4), (10) and

(11) form a closed system. To solve this system in the fixed domain Ω, conditions must be

specified on its boundary ∂Ω. Their general form writes

λud + µuu · n = πu, λhh + µhq · n = πh, (12)

where λu, µu, πu, λh, µh and πh are functions to be specified. n is the 2D unit vector normal

to ∂Ω, aiming outward. In the general case, Ω may include sub-domains where q = 0. In

such domains, the evolution equation becomes ∂h/∂t = 0.

If one wants to restrict the analysis to the active sub-domain Ω+(t) where q 6= 0, the

conditions to be imposed on its mobile boundary ∂Ω+(t) are

u · n = 0, q+ · n = c(h+ − h−),

dh+

dt
+

dh−
dt

= −∇ · q+ + c (n · ∇h+ + n · ∇h−) . (13)

In the above equations, c is the normal velocity of the ∂Ω+(t), the subscripts + and −
denotes quantities evaluated respectively inside and outside Ω+(t). d/dt is the convective
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derivative at a point of ∂Ω+(t) moving with velocity cn. The first boundary condition

reflects the time scale separation between flow and erosion (so that the condition for the

normal velocity of the boundary is zero instead of c). The following ones correspond to the

sediment mass conservation equations integrated over a small domain crossed by ∂Ω+(t). A

special case of (13) has been derived by [23].

The classical conditions for non-erodible and impermeable banks are obtained from (13)

by setting c = 0. In that case, and for turbulent flow, bar instabilities may develop (see [10]

for stability analysis and weakly non-linear theory of bars). The present paper shows that

bar instabilities of the same nature may also develop in laminar conditions. To switch from

bars to meanders and braids, the condition c = 0 must be relaxed. In a seminal paper, [8]

used an empirical estimation of c as a function of the additional stress induced by secondary

flows. They also implicitly assumed that the bank material input due to erosion had no

influence on the bed evolution (they set q+ ·n = 0 despite a finite value for c). They showed

that meandering results from the interaction between alternate bars instabilities and the

so-called bend instability, which results from the curvature of the bank. For micro-rivers,

their hypothesis would not hold, since bed and banks are of the same granular material.

The elaboration of a bank evolution law able to model the effect of avalanches is the subject

of on-going work. The present stability analysis (section IV) is restricted to channels with

rigid banks (c = 0), as were the first equivalent studies in the case of real rivers (see [4]).

On the other hand, in the case of a prismatic river (section III), equations are solved on the

whole Ω domain, and thus no boundary conditions are required. For the full determination

of the solution moreover one has to prescribe global boundary conditions on the upstream

and downstream fluxes of water.

III. PRISMATIC CHANNELS

For a straight, x-invariant river, the equations derived in section II turn into a one

dimensional non-linear diffusion equation which admits self-similar solutions. The reader

interested in the problem of real turbulent river cross-section, a complex two-dimensional

problem in the general case, may refer to [23–27] among others.
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A. A non-linear diffusion equation

For a prismatic river, any quantity only depends on time and the transverse coordinate

y. The flow equations (2) and (3) thus become

u(y, t) =
gS

3ν
d(y, t)2, v = 0, d(y, t) + h(y, t) = η(t). (14)

The water discharge

Qw =

∫ ∞

−∞
(ud)dy (15)

is usually fixed in experiments, and thus governs the evolution of η(t). For the sake of

simplicity, we will consider a different case in what follows. If η instead is fixed, this arbitrary

constant may be set to zero (and thus h = −d). This case represents a river supplied by an

infinite reservoir. The sediment transport equations (4), (10) and (11) lead to

∂h∗
∂t∗

=
∂

∂y∗

(
(−h∗)β ∂h∗

∂y∗

)
− 1

εa

∂

∂y∗

(
F

(∣∣∣∣
∂h∗
∂y∗

∣∣∣∣
)

sign

(
∂h∗
∂y∗

))
. (16)

In the above equation, the starred quantities are dimensionless. The initial depth d0 is the

characteristic length.

T =
d2

0

γφ0

(
ds(ρg − ρw)

ρwSd0

)β

(17)

is the typical widening time scale. εa = d2
0/(TEa) is a non-dimensional number which

compares typical avalanches flux to erosion ones. It will be considered very small in what

follows.

The non-linear diffusion equation (16) may be solved numerically. A classical first-order

finite-volume scheme leads to the solution presented in figure 3 at different times. The

initial width is w∗,0 = 2.5, and εa is fixed to 0.1. The value of εa has a weak influence on the

result, provided it is small (the same computation performed with εa = 0.01 gives similar

results). However, the Courant, Friedrichs, and Lewy condition imposes a numerical time

step smaller and smaller as the value of εa is reduced. The erosion law is fixed by setting

β = 3.75. The influence of any other parameter of the problem, such as the Froude number

or the channel slope is embedded in the definition of the time and space scales.

Trough erosion, the river widens and gets shallower, while its cross-section area remains

constant. This is in qualitative accordance with experiments during which the water outflow

was fixed, instead of the water level in the present theory (see [12], [28], [7] and [29]).

Since the erosion law (8) presents no threshold, this widening process will never stop in

10



the frame of this model, which may seem unreasonable. Some authors ([7], [29]) managed

to reach an equilibrium width, but in most experiments ([12], [13]) the channel invariance

along the x-axis falls before any equilibrium can be reached, due to bar instabilities ([7]

and [29] removed the meandering tendency by using a half-river). To our knowledge, no

river-widening experiment where carried out in the laminar regime at a fixed water level.

B. Self-similar solutions

If avalanches are neglected, or if the transverse slope of the channel ∂h/∂y can remain

always smaller than the critical slope α (so that no avalanche occurs), the last term of (16)

drops. This particular case has simple self-similar solutions of the form

h∗(y∗, t∗) =
1

t
1/(β+2)
∗

f(χ). (18)

where χ = y∗/t
1/(β+2)
∗ . Then (16) leads to

∂

∂χ

(
(−f)β ∂f

∂χ
+

χf

β + 2

)
= 0. (19)

If fs is a symmetrical solution to (19), dfs/dχ = 0 at χ = 0, and thus integration of (19)

gives

fs(χ) =




−

(
β

A−2(β+2)
χ2

)1/β

if χ ∈ [0,
√

A2(β+2)
β

]

0 elsewhere,
(20)

where A is a constant. Let A∗ be the (non-dimensional) area of the cross-section. Then

A∗ =

∫ ∞

0

h∗(y∗, t∗)dy∗ = −A1/β+1/2

∫ q
2(β+2)

β

0

(
β

2(β + 2)
ξ2 − 1

)1/β

dξ. (21)

Thus when avalanches can be neglected, (16) admits a set of self-similar solutions parame-

terized by their cross-section area. The solution corresponding to A∗ = −2.5 is represented

on figure 3. Despite its rectangular initial cross-section, the numerical solution converges to-

wards its self-similar counterpart. This behavior seems quite general: it very weakly depends

on the initial conditions or the value of β.

Only for β = 1 (that is for an unrealistic linear erosion law) does the self-similar solution

behave regularly at the banks. In that case, the river cross-section is a parabola. It width

increases as t1/3 while it shallows as t−1/3. If the initial shape is flat enough to avoid

11



2 4 6 8
y*

-1

-0.8

-0.6

-0.4

-0.2

0

d*

t* =1000

t* =100

t* =10

t* =1 t* =0

FIG. 3: Widening of a straight laminar channel through erosion, modelled with (16). Parameter

values are εa = 0.1, α = 0.8, and β = 3.75. Solid lines: numerical solutions of (16) at different

times. Dashed line: self-similar solution (without avalanches, see section III B) at t∗ = 10, t∗ = 100

and t∗ = 1000. The presence of avalanches seems not to influence much the self-similar evolution

of the profile.

avalanches, this condition holds at any time. Unfortunately this case cannot model erosion

patterns formation, for it is unconditionally stable (see section IV).

On the other hand, if β > 1 the picture is quite different. The continuous widening

process still holds: the width increases as t1/(β+2), while the depth decreases as t−1/(β+2).

However, in that case the bed slope dh∗/dy∗ diverges at the banks. Thus avalanches must

occur at the banks, and the self-similar solution fails. This tendency is observed in laboratory

experiments (see [30] among others), and was already pointed out by [23]. The effect of bank

avalanches is uneasy to quantify analytically. According to numerical simulations in the case

β = 3.75 however (see figure 3), they do not seem to influence strongly the bed evolution far

enough from the banks. Consequently one may still use the results of the self-similar theory

as good approximations of true solutions.

IV. LINEAR STABILITY

Experimental channels such as the one of [12] or [13] often remain stable for a while,

then develop meanders which in turn are followed by more complex braided-like patterns.
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This scenario of transitions (sometimes called ageing) may be interpreted as the successive

dominance of different unstable modes. If the widening process presented in the previous

section is slow enough, a straight river may be chosen as a quasi static base state for a

stability analysis. This is what we will assume in the following, so we will disregard any

interaction between widening and instabilities.

A. Derivation of the dispersion relation

In order to present the simplest stability model which keeps the essential features of

channel stability, we will consider a rectangular base state with solid-wall boundaries, of

width w0 and depth d0 (its aspect ratio is thus R = w0/d0). The boundary conditions at

the bank are u ·n = 0 and q ·n = 0. The basic water velocity is uniform and parallel to the

x-axis (u0 = gSd2
0/(3ν)), and so is the basic sediment flux (q0 = Ee(u0/d0)

β). Let us seek

travelling-wave perturbations of this base state:

ϕ(x, y, t) = ϕ0 + εϕ∗

(
y

w0

)
ei(kx/w0−ωt/(γTR)), (22)

where ϕ = (u, v, h, d, qx, qy). The base state corresponds to ϕ0 = (u0, 0,−d0, d0, q0, 0) and

the perturbation is ϕ∗ = (u0u∗, u0v∗, d0h∗, d0d∗, q0qx,∗, q0qy,∗). T = d0w0/(γRq0) is the char-

acteristic erosion time defined in section IIIA, and ε is a small dimensionless amplitude of

the perturbation. k is a real dimensionless wavenumber whereas ω is complex in the general

case. (2), (3), (10) and (4) lead to the following system:

(
6

5
F 2ik + RS

)
u∗ + ikh∗ + (ik − 2RS)d∗ = 0, (23)

(
6

5
F 2ik + RS

)
v∗ +

dd∗
dy

+
dh∗
dy

= 0, (24)

ik(d∗ + u∗) +
dv∗
dy

= 0, (25)

−iωh∗ + ikqx,∗ +
dqy,∗
dy

= 0, (26)

qx∗ = βu∗ − ikγ

R
h∗ − βd∗, qy∗ = v∗ − γ

R

dh∗
dy

. (27)

In the above system, F = u0/(gd0)
1/2 is the Froude number of the unperturbed channel.

Parameters F , S and R may be varied independently in experiments. Indeed, if Qw is the
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water outflow of the river, then

w0 = R

((
3Fν

S

)2
1

g

)1/3

, Qw = 3R

(
9F 8ν5

gS5

)1/3

. (28)

The full (F, R, S)-space may be explored by tuning the slope of the apparatus, the initial

width of the channel and the water outflow. Of course, the validity of the present theory

requires the parameters to satisfy some conditions. First, the flow has to be laminar. The

low Reynolds number condition can be easily checked:

Re =
u0d0

ν
=

3F 2

S
. (29)

Capillarity can also cause the failure of the theory[33]. Near the banks of the channel,

capillarity generates a meniscus of characteristic size lc (lc = (Γ/(ρg))1/2, where Γ is the

surface tension). The quantity of water flowing through the meniscus zone should remain

negligible as compared to the total outflow. As a crude approximation, the outflow in the

meniscus zone Qw,m is evaluated by Poiseuille’s formula : Qw,m ∼ gSl4c/ν. The condition

Qw À Qw,m thus reads

R À
(

lc
d0

)4

. (30)

The ratio of the water depth versus the capillary length is given by

d0

lc
= 32/3g1/6

( ρ

Γ

)1/2
(

Fν

S

)2/3

. (31)

Consequently, (30) may be satisfied for any values of R, F and S provided the viscosity of the

fluid is high enough[34]. Typical parameters values during the experiment of [12] (carried on

with pure water) are Qw = 13·10−6 m3 s−1, S = 0.088 and w0 = 0.1 m. The non-dimensional

number of the experiment thus are R ≈ 130, F ≈ 2, Re ≈ 130 and d0/lc ≈ 0.3. (30) was

not satisfied in this experiment. However, the error resulting from this failure should only

affect the evaluation of non-dimensional parameters from the experimental data, but the

qualitative behavior predicted by the theory should hold.

Equations (23) to (27) may be reduced to

d4h∗
dy4

+ A
d2h∗
dy2

+ Bh = 0,

d3h∗
dy3

(
1

2

)
=

dh∗
dy

(
1

2

)
=

d3h∗
dy3

(
−1

2

)
=

dh∗
dy

(
−1

2

)
= 0. (32)
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In the above equation,

A =
(
36F 4k3γ + 30F 2k

(− 2k2γ − ikR(1 + β + 4Sγ) + iRω
)
+

25RS
(
2ik2γ + kR(−3 + β − 3Sγ) + Rω

))
/
(
5
(
6F 2k − 5iRS

)
γ
)
,

B =
1

γ

(
k

(
k3

(
γ − 6F 2γ

5

)
+ ik2R(2β + 3Sγ)+

1

5
i
(− 5 + 6F 2

)
kRω + 3R2Sω

))
. (33)

Let s be a solution of the characteristic equation attached to (32). Applying the boundary

conditions leads to s = inπ, where n is an integer. Finally, one may derive the dispersion

relation from (32) :

ω =
(
5kR

(
5iRS

(− n2π2(−3 + β) + 2k2β
)− 6F 2k

(
2k2β + n2π2(1 + β)

))−
i
(
k2 + n2π2

)(
6F 2k − 5iRS

)((− 5 + 6F 2
)
k2 − 5n2π2 − 15ikRS

)
γ
)
/

(
R

(
6F 2k − 5iRS

)((− 5 + 6F 2
)
k2 − 5n2π2 − 15ikRS

))
. (34)

B. Results interpretation

The linear stability of a channel depends on the sign of the maximum growth rate over n

and k, respectively the transverse and longitudinal wavenumbers. We will thus focus on the

imaginary part σ of ω in what follows. Let σm be the maximum growth rate, and km and nm

the corresponding wavenumbers (i.e. σm = σ(km, nm) = maxk∈R,n∈N(σ)). The transverse

wavenumber n characterizes the instability pattern: n = 0 for y-invariant dunes (this mode

can also initiate step-pool instability), n = 1 for meanders and n > 1 for braided patterns.

The present theoretical frame fails to predict the step-pool instability often observed in

narrow channels [31], as σ is always negative for n = 0. This is not surprising for the

phase-shift between the bed deformation and the water shear stress is neglected here (this

phase shift controls sand ripple formation for instance [22]). For higher modes, on the other

hand, a positive growth rate is possible (see figure 4), despite the lubrication approximation.

This indicates that the instability mechanism governing bars formation is different than the

phase shift induced by the advection term in the case of dunes and ripples.

The fluid and sediment choices determine parameters γ and β. Both parameters are

crucial to the present model. The diffusion term which is proportional to γ stabilizes the
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FIG. 4: Linear growth rate σ of bed instability in a laminar river, versus the corresponding non-

dimensional wave number k. The fixed parameters values are β = 3.75, γ = 1, S = 0.0875. The

Froude number and aspect ratio are varied according to a straigh river widening (see section IVB

and figure 5). Solid curves : R = 20.3 and F = 3.94. Short dashes : R = 35.0 and F = 3.21.

Long dashes : R = 55.0 and F = 2.71. For each set (R, F ), the thick curve corresponds to the

mode n = 1, whereas the thin one correspond to the mode n = 2. This behaviour provides an

interpretation for the transition in patterns observed experimentally by [12].

high n modes. Without it, the higher n, the higher σm. As in [10], we take γ = 1 in the

following. If β = 1, that is if the sediment flux is proportional to the shear stress, then no

instability ever appears (again σ is always negative in that case). Instability may occur only

if β > 1. β = 3.75 is choosen hereinafter as an illustrative case (see section II B).

Figure 4 illustrates the transition to bed instability as the aspect ratio is increased, for

constant tilt and Froude number. A deep and narrow channel is stable, as for no values of

n and k can σ be negative. A shift to a larger aspect ratio value allows for the n = 1 mode

to be unstable. For a still wider channel, both n = 1 and n = 2 modes are unstable, but

the latter grows faster. These transitions can be summarized in a three-dimensional phase

diagram, with coordinates R, F and S. A constant S slice of this diagram is presented in

figure 5. Even for null Froude number (and thus for null Reynolds number), may bars be

unstable. This is a rather surprising feature, since this case allows to neglect the inertial

terms in Saint-Venant equation. In other words, bars may develop in a purely viscous

flow, which is impossible for dunes and ripples. Since a purely viscous flow can present no
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transverse recirculation, the above statement proves that neither turbulence nor recirculation

are inherently linked to bars formation.

The diagram of figure 4 provides a crude interpretation for the ageing of laminar labo-

ratory rivers. Let us consider for example the case of section III, for which the mean water

level is fixed, while its bed and banks are freely eroded. If we assume a quasi-static evolu-

tion of the bed width so that the stability analysis for fixed wall can be roughly used, we

can draw a schematic scenario for the river deformation. Thus, the tilt S remains constant

troughout the experiment whereas, in accordance with (20), the Froude number and aspect

ratio evolve as follows:

R ∝ t2/(β+2), F r ∝ t3/(2(β+2)). (35)

This parameterized curve correspond to F = F0(R/R0)
3/4 in the stability diagram (the

subscript 0 denotes initial conditions). In most cases this curve comes successively through

the three stability domains of figure 5, allowing for the successive developpement of different

bars modes . If the water output is conserved instead of the water level (this conditon is

more common in experiments), the straight channel evolution is characterized by

F = F0(R/R0)
−3/8. (36)

Again, for realistic initial conditions (R0 = 20.3, F0 = 3.21 in the experiment of [12]), the

river undergoes different instability regimes as it ages. The three crosses drawn on figure 5

would then represent three different states of the same experiment, extrapolated from the

initial condition using (36). The corresponding growth rate are plotted in Figure 4. When

the highest growth rate of the first mode crosses zero, alternate bars appear, eventualy

replaced by higher order modes.

If a threshold is introduced in the erosion law, the river eventually reaches an equilibrium

state. The position of this equilibrium in the stability diagram is an indication about the

instability patterns the river will preferentially develop. For instance, we may expect that a

river will develop meanders if its equilibrium state lies in the domain where the n = 1 mode

is the most unstable one.
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FIG. 5: Stability diagram for a laminar channel. The domains (separated by solid lines) are named

after the most instable mode between n = 1 and n = 2. The parameters values are β = 3.75, γ = 1

and S = 0.0875. The dashed lines represent the evolution of a straight river when the water level

is imposed (F = F0(R/R0)3/4) or when the outflow is imposed (F = F0(R/R0)−3/8). The three

cross correspond to the three cases presented in figure 4.

V. CONCLUSION

The present paper demonstrates that the equations governing the evolution of laminar

micro-rivers are very similar to their counterpart in the turbulent case. Experimental ev-

idence of this similarity are collected in [11]. This results suggests that micro-rivers could

facilitate the examination of some remaining difficulties of river morphodynamics, such as

non-linearities or bank evolution. In a first attempt to develop viscous channel widening and

stability theory, we presented a two dimensionnal shallow-water model. A very simplified

analytical approach based on this model was sufficient to describe qualitatively the ageing

process observed in some experiments. A diagram presenting the dominant unstable modes

with respect to the channel tilt, Froude number and aspect ratio was obtained (figure 5),

which shows a large domain of existence for the meandering mode (n = 1) at small (or

even null) Froude number. This illustrate the sound difference beteween bars and dunes or

ripples, which need inertia to grow.

The use of a fluid more viscous than water in experiments would allow to reach very low

Froude numbers, while reducing the perturbating effect of capillarity. The consecutive re-

18



duction of the Reynolds number would prevent recirculation, thus allowing the experimental

separation between the effects of recirculation and bars instability.

The relaxation of the rigid banks hypothesis requires the development of bank erosion

models, able to take avalanches into account. Such an improvement, associated with numer-

ical simulation, would allow to test the laminar Saint-Venant theory aginst experiments in

conditions closer to natural rivers ones.
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