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Résumé

Les ravines creusées par le suintement d’un aquifère forment parfois un réseau ramifié, dont
la dynamique peut être comprise simplement. Elles constituent ainsi un système naturel propice
à l’étude de la croissance des réseaux. Nous présentons ici trois facettes de cette dynamique
simple, qui permettent d’établir une théorie quantitative de la formation d’un réseau de drainage
naturel à l’échelle du kilomètre. En trois sections distinctes, nous nous efforçons de relier le débit
d’eau qui s’écoule dans une rivière à la géométrie du réseau, de comprendre la forme du profil
d’élévation de ces rivières, et l’influence de l’ensoleillement de la topographie sur l’érosion du
plateau dans lequel croissent les ravines. Dans chaque cas, nous proposons une comparaison
quantitative avec des mesures in situ.

Abstract

Networks fed by subsurface flow are a natural, but dynamically simple, system in which to consi-
der general problems of network growth. Here we present three examples in which this dynamic
simplicity can be used to develop a quantitative understanding of a natural kilometer-scale
network of streams. In these three sections, we investigate the relation between the position of
a spring in the network and the groundwater flux into it, the flow of water through streams and
the stream shape, and the influence of solar radiation on the rate of sediment transport around
the streams. In each case a quantitative comparison is made between theory and observation.
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1 Introduction

When rain falls on a sandy landscape, it
flows into the aquifer, eventually re-emerging
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into streams. As groundwater flow accumulates
in streams, sediment is removed and the land-
scape is eroded. This interplay between sub-
surface flow, erosion of the surrounding land-
scape, and the removal of sediment through
streams causes existing stream heads to grow
forward and new streams to form. In this way,
groundwater-fed streams grow into ramified
networks [1].

Proposed examples of these so-called seepage
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channels can be found on both Earth [2–4]
and Mars [5]. Of these systems, a seepage net-
work on the Florida Panhandle stands out as
a superb example of the type. A topographic
map of the network is shown in figure 1 [6].
This kilometer-scale network is incised into a
65m deep bed of sand overlying an imper-
meable layer of muddy marine carbonates and
sands [4]. Groundwater flows through the sand
above the impermeable substratum, into the
network of streams, and drains into a nearby
river [4, 6].

The dynamics shaping groundwater-fed net-
works are simpler than the more common type
of drainage networks that are fed by overland
flow. In particular, the flow of the groundwater
into streams is determined by the shape of the
water table, which is a solution to a Poisson
equation [7]. Because the growth of a streams
fed by groundwater is an example of network
growth in a Poisson field, the analysis of land-
scapes shaped by this process benefits from
a substantial literature on interface growth in
a harmonic fields [8–10]. Past work [11] has
shown that the flow of groundwater into the
Florida network is accurately described by the
Poisson equation.

Here we use the specific example of the Flo-
rida seepage network to explore the general
connection between the geometry and growth
of drainage networks. This exploration takes
the form of four thematically related, but inde-
pendent, exercises in which the dynamic simpli-
city of seepage erosion is exploited to develop
a quantitative understanding of field observa-
tions. The focus of this collection is the realiza-
tion that groundwater flow and landscape ero-
sion are coupled to one another by the stream
network and the empirical validation that, close
to equilibrium, this coupling takes a simple
form. Related oddities and novelties are brie-
fly discussed.
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Figure 1 – A kilometer-scale network of see-
page valleys from the Florida Panhandle. These
valleys are incised tens of meters into unconso-
lidated sand. Groundwater flows form the sand
bed, through the channels, and through the
bluff to the west of the network. Color indi-
cates elevation above sea-level.

2 Estimating groundwater
flow from network geometry

We begin by considering a spring, the head
of a stream where groundwater first reemerges
to the surface. In particular, we compare two
models that relate the position of a spring in
the network to the flow of water into it.

The first is the continuum model alluded to
in the introduction. According to the Dupuit
approximation of Darcy’s Law [7], the water
flux q if related to the height h of the water
table above the impermeable layer as

q = −Kh∇h, (1)

where K is the hydraulic conductivity. At
steady-state, conservation of mass requires a
balance of the precipitation rate P with the
divergence of the flux. Thus, the height of the
water table is a solution of the Poisson equation

K

2
∇2h2 = −P. (2)

Because the change in elevation along the
Florida network is small (the median slope
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Figure 2 – Comparison of the flow into 82
springs from the Florida network as estimated
from Darcy’s law (“Poisson flux”) and a heu-
ristic model (“geometric flux” [6]). The red line
shows the best fitting power-law.

is S ∼ 10−2), we approximate the height of
the streams above the impermeable layer as
constant. Because this equation is linear in
the variable φ = Kh2/2P , this boundary-value
problem around the streams of the Florida net-
work using the finite element method [11,12].

The second model of subsurface flow is the
heuristic Area-driven model [6]. According to
this approximation, all groundwater flows to-
wards the nearest section stream. Thus, to find
the flux of water into a section of the net-
work, one first identifies the area a around the
streams that is nearer to the selected section
than to any other point on the streams. From
conservation of mass, the discharge of ground-
water into this section is Qg = Pa.

We now compare the estimated groundwater
flux in to 82 springs from the Florida network.
To do so, it is useful to define two quantities.
The Poisson flux qp = ‖∇φ‖. Physically, qp
is the area draining into a section of stream

per unit length. By analogy, the geometric flux
into a section of network of length δs and drai-
nage area a is qg = a/δs. Because the Area-
driven model allows a finite area to drain into
a point, this definition requires a finite value of
δs, we take δs = 11 m. As shown in figure (2),
there is a power law relationship (R2 = 0.94,
p < 10−35) between these quantities, qg = Bqαg .
The scaling exponent is α = 0.69 ± 0.06. The
proportionality constant, B = 4.0 ± 1.6 m1−α,
likely depends on the choice of δs.

Although there is no general quantitative re-
lationship between these measures, there is for-
mal relationship. Let us imagine that each rain
drop falls randomly, with a uniform distribu-
tion over the domain, and then undergoes a
random walk until it reaches a boundary. The
probability distribution of the random walkers
positions satisfies the Poisson equation, which
can be interpreted as a diffusion equation with
a uniform source term [13]. As a consequence
of its random walk through the domain, this
imaginary rain drop has a continuous and non-
vanishing probability distribution p of exit lo-
cations along the boundary, with a maximum
at the closest point on the boundary. The mean
flux of walkers through the section of channels
gives the Poisson flux. To find geometric drai-
nage area, one sends each random walker to the
mode of p. Thus, the precise relationship bet-
ween qg and qp depends on the geometry of the
system and, consequently, the scaling exponent
α relating these quantities is likely not univer-
sal.

We conclude that the Area-driven model
can be safely used as a conceptual tool with
which to gain intuition. Nevertheless, the Pois-
son equation should be used whenever a quan-
titative prediction of the seepage intensity or
the relative fluxes into different parts of the
network is required.
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3 The three dimensional
structure of the network

Having discussed the flow of water into a
stream, we now consider the response of sedi-
ment within the stream to the flowing water.
Flowing water erodes the bottom of the sandy
stream when the shear force exerted on a sand
grain is sufficient to overcome friction. Thus,
there is a threshold that the shear must ex-
ceed for any sediment to be transported. [14,15]
Many streams, and the Florida network in par-
ticular, are thought to adjust to a state in
which every grain is on the threshold of mo-
tion [16–18]. This constraint on the shear can
be re-expressed as to a relationship between the
slope of the stream bed S and the discharge Q
(units of volume/time) of water in the stream
as

QS2 = Q0, (3)

where Q0 is a constant with units of discharge
the value of which depends on parameters such
as the grain size. [16–18].

Because both the discharge of a stream and
the slope effect the flow of groundwater into it,
equation (3) imposes a boundary condition for
the flow of groundwater into the streams, from
which one can derive the profile of an isolated
stream [18]. Here we show that this boundary
condition is satisfied throughout the network.

To test the applicability of equation 3, we
compare the measured slope of streams to the
stream discharge. Estimates of both the slope
and the discharge require a three-dimensional
description structure of the drainage network,
which is extracted from the high-resolution to-
pographic map of the network shown in fi-
gure 1. A depiction of part of the network is
shown in figure 3. Given the height Hs of each
point of the network, the slope is measured
from the change in height along the stream.
To estimate estimate Q, we first solve equa-
tion (2) subject to the boundary condition on
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Figure 3 – The three-dimensional shape of a
stream network measured from a topographic
map. Color indicates elevation above sea-level.
Streams curve upward sharply near springs.
Further downstream, as flow accumulates the
streams become flatter. This inverse relation-
ship between slope and discharge is in quanti-
tative agreement with equation (3).

the streams
h = Hs. (4)

Because equation (2) is a non-linear function
of h, its solution depends on the height of
the streams above the impermeable mudstone
layer. The elevation of the impermeable layer
above sea-level is h0 = 0. Figure 4 shows the
height of the water table around the network
taking P = 5 10−8 m/s, K = 1.6 10−5 m/s.
Given this solution, Q is estimated throughout
the network as

Q(x0, y0) = −K
∮

N (x0,y0)

h
[∂h
∂n

]
ds, (5)

where N (x0, y0) is the network upstream of
the point (x0, y0), s is a curvilinear coordinate
along the streams, n is the local normal, and
[·] represents the “jump”, which accounts for
the flow of groundwater into either side of the
one-dimensional stream.
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Figure 4 – The shape of the water table
around the Florida network as calculated from
equation (2). Black lines represent the posi-
tion of streams. The water table intersects
the streams at the measured height of the
stream. A zero-flux boundary condition is im-
posed along on the polygonal boundary encom-
passing the channels.

Figure 5 show the comparison between the
measured slope-discharge relation (blue points)
and quadratic relation predicted by equa-
tion (3). The value of Q0 is fit to the data and
corresponds to a grain size of ds = 1.7 mm,
consistent with observation. The slight disa-
greement between theory and observation at
high and low values of discharge are likely the
result of errors in the extraction of the network
from the elevation map. The measurement of
a the discharge close to a spring is sensitive to
the position and elevation of the spring in the
network. The measured elevations of a substan-
tial faction of the springs are above the solution
of the water table elevation, leading to a nega-
tive value of Q very close to the spring. The
measurement of very small values of the slope
is also effected by error in the original topogra-
phic map.

This approximate agreement between theory
and observation leads us to conclude that the
streams throughout the network are poised at
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Figure 5 – Comparison of the stream di-
scharge to the slope. Discharge is estimated
from the solution of equation (2) shown in fi-
gure 4. Slope is measured form the topographic
map shown in figure 1. The red line shows equa-
tion (3) assuming a grain size of 1.7 mm. Each
blue point represents the average of 50 points
in the network with similar discharges.

the threshold of sediment motion. The solu-
tion of equation (2) subject to boundary condi-
tion (3) determines the height of the streams
throughout the network.

4 Response of the surrounding
topography

In the Florida network, streams are incised
into a bed of unconsolidated sand. We assume
that the relaxation of the landscape around
the network can be described by linear diffu-
sion [19]. According to this hypothesis, the se-
diment flux j is related to the height of the
topography H as

j = −D∇H, (6)

where D is the diffusion coefficient. From
conservation of mass,

∂H

∂t
= D∇2H, (7)
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Figure 6 – Map of slope in a section of the net-
work. Slopes are systematically steeper on the
southern side of valleys. The entire network was
used in the analysis of the diffusion coefficient.

In general, D is determined by processes inclu-
ding rainfall, animal activity and vegetation. In
this section, we consider variations in the dif-
fusion coefficient [20–23].

As shown in figure 6, the valleys cut by
the drainage network are asymmetric, the sou-
thern valley wall is steeper than the northern
wall. This asymmetry can be interpreted in two
ways. Either there is a substantial North-South
variation in the rate the landscape is diffusing
or the the erosion rate is symmetric but the
value of D is different. Because this network is
in the Northern Hemisphere, the average posi-
tion of the sun is to the south of the channels.
Consequently, the southern walls of the valley
are more shaded than the northern walls. Past
studies have shown that there is a difference in
vegetation between the northern and southern
sides of the valley [24].

We characterize the influence of the sun with
the projection of sun light onto the landscape.
If σ̂ is a unit vector pointing towards the sun
and N̂(x, y) is the unit vector that is normal to
the land scape at the point (x, y), the dimen-
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Figure 7 – Variation of slope (blue) and light
intensity (green) with orientation. The slope is
systematically larger on the southern sides of
valleys, where the light intensity is lower. The
secondary structure in the dependence of slope
on orientation reflects tendency of valleys to
grow in the cardinal directions, as seen in fi-
gure 1. Each point represents the average of
1000 points from the topography.

sionless light intensity is

I(x, y) = N̂(x, y) · σ̂. (8)

It is straightforward to measure N̂ from the
topographic map shown in figure 1. Given the
latitude and longitude of the Florida network,
the annual average solar zenith and azimu-
thal angles are 26.6◦ and 180◦ respectively [25].
Combining these values with equation (8) pro-
vides an estimate of I at each point in the field
site.

We hypothesize that differences in average
light intensity give rise to differences in D, re-
sulting in asymmetric valley walls. Expanding
D to first order in I gives

D ≈ D0I0(1 +D1I1), (9)

where D0 is the mean diffusion coefficient, I0 is
the mean light intensity, I1 = (I− I0)/I0 is the
fluctuation in the light intensity, and D1 is the
correction due to light.
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Here we estimate D1 from the shape of the
topography assuming that there is no North-
South asymmetry in the erosion rate. It is use-
ful to express j = ‖j‖ and I1 in terms of the
orientation ω. Here, ω is defined as

cos(ω) =
∇H
s
· x̂, (10)

where s = ‖∇H‖ is the topographic slope and
x̂ is a unit vector pointing eastward. The va-
riation in s and I1, estimated throughout the
field site, with orientation is shown in figure 7.

If there is no net asymmetry in the erosion
rate, then

2π∫
0

j(ω) sin(ω)dω = 0, (11)

where the integrand can be equivalently inter-
preted as either the north-pointing component
of j or in relation to the first Fourier coefficient.
Recognizing that j = D0I0(1 + D1I1)s, it fol-
lows that

D1 = −

2π∫
0

I1(ω)s(ω) sin(ω)dω

2π∫
0

s(ω) sin(ω)dω

. (12)

Combining the measured values of s and I
from the Florida network with equation (12),
yields D1 = 0.53 ± 0.02. Thus, the fractional
variation in the diffusion coefficient needed to
account for the slope asymmetry is D1〈I21 〉

1/2
=

0.048± 0.001.

5 Growth of a stream

Having discussed the flow of groundwater
into streams and the resulting adjustment of
stream shape, and erosion of the landscape,
we now turn our attention to the growth of a
spring in response to the flow of groundwater.
Because springs in the Florida network grow

Figure 8 – Channel growth in a table top
experiment. (a) A schematic of the channel
in the experiment after 30 minutes of growth.
The growing channel head is shown in the gray
square. Water flows from from a reservoir (red
line, where ψ = 1). Black lines show the posi-
tion of impermeable walls (∂ψ/∂n = 0). Blue
lines at the base show the position of a second
reservoir (ψ = 0).

slowly, at a speed of ∼ 1 mm/year [4, 6], this
result relies on experimental observations.

Seepage channels are grown in a previously
described experimental apparatus [26]. In this
experiment, a hydraulic head of 19.6 cm is used
to push water through a bed of sand (grain
diameter of 0.5 mm), having an initial slope
of 7.8◦. As water flows out of the sand bed,
it entrains sand grains, thus forming a seepage
channel. The channel is initialized with a small
indentation in the otherwise flat bed of sand.

We characterize the growth of a channel by
the shape of an elevation contour. A map of the
experiment showing the shape of an elevation
contour and its position in the experiment is
shown in figure 8. Given this characterization,
we ask how the growth of the contour outwards
depends on the flux of water into it. To these
ends, we compare velocity of the contour with
the solution of equation (2) around the channel.
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Figure 9 – Channel growth in a table top ex-
periment. A detail (gray square in figure 8) of
the growing channel head elevation contour.
Color represents the flux of water into the
boundary. The solid black line shows the po-
sition of the channel three minutes later.

The normal velocity of the the contour
is measured by comparing the shape of the
contour to its shape a moment later. Given an
elevation, we determine the normal vector at
each point along the associated contour. We
then compare the shape of a contour to the
shape of the same contour three minutes later
to determine the amount that each point on
the contour grew in the normal direction. Two
elevation contours at three minute intervals are
shown in figure 9.

To determine the flux of water entering each
part of the channel, we solve for the shape of
the water table. In these experiments there is
no rainfall, thus equation (2) simplifies to the
Laplace equation

∇2ψ = 0, (13)

where ψ = (h2 − h2c)/(∆h
2 − h2c) is the wa-

ter table height above the channel (where h =
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Figure 10 – Comparison of the normal velo-
city of the channel to the flux of water into
it. The dimensionless flux is found by solving
equation (13) around the measured shape of a
channel. The velocity is measured from changes
in the shape and position of the channel.

hc) relative to the size of the hydraulic head
∆h = 19.6 cm. By construction, ψ = 0 on
the channel and ψ = 1 at the back wall. Be-
cause equation (13) is linear, this boundary-
value problem can be solved using the finite ele-
ment method [12]. We solve for the shape of the
water table around a growing elevation contour
at one minute intervals. Figure 9 shows the di-
mensionless flux q = `‖∇ψ‖, where ` = 90 cm
is the length of the experiment, into different
parts of the channel.

As shown in figure 10, the velocity the chan-
nel grows outward is linearly related to the flux
of water into it. Moreover, the intercept of this
relationship is negative, meaning that a finite
flux of water is required for the channel wall to
grow forward. This result is superficially simi-
lar to the finite shear required to transport se-
diment in a stream [14,15]. Because the growth
of the channel requires that sediment be trans-
ported out through the channel, this relation-
ship between flux and growth does not reflect
a simple force balance on a sand grain. Ra-
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ther, this relationship arises from the coupling
between sediment transport within the chan-
nel and subsurface flow around the channel. It
is therefore remarkable that this relationship
takes a form in which the growth at a point
depends only on the flux at that point.

6 Discussion

This collection of bagatelles has been arran-
ged as to connect—the way a skipping stone
connects the banks of a wide river—the flow of
groundwater through the aquifer to the flow of
sediment over the landscape. We began, in sec-
tion 2, by relating a heuristic model of subsur-
face flow to Darcy’s law. In section 3, we sho-
wed that the boundary condition for the flow
of groundwater is determined by the condition
that sand grains in the streams are at the thre-
shold of motion ; this boundary condition deter-
mines the height of streams [18]. In section 4
we discussed the diffusion of the landscape sur-
rounding the network. Finally, in section 5, we
related the growth of a stream to the flow of
groundwater into it.

We now pause to consider the metaphoric
“wide river”. The first three results represents
three aspects of a single a boundary value
problem. Collecting the principal equations of
these sections,

K

2
∇2h2 = −P, (14)

∂H

∂t
= D∇2H (15)

with the boundary condition on the streams
that

QS2 = Q0 (16)

and

H = h. (17)

Given the current shape of the landscape, these
equations describe the evolution. It is a open
question if this set of equations describes the

advance of the spring. In particular, we ask
if the observed relationship between channel
growth and groundwater flux in section 5 re-
present a fourth aspect of this boundary value
problem ?

The answer to this question deeply influences
our conceptualization of how drainage networks
grow. If these equations are complete, network
growth represents a balance between the accu-
mulation of water in the streams and the ero-
sion of the surroundings. In this case, sediment
transport is simply the mechanism that main-
tains this balance. If these equations are not
complete, the way a network grows and the
surrounding landscape changes depends on the
details of how sediment moves through the net-
work. Once this question is answered, the de-
tails of this model can be adapted to suit the
details of more a complex and realistic world.
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