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Most of these working notes (chapters 1 to 3) have been made possible thanks to the generous2

input of my friend and colleague Emmanuel Cosme. Emmanuel is a physical oceanographer3

working at the Université of Grenoble, www-meom.hmg.inpg.fr/Web/pages-perso/Cosme/.4

On his webpage you will find much more material related to the foundations and applications5

of data assimilation.6

I designed the labs specifically for the workshop, and as a result they were tested that week7

for the first time. They rely on the the matlab software, and can be run as well using its8

open-source clone, octave (on my ubuntu 9.04 linux computer, I noticed a subtantial drop9

of performance using octave, though). I deserve the full credit for any mistake in the notes,10

labs, codes, . . .11

I would like to thank the crew of teaching assistants who kindly volunteered to help me out12

and made my life a whole lot easier during this nice week in Búzios: Hagay Amit, Nicolas13

Gillet, Andy Jackson, Saulo Martins, Sabrina Sanchez, and Jakub Veĺımský. Thanks also to14

the students for their active participation and the keen interest they showed.15

Additions since the workshop (as of August30, 2011) :16

• some general references in the introductory chapter17

• an appendix where the discrete adjoint equation is derived18

“One day he came home with a little bird in his hand and I said to him: ‘Look, it’s just like

you. It flies around a lot, but it’s no good for anything. It’s a garrincha (little bird)’. The name

stuck for the rest of his life.” Rosa dos Santos, Garrincha’s elder sister

19
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Introduction59

1.1 What is data assimilation?60

The basic purpose of data assimilation is to combine different sources of information in order61

to produce the best possible estimate of the state of a system. These sources generally62

consist of observations of the system and of physical laws describing its behaviour, often63

represented in the form of a numerical model. Why not simply use observations? First64

because observations are often too sparse or partial in geophysics. Some extra information65

is needed to interpolate the information contained in the observations to unobserved regions66

or quantities. A numerical model naturally performs this task. Second, because observations67

are contaminated by errors (they are noised). Combining (by means of the model) several68

noised data can be an efficient way of to filter out at least part of the noise and to provide a69

more accurate estimate (“accuracies are added”, see below).70

The problem of data assimilation can be tackled using different mathematical approaches:71

signal processing, control theory, estimation theory, . . . Stochastic methods, such as the pop-72

ular Kalman filter, are based on estimation theory. On the other hand, variational methods73

(3D-Var, 4D-Var. . . ) are rooted in control theory.74

The historical development of data assimilation for geophysical systems can hardly be dis-75

connected from meteorology. Data assimilation is indeed a mandatory step if one wishes to76

provide a weather prediction system with a good initialization (an initial condition), and un-77

til the early nineteen-nineties data assimilation was mostly used for this purpose. Today, its78

application is generalized to many other fields (atmospheric chemistry, oceanic biochermistry,79

glaciology, physical oceanography, geomagnetism, stellar magnetism, seismology. . . ), and for80

a variety of purposes :81

• the estimation of the trajectory of a system to study its variability (reanalyses)82

• the identification of systematic errors in numerical models83

• the estimation of unobserved field variables (e.g. the magnetic field inside Earth’s core)84

• the estimation of parameters (e.g. a structural Earth model in seismology)85

• the optimization of observation networks86

7
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1.2 A scalar example87

Following for instance Ghil and Malanotte-Rizzoli (1991), assume we have two distinct mea-88

surements, y1 = 1 and y2 = 2, of the same unknown quantity x. What estimation of its true89

value can we make ?90

1.2.1 First approach91

We seek x which minimizes (x− 1)2 + (x− 2)2, and we find the estimate x̂ = 3/2 = 1.5 (this92

is the least-squares solution). This solution has the following problems:93

• it is sensitive to any change of units. If y1 = 1 is a measurement of x and y2 = 4 is a94

measurement of 2x, then minimizing (x− 1)2 + (2x− 4)2 leads to x̂ = 9/5 = 1.8.95

• it does not reflect the quality of the various measurements.96

1.2.2 Reformulation in a statistical framework97

We define98

Yi = x+ εi, (1.1)99

where the observation errors εi satisfy the following hypotheses100

• E (εi) = 0 (unbiased measurements)101

• Var (εi) = σ2
i (accuracy is known)102

• Covar (ε1, ε2) = 0, i.e. E (ε1ε2) = 0, errors are independent.103

We next seek an estimator (i.e. a random variable) X̂ which is104

• linear: X̂ = α1Y1 + α2Y2105

• unbiased: E
(
X̂
)

= x106

• of minimum variance: Var
(
X̂
)

minimal (optimal accuracy)107

This estimator is called the BLUE: Best Linear Unbiased Estimator. To compute the αi we108

use the unbiased hypothesis109

E
(
X̂
)

= x = (α1 + α2)x+ α1E (ε1) + α2E (ε2) = (α1 + α2)x, (1.2)110

so that α1 + α2 = 1, or α2 = 1− α1. Next we compute the variance of X̂.111

Var
(
X̂
)

= E
[(
X̂ − x

)2
]

= E
[
(α1ε1 + α2ε2)2

]
= α2

1E
(
ε21
)

+ 2α1α2E (ε1ε2) + α2
2E
(
ε22
)

= α2
1σ

2
1 + α2

2σ
2
2

= α2
1σ

2
1 + (1− α1)2σ2

2.
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Our estimator X̂ has to minimize this quantity. Computing α1 such that112

d
dα1

Var
(
X̂
)

= 0 (1.3)113

yields114

α1 =
σ2

2

σ2
2 + σ2

1

. (1.4)115

It follows that116

X̂ =
σ2

2

σ2
1 + σ2

2

y1 +
σ2

1

σ2
1 + σ2

2

y2. (1.5)117

Note that we get the same result if we try to minimize the functional118

J (x) =
1
2

[
(x− y1)2

σ2
1

+
(x− y2)2

σ2
2

]
. (1.6)119

Comments:120

• This statistical approach solves the problem of sensitivity to units and it incorporates121

measurement accuracies.122

• The accuracy of the estimator is given by the second derivative of J123

d2J
dx2

∣∣∣∣
x= bX =

1

Var
(
X̂
) =

1
σ2

1

+
1
σ2

2

, (1.7)124

so that “accuracies are added”.125

• If we consider that y1 = xb is a first guess of x (with standard deviation σb = σ1)126

and y2 = y is an additional observation (with std dev σ = σ2), then we can rearrange127

Eq. (1.5) as128

X̂ = xb +
σ2
b

σ2 + σ2
b

(
y − xb

)
. (1.8)129

The quantity y − xb is called the innovation. It contains the additional information130

provided by y with respect to xb.131

1.2.3 Data assimilation methods132

There are two classes of methods133

• statistical methods: direct computation of the BLUE thanks to algebraic computations134

(the Kalman filter);135

9/58 I Magnet Brazil, Búzios, June 5-10, 2011 Fundamentals of data assimilation



1.3. NOTATIONS 10/58

• variational mehods: minimization of the functional J (4DVar).136

Shared properties:137

• they provide the same result (in the linear case);138

• their optimality can only be demonstrated in the linear case;139

Shared difficulties:140

• accounting for non-linearities141

• dealing with large problems142

• error statistics are required but sometimes only poorly known143

Courtier (1997) provides a concise and elegant discussion of the two classes of methods and144

discusses their equivalence.145

1.3 Notations146

There exists some sort of standard notations, summarized by Ide et al. (1997).147

• x state vector148

• xt true state149

• xb background state150

• xa analyzed state151

Superscripts denote vector types, subscripts refer to space or time. In the following: unless152

otherwise noted, all vectors will be column vectors. If a and b are two column vectors of153

equal size n, with the superscript T denoting transposition, then154

aTb is their scalar product =
∑

aibi, (1.9)

abT is a matrix of coefficients aibj , (i, j) ∈ {1, . . . , n}2 . (1.10)

1.3.1 Discretization and true state155

Most of the time, our goal will be to estimate as accurately as possible a geophysical field that156

varies continuously in space and time. This real, continuous (and possibly multivariate) field157

is denoted by �x. For the one-dimensional (1D) vibrating string problem we will be dealing158

with in our labs, �x comprises the transverse displacement y(x, t) and velocity ∂ty(x, t) along159

the vibrating string.160

Numerical models are often used for the estimation. Numerical models operate in a discrete161

world and only handle discrete representations of physical fields. Therefore we will try to162
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estimate a projection of the real state �x onto a discrete space. Let Π denote the associated163

projector, and xt be the projection of �x164

xt = Π(�x). (1.11)165

xt is called the true state (see above); this is the state we wish to estimate in practice. In our166

labs, the true state will consist of the value of the displacement and velocity fields, discretized167

on a finite difference grid.168

In a data assimilation problem, one deals with dynamical models that compute the time169

evolution of the simulated state. Let �xi and �xi+1 be the real (continuous) states at two170

consecutive observation times, i being a time index. These two states are related by a causal171

link (the physical model)172

�xi+1 = g ( �xi) . (1.12)173

Projecting this equality into the discrete world, we get174

xti+1 = Π [g (�xi)] . (1.13)175

The dynamical model g is not strictly known, even though we hopefully know most of the176

physics involved in it (in our vibrating string problem, our model will be exactly known).177

This physics is represented in the discrete world by our numerical model M, which operates178

on discrete states such as xt. Introducing this model into Eq. (1.13), we get179

xti+1 =Mi,i+1

(
xti
)

+ ηi,i+1, (1.14)180

in which181

ηi+1 = Π [g (�xi)]−Mi,i+1

(
xti
)
. (1.15)182

The model error ηi+1 term accounts for the errors in the numerical models (e.g. misrep-183

resentation of some physical processes) and for the errors due to the discretization. The184

covariance matrix Qi+1 of the model error is given by185

Qi+1 = Covar
(
ηi+1

)
= E

[(
ηi+1 − 〈ηi+1〉

) (
ηi+1 − 〈ηi+1〉

)T ]
, (1.16)186

where 〈ηi+1〉 = E
(
ηi+1

)
is the average error.187

1.3.2 Observations188

The real, continous field �x results in a signal �y in the space of observations. This involves a189

mapping �h�190

�y = �h� (�x) . (1.17)191
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Despite its simplicity, this equation can not be used in practice. First, we do not have access192

to the real �y: the observed field yo is contaminated with measurement errors, denoted by εµ.193

Accordingly,194

yo = �h� (�x) + εµ. (1.18)195

Second, �h�, which represents the physics of the measurement process (which might be exactly196

known), is a continuous mapping. In practice, this physics is represented by a numerical197

operator H, which is applied to the discrete state we wish to estimate, xt. Incorporating H198

and Π in Eq. (1.18) yields199

yo = H(xt) + �h� ( �x)−H [Π(�x)]︸ ︷︷ ︸
εr

+εµ, (1.19)200

where εr is often termed the error of representativeness (Lorenc, 1986), which includes the201

errors related to the representation of the physics in H and those errors due to the projection202

Π of the real state �x onto the discrete state space (due for instance to numerical interpolation).203

The sum of the measurement error and the error of representativeness is the observation204

error205

εo = εµ + εr. (1.20)206

This allows us to write the final form of the equation relating the discrete true state xt and207

the observations208

yo = H (xt)+ εo. (1.21)209

The covariance matrix of the observation error εo is defined by210

R = Covar (εo) = E
[
(εo − 〈εo〉) (εo − 〈εo)〉)T

]
. (1.22)211

In our labs, we will be dealing with synthetic data and we will artificially introduce observation212

errors εo (the statistics of which we will assume to be Gaussian).213

1.3.3 A priori (background) information214

It can be that we have some a priori knowledge of the state xt, under the form of a vector xb215

having the same dimension as xt. This is the background state. Following a similar logic,216

the background error is defined as217

εb = xb − xt. (1.23)218

Often the estimate of the background state comes from a model simulation. In this case, the219

background is a forecast and is rather denoted by xf , with forecast error εf .220

The covariance Pb of the background error is given by221

Pb = Covar
(
εb
)

= E
[(

εb − 〈εb〉
)(

εb − 〈εb〉
)T]

. (1.24)222
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1.3.4 Analysis223

The result of the assimilation process is often called the analysis, and is denoted by xa. The224

analysis error is defined by225

εa = xa − xt, (1.25)226

while the covariance matrix of the analysis error εa is defined by227

Pa = Covar (εa) = E
[
(εa − 〈εa〉) (εa − 〈εa〉)T

]
. (1.26)228

An important comment: the problem is entirely set-up once the physical model and the229

observations have been chosen, and the covariances (and possibly the background) defined.230

All the physics has been introduced at this stage. The remaining part (the production of the231

analysis) is technical.232

1.4 Useful references233

At this stage it might be timely to provide the reader with general references on data assim-234

ilation. My favorite book on the topic is “Discrete Inverse and State Estimation Problems”,235

by Wunsch (2006), which provides a very personal and powerful account of adjoint methods236

and their application in geophysical fluid dynamics (oceanography). In her book entitled237

“Atmospheric Modelling, Data Assimilation and Predictability ”, E. Kalnay (2003) has two238

comprehensive and very well-written chapters on the basics and applications of data assim-239

ilation techniques to atmospheric dynamics. Last, but not least, Evensen (2009) provides a240

very complete treatment of data assimilation techniques, with a strong and useful emphasis241

on the basics and applications of the ensemble Kalman filter he invented (we will briefly touch242

on this in Sect. 3.3.4.2).243

For a start, I would highly recommend the review paper by Talagrand (1997), “Assimilation of244

observations, an introduction” which provides an extremely concise and well-written overview245

of the topic.246

In addition, if you are looking for references related to the geophysical inverse problem in247

general, Parker (1994) and Tarantola (2005) provide two very personal, insightful, and some-248

times contradictory views on how we should go about making inference on the Earth based249

on a finite number of noisy observations and on physical laws governing its behaviour.250

251

13/58 I Magnet Brazil, Búzios, June 5-10, 2011 Fundamentals of data assimilation



Chapter 2252

Stochastic estimation253

2.1 Basics of probability and statistics254

2.1.1 Probability255

2.1.1.1 Random experiment256

A random experiment is mathematically described by257

• the set Ω of all possible outcomes of an experiment, the result of which can not be258

perfectly anticipated;259

• the subsets of Ω, called events;260

• a probability function, P : a numerical expression of a state of knowledge. P is such261

that, for any disjoint events A and B,262

0 ≤ P (A) ≤ 1, (2.1)
P (Ω) = 1, (2.2)

P (A ∪B) = P (A) + P (B). (2.3)

Here, ∪ means .OR. In the next paragraph, ∩ will mean .AND.263

2.1.1.2 Conditional probability264

When two events A and B are not independent, knowing that B has occurred changes our265

state of knowledge on A. This writes266

P (A|B) =
P (A ∩B)
P (B)

. (2.4)267

14



2.1. BASICS OF PROBABILITY AND STATISTICS 15/58

2.1.2 Real random variables268

The outcome of a random experiment is called a random variable. A random variable can be269

an integer (the number of tries scored by the French rugby team, whose games often ressemble270

random experiments), or a real number (e.g. the lifetime of a Buzz Lightyear action figure).271

2.1.2.1 Probability density function272

For a real random variable x, being equal to a given number is not strictly speaking an273

event. Only the inclusion into an interval is an event. This defines the probability density274

function, also known as pdf275

P (a ≤ x ≤ b) =
∫ b

a
p(x)dx. (2.5)276

2.1.2.2 Joint and conditional pdf277

If x and y are two real random variables, p(x, y) is the joint pdf of x and y. The conditional278

pdf p(x|y) writes279

p(x|y) =
p(x, y)
p(y)

. (2.6)280

2.1.2.3 Expectation and variance281

A pdf is seldom known completely. In most instances, only some of its properties are de-282

termined and handled. The two main properties are the expectation and the variance. The283

expectation of a random variable x, characterized by a pdf p is given by284

E (x) = 〈x〉 =
∫ +∞

−∞
xp(x)dx. (2.7)285

The variance is given by286

Var (x) = E
[
(x− 〈x〉)2

]
=
∫ +∞

−∞
(x− 〈x〉)2 p(x)dx. (2.8)287

The standard deviation σ is the square root of the variance.288

2.1.2.4 The Gaussian distribution289

The random variable x has a Gaussian (or normal) distribution with parameters µ and σ2,290

denoted by x ∼ N (µ, σ2) when291

p(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
. (2.9)292

This Gaussian pdf has the following properties293
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• the parameters µ and σ2 are its expectation and variance, respectively;294

• If x1 ∼ N (µ1, σ
2
1) and x2 ∼ N (µ2, σ

2
2) are two independent variables, then x1 + x2 is295

also Gaussian and x1 + x2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2);296

• if a ∈ R and x ∼ N (µ, σ2), then ax ∼ N (aµ, a2σ2).297

2.1.3 Real random vectors298

Real random vectors are vectors whose components are real random variables. The pdf of a299

vector is the joint pdf of its components.300

2.1.3.1 Expectation and variance301

The expectation vector is the vector of the expected values of the components. The second302

moment of the distribution is the covariance matrix. If x denotes the random vector, the303

covariance matrix is defined by304

P = E
[
(x− 〈x〉) (x− 〈x〉)T

]
. (2.10)305

A covariance matrix is symmetric positive definite. The terms appearing on its diagonal are306

the variances of the vector components. The off-diagonal terms are covariances. If xi and xj307

denote two different components of x, their covariance is308

Pij = Covar (xi, xj) = E
[
(xi − 〈xi〉) (xj − 〈xj〉)T

]
(2.11)309

and their correlation is310

ρ(xi, xj) =
Covar (xi, xj)√
Var (xi) Var (xj)

. (2.12)311

2.1.3.2 The multivariate Gaussian distribution312

The random vector x of size n has a Gaussian (or normal) distribution with parameters µ313

and P, denoted by x ∼ N (µ,P) , if314

p(x) =
1

(2π)n/2 (det P)1/2
exp

{
−1

2

[
(x− µ)T P−1 (x− µ)

]}
. (2.13)315

Here µ and P are the expectation and the covariance matrix of x, respectively; det P is the316

determinant of P. The components of x are said to be jointly Gaussian.317

2.2 The two pillars of estimation theory318

If one has to remember only two formulas from this section, these are319
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1. Bayes’ theorem320

p(x|y) =
p(y|x)p(x)

p(y)
. (2.14)321

2. The marginalization rule322

p(y) =
∫
p(x,y)dx =

∫
p(y|x)p(x)dx. (2.15)323

where324

• p(y|x) is the measurement model (or likelihood);325

• p(x) is the prior distribution;326

• p(y) is the marginal distribution (or evidence).327

2.3 Optimal estimates328

The optimal estimate of the random vector x given the observation y is the vector of values329

which best reflects what a realisation of x can be, having y at hand. Optimality is subjective,330

and several criteria can be proposed in order to define it. For the sake of illustration we331

present three such estimators below (although the rest of the material discussed this week332

will only have to do with the minimum variance estimator).333

2.3.1 Minimum variance estimation334

The estimate we seek is such that the spread around it is minimal. The measure of the spread335

is the variance. If p(x|y) is the pdf of x, having yo at hand, the minimum variance estimate336

x̂mv is the solution of337

∇bxJ (x̂) = 0, (2.16)338

where339

J (x̂) =
∫

(x− x̂)T (x− x̂) p(x|y)dx (2.17)340

and the gradient is defined as341

∇bx = [∂bx1
, . . . , ∂bxi

, . . . , ∂bxn
] (2.18)342

(This is a row vector.) We can show that the solution is the expectation of the pdf, that is343

x̂mv = E [x|y] . (2.19)344
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2.3.2 Maximum a posteriori estimation345

The estimate is defined at the most probable vector of x given y, i.e., the vector that maximizes346

the conditional pdf p(x|y). x̂map is such that347

∂p(x|y)
∂x

∣∣∣∣
x=bxmap

= 0. (2.20)348

With a Gaussian pdf, the minimum variance and the maximum a posteriori estimators are349

the same.350

2.3.3 Maximum likelihood estimation351

The estimate is defined as the most probable vector of y given x, i.e., the vector which352

maximizes the conditional pdf p(y|x). x̂ml is such that353

∂p(y|x)
∂x

∣∣∣∣
x=bxml

= 0. (2.21)354

The ML estimator can be interpreted as the MAP estimator without any prior information355

p(x).356

2.4 The best linear unbiased estimate (BLUE)357

We now return to the BLUE, which we already introduced based on the simple scalar example358

of Sect. 1.2. We aim at estimating the true state xt of a system, assuming that a background359

estimate xb and partial observations yo are given. We assume that these two pieces of infor-360

mation are unbiased and that their uncertainties are known in the form of covariance matrices361

Pb and R, respectively (recall paragraphs 1.3.3 and 1.3.2). The observation operator H is362

assumed linear (denoted by H). All together we have the following pieces of information363

H, such that yo = Hxt + εo, (2.22)
xb = 〈xt〉, (2.23)

Pb = 〈εbεbT 〉, (2.24)
〈εo〉 = 0, (2.25)

R = 〈εoεoT 〉. (2.26)

The best estimate (or analysis) xa is sought as a linear combination of the background estimate364

and the observation365

xa = Axb + Kyo, (2.27)366

where A and K are to be determined in order to make the estimation optimal (you can think367

of them as the generalization of the coefficients α1 and α2 in the simple scalar example of368
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Sect. 1.2). How do we define optimality? Given the information at hand, a wise choice is369

to seek an unbiased estimate, with minimum variance. Reintroducing εa = xa − xt we seek370

(A,K) such that371

E (εa) = 0, (2.28)
Tr (Pa) minimum, (2.29)

where Tr (·) denotes the trace (sum of the diagonal elements, here the variance of each com-372

ponent of xa). One can show that373

A = I−KH,

K = PbHT
(
HPbHT + R

)−1
,

in which K is called the Kalman gain matrix 1.374

The a posteriori error covariance matrix Pa can also be computed. The final form of the375

update equations writes376

K = PbHT
(
HPbHT + R

)−1
, (2.30)

xa = xb + K
(
yo −Hxb

)
, (2.31)

Pa = (I−KH)Pb, (2.32)

where I is the identity matrix.377

These equations constitute the best linear unbiased estimate (BLUE) equations, under the378

constraint of minimum variance. They are the backbone of sequential data assimilation379

methods (soon to come).380

2.5 The Gaussian case381

If we know that both the prior and observation pieces of information are adequately rep-382

resented by Gaussian pdfs, we may apply Bayes’ theorem to compute the a posteriori pdf.383

With384

xt ∼ N (xb,Pb),

p(xt) =
1

(2π)n/2 det Pb1/2
exp

{
−1

2

[(
xt − xb

)T
Pb−1

(
xt − xb

)]}
, (2.33)

yo ∼ N (Hxb,R),

p(yo|xt) =
1

(2π)n/2 det R1/2
exp

{
−1

2

[(
yo −Hxt

)T R−1
(
yo −Hxt

)]}
. (2.34)

1 We have assumed so far that we were dealing with real-valued variables. When dealing with complex-
valued fields, everything holds, provided one replaces the transpose operator T by a transpose conjugate
operator, often denoted by a dagger †.
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Bayes’ theorem provides us with the a posteriori pdf385

p(xt|yo) ∝ exp(−J ), (2.35)386

with387

J (xt) =
1
2

[(
xt − xb

)T
Pb−1

(
xt − xb

)
+
(
yo −Hxt

)T R−1
(
yo −Hxt

)]
. (2.36)388

We can show that this last equation can be rewritten as389

J (xt) =
1
2

[(
xt − xa

)T Pa−1
(
xt − xa

)]
+ β, (2.37)390

with391

Pa =
[
Pb−1

+ HTR−1H
]−1

, (2.38)

xa = Pa
[
Pb−1

xb + HTR−1yo
]
, (2.39)

and β a vector independent of xt. With the help of the Sherman-Morrison formula (aka the392

matrix inversion lemma according to Wunsch (2006), page 29)393

[A + UDV]−1 = A−1 −A−1U
[
D−1 + VA−1U

]−1 VA−1, (2.40)394

we can show that these are the BLUE equations (2.30-2.32). The a posteriori pdf defined395

by Eq. (2.35) is thus Gaussian, with parameters given by the BLUE equations. Since the396

BLUE provides the same result as the application of Bayes’ theorem, it is the best estimator397

(in the case of Gaussian pdfs and of a linear observation operator, though). In passing we398

can recognize in Eq. (2.36) the cost function used in the static variational method termed399

3D-Var. When it minimizes this cost function, the 3D-Var algorithm computes the Maximum400

A Posteriori estimate of the Gaussian pdf, which is identical to the Minimum Variance esti-401

mate found by the BLUE. We can take from this that when statistics are Gaussian and the402

observation operator is linear, every method, whatever its name, will yield the same optimal403

solution, which, depending on the philosophy followed, will be given different interpretations.404

405
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Chapter 3406

The Kalman filter407

3.1 Introduction408

The system is now dynamical. Instead of a unique estimation, we set out to estimate a series409

of states xti (a sequence of real random vectors), where the index i refers to a discrete time410

index (when observations are made). The situation is summarized in Fig 3.1.411

We assume the following a priori knowledge:412

• the initial condition xt0 is Gaussian-distributed with mean xb0 and covariance Pb
0 ;413

• a linear dynamical model M describes the evolution of the state of the system we are414

interested in;415

• the model errors (recall Sect. 1.3.1) ηi are Gaussian with zero mean (they are unbiased)416

and covariance Qi;417

• the model errors are white (i.e. uncorrelated) in time E
(
ηiη

T
j

)
= 0 if i 6= j;418

• Observation errors εoi are Gaussian, with zero mean and covariance matrix Ri;419

• observation errors are white in time E
(
εoi ε

o
j
T
)

= 0 if i 6= j;420

• Errors of different kinds are independent421

E
(
ηiε

o
j
T
)

= E
(
ηiε

b
0
T
)

= E
(
εiε

b
0
T
)

= 0.422

Under these many conditions, the Kalman filter provides the estimate of the states xti, con-423

ditioned by the past and present observations yo1, . . . ,y
o
i ; in terms of pdf, this amounts to424

considering425

p(xi|yo1:i),426

where yo1:i = {yo1, . . . ,yoi }.427
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⋆: observation yo

I: observation error ǫo(R)

: Model trajectory

⋆

⋆
⋆

⋆

⋆

timetnt0

•
•

•
• • •

•
• •

•

•
• • •

•

Figure 3.1: Assimilation starts with an unconstrained model trajectory over the time window
of interest. It aims at correcting this initial model trajectory in order to provide an optimal
fit to the available observations (the stars), given their error bars.

3.2 The Kalman filter algorithm428

The Kalman filter algorithm is sequential and decomposed into two steps:429

1. A forecast430

2. An analysis (or observational update)431

3.2.1 The forecast step432

We start from some previously analyzed state xai (or from the initial condition x0 if i = 0),433

characterized by the Gaussian pdf p (xai |yo1:i) of mean xai and covariance matrix Pa
i .434

An estimate of xti+1 is provided by the dynamical model. This defines the forecast. As seen435

in Sect. 1.3.1, we have436

xfi+1 = Mi,i+1xai , and (3.1)

Pf
i+1 = Mi,i+1Pa

iM
T
i,i+1 + Qi+1. (3.2)

The forecast error εfi+1 results from the addition of two contributions (see Fig. 3.2): the437

propagation of the a priori error by the model, and the model error itself.438
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xt
i

xa
i

xf
i+1

ǫa
i

Mi,i+1ǫ
a
i

Mi,i+1x
t
i

ηi+1

ǫf
i+1

state space

•xt
i+1

Figure 3.2: The forecast error εfi+1 has two sources: One is related to the propagation of the
a priori error by the model (dashed arrow), and the other is related to the model itself: ηi+1

quanties the physics which the model does not account for properly. After Brasseur (2006).

⋆: observation yo

I: observation error ǫo(R)

: Model trajectory

I: forecast error ǫf(Pf)

I: analysis error ǫa(Pa)

⋆

⋆
⋆

⋆

⋆

timetnt0

•
•

•
• •

• • •
•

• • •• • ••
•

•

Figure 3.3: The sequential approach to data assimilation. Starting from the initial time, the
model trajectory follows the initial forecast, and is characterized by a growth of the forecast
error. As soon as the first observation is available, the analysis is performed (green bullet),
and the associated error decreases (green error bar). The same cycle is repeated anytime an
observation is available, with the assimilated trajectory deviating from the initial guess (the
dashed line).
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3.2.2 Analysis step439

At time ti+1, p(xi+1|yo1:i) is known through the mean xfi+1 and covariance matrix Pf
i+1, and,440

again, the assumption of a Gaussian distribution. The analysis step consists of updating441

this pdf using the observation available at time ti+1 and to find p(xi+1|yo1:i+1). This comes442

down to re-deriving the BLUE equations of paragraph 2.4, this time in a dynamical context.443

Therefore “all” we have to do is compute444

Ki+1 = Pf
i+1H

T
i+1

(
Hi+1P

f
i+1H

T
i+1 + Ri+1

)−1
, (3.3)

xai+1 = xfi+1 + Ki+1

(
yoi+1 −Hi+1x

f
i+1

)
, (3.4)

Pa
i+1 = (I−Ki+1Hi+1)Pf

i+1, (3.5)

The principle of the Kalman filter is illustrated in Fig. 3.3.445

3.3 Implementation issues446

3.3.1 Definition of covariance matrices and filter divergence447

In case the input statistical information is mis-specified, the filter might end up underestimat-448

ing the variances of the state errors, εai . Too much confidence is put on the state estimation449

and too little confidence is put on the information contained in the observations. The effects450

of the analysis is minimized, and the gain happens to be too small. In the most extreme case,451

observations are simply rejected. This is a filter divergence. We will see how we can get452

such a behaviour when we consider our vibrating string toy problem.453

Very often filter divergence is easy to diagnose: state error variances are small, and the time454

sequence of innovations is biased. The fix is not as easy to make as the diagnostic. The main455

rule to follow is not to underestimate model errors. If possible, it is better to use an adaptive456

scheme to tune them on-the-fly.457

3.3.2 Size / Optimal interpolation458

The first limitation to the straightforward application of the Kalman filter is related to the459

size of the problem. If n denotes the size of the state vector, the state covariance matrix is460

n × n. Since its propagation by means of the model is n times for expensive than a model461

step, it becomes rapidly out of reach when n increases (not to mention its storage).462

If the storage is not an issue, but the computational cost of propagating Pa is one, a possibility463

is to resort to a frozen covariance matrix464

Pa
i = Pb ∀ti.465

This defines the class of methods known as Optimal Interpolation (OI)1.466

1Although the method is not really optimal, see e.g. Brasseur (2006)
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Under this simplifying hypothesis, the two-step assimilation cycles defined above becomes:467

1. Forecast:

xfi+1 = Mi,i+1xai , (3.6)

Pf
i+1 = Pb. (3.7)

2. Analysis:

xai+1 = xfi+1 + Ki+1

(
yoi+1 −Hxfi+1

)
, (3.8)

Pa
i+1 = Pb. (3.9)

with Ki+1 = PbHT
i+1

(
Hi+1PbHT

i+1 + Ri+1

)−1.

468

There are at least two approaches to form the static covariance matrix Pb.469

1. The analytical formulation: The covariance matrix is formed from a vector of variances470

and a correlation matrix C471

Pb = D1/2CD1/2, (3.10)472

where D is a diagonal matrix holding the variances and C is a correlation matrix to be473

defined. One example is (Brasseur, 2006, and references therein)474

Cmn =
(

1 + al +
1
3
a2l2

)
exp(−al), (3.11)475

where a is a tunable parameter and l is the distance between the grid points m and n.476

We will deal with a so defined background covariance matrix when we assimilate data477

recorded along the vibrating string and see how the choice of the tunable parameter478

can affect the behaviour of the assimilating scheme (see lab 2). However, we should479

make it clear that such an approach is mostly relevant to multi-dimensional problems,480

as it allows information to be spread from points where observations are made to points481

where they are missing (think of satellite observation of sea surface height, for instance).482

2. The second approach consists of taking an ensemble of Ne snapshots of the state vector483

from a model free run, and to build the first and second statistical moments, xb and484

Pb, from this collection of snapshots. In practice we compute485

xb =
1
Ne

Ne∑
e=1

xe, (3.12)

Pb =
1

Ne − 1

Ne∑
e=1

(
xe − xb

)(
xe − xb

)T
. (3.13)

The static approach suffers from the fact that if a correction is applied along a certain direction486

in state space during an update, the error statistics are not modified accordingly (by virtue of487

Eq.(3.9) above). During the next update, the same level of correction might be applied along488

the very same direction, whereas it might not be needed. The static approach is therefore489

more suitable if two successive assimilation cycles are separated by a long enough time, so490

that the corresponding dynamical states are decorrelated enough.491
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3.3.3 Evolution of the state error covariance matrix492

In principle, Eq. (3.2) generates a symmetric matrix. Its practical implementation may not.493

Numerical truncation errors my lead to an asymmetric covariance matrix and a subsequent494

collapse of the filter. A remedy is to add an extra step to enforce symmetry, such as495

Pf
i+1 =

1
2

(
Pf
i+1 + Pf

i+1

T
)
.496

Another possibility is to use the square root decomposition of the covariance matrix. Since497

Pa is symmetric positive definite, it can be written as498

Pa = SaSaT ,499

where Sa is a n×n matrix. This decomposition is not unique. For instance, in Lab 3, we will500

use a Cholesky factorization which will provide us with a lower triangular matrix Sa. This is501

how this can be coded in matlab502

function matPf=forward_matP(matP,NmatP,deltat,halfdeltat,halfdeltat2,beta,N)503

matU=chol(matP);504

matL=matU’;505

ibeg_disp = 1;506

iend_disp = N-1;507

ibeg_velo = iend_disp+1;508

iend_velo = ibeg_velo+N-2;509

ML=zeros(2*(N-1),2*(N-1));510

for jcol=1:2*(N-1) % Each column is propagated511

y=matL(ibeg_disp:iend_disp,jcol);512

yd=matL(ibeg_velo:iend_velo,jcol);513

[y_new,yd_new]=forward_it_neat(y,yd,deltat,halfdeltat,halfdeltat2,beta,N);514

MP(:,jcol)=[y_new’ yd_new’ ]’;515

end516

matPf=MP*(MP’);517

The propagation of the covariance matrix is then performed by first computing Mi,i+1Sai , and518

then by assembling Pf
i+1 = (Mi,i+1Sai )(Mi,i+1Sai )

T + Qi+1. (Note that we will neglect model519

errors in our labs, effectively taking Qi+1 = 0.)520

3.3.4 Nonlinearities521

Nonlinearities are ubiquitous in geophysical fluid dynamics, and the cause of a great deal of522

concern for the data assimilation practitioner. Nonlinearities are likely to spoil the Gaussianity523

of statistics. In addition, the model can no longer be represented by a matrix, and its transpose524

is no longer defined. This statement also applies to a nonlinear observation operator. A way525

to proceed with nonlinearities is provided by the Extended Kalman Filter (EKF), which relies526

on a local linearization about the current model trajectory. This linearization is of course527

valid only in the case of a weakly nonlinear system.528
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3.3.4.1 The extended Kalman filter (EKF)529

When the dynamical model M and/or the observation operator H are (weakly) nonlinear,530

the Kalman filter can be extended by resorting to the tangent linear approximation of M531

and H, denoted by M and H, respectively. The two-step filter assimilation cycle now writes :532

1. Forecast:

xfi+1 = Mi,i+1(xai ), (nonlinear forecast) (3.14)

Pf
i+1 = Mi,i+1Pa

iM
T
i,i+1 + Qi+1. (linear forecast) (3.15)

2. Analysis:

xai+1 = xfi+1 + Ki+1

[
yoi+1 −Hi+1

(
xfi+1

)]
, (3.16)

Pa
i+1 = (I−Ki+1Hi+1) Pf

i+1. (3.17)

with Ki+1 = Pf
i+1H

T
i+1

(
Hi+1P

f
i+1H

T
i+1 + Ri+1

)−1
.

533

3.3.4.2 The ensemble Kalman filter (EnKF)534

The Kalman filter is only optimal in the case of Gaussian statistics and linear operators, in535

which case the first two moments (the mean and the covariances) suffice to describe the pdf536

entering the estimation problem. Practitioners report that its linearized extension to nonlinear537

problems, the EKF, only works for moderate deviations from linearity and Gaussianity (e.g.538

Miller et al., 1994). The ensemble Kalman filter (Evensen, 1994, 2009) is a method which has539

been designed to deal with strong nonlinearities and non-Gaussian statistics, whereby the pdf540

is described by an ensemble of Ne time-dependent states, xi,e.541

A given cycle still consists of a forecast followed by an analysis, which relies on the good542

old BLUE. The statistical information needed by the BLUE (see below) is provided by the543

ensemble, at the exception of the observation errors in Eq. 3.24 below, which are random544

drawings from the Gaussian distribution N (0,Ri). This is necessary for consistency with the545

observation error covariance matrix.546

27/58 I Magnet Brazil, Búzios, June 5-10, 2011 Fundamentals of data assimilation



3.3. IMPLEMENTATION ISSUES 28/58

1. Forecast:

xf
i,e = Mi−1,i(xa

i−1,e) + ηi,e, e = {1, . . . , Ne}. (3.18)

2. Analysis:

〈xf
i 〉 =

1
Ne

Ne∑
e=1

xf
i,e, (3.19)

Pf
i =

1
Ne − 1

Ne∑
e=1

(
xf

i,e − 〈xf
i 〉
)(

xf
i,e − 〈xf

i 〉
)T

, (3.20)

HiP
f
i =

1
Ne − 1

Ne∑
e=1

[
Hi

(
xf

i,e

)
−Hi

(
〈xf

i 〉
)] [

xf
i,e − 〈xf

i 〉
]T

(3.21)

HiP
f
i HT

i =
1

Ne − 1

Ne∑
e=1

[
Hi

(
xf

i,e

)
−Hi

(
〈xf

i 〉
)] [
Hi

(
xf

i,e

)
−Hi

(
〈xf

i 〉
)]T

(3.22)

Ki =
(
HiP

f
i

)T [
HiP

f
i HT

i + Ri

]−1

, (3.23)

yo
i,e = yo

i + εo
e, e = {1, . . . , Ne}, (3.24)

xa
i,e = xf

i,e + Ki

[
yo

i,e −Hi

(
xf

i,e

)]
, e = {1, . . . , Ne}. (3.25)

547

The problem of storing the state covariance matrix Pa is solved, since “only” Ne state vectors548

need be stored.549

I have never applied the EnKF myself: a detailed description of its implementation can be550

found in the book written by its inventor, Geir Evensen, along with a comprehensive list of551

related publications (appendix B of the book).552

A note of caution: the update phase (3.25) is still linear, as the Kalmain gain matrix is553

produced using Eq. (3.23).554
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Chapter 4555

Variational assimilation556

Here is a slightly modified excerpt taken from our review paper (Fournier et al., 2010).557

Unlike sequential assimilation (which emanates from estimation theory), variational assim-558

ilation is rooted in optimal control theory. The analyzed state is not defined as the one559

maximizing a certain pdf, but as the one minimizing a functional J of the form560

J (x) =
1
2

{
n∑
i=0

[Hixi − yoi ]
T R−1

i [Hixi − yoi ] +
[
x− xb

]T
Pb−1

[
x− xb

]}
, (4.1)561

in which xi = Mi,i−1 · · ·M1,0x, the sought x being the best estimate of the initial state of562

the core, x0. This objective function is defined over the entire time window of interest. It is563

the sum of two terms. The first one measures the distance between the observations and the564

predictions of the model. It is weighted by the confidence we have in the observations. The565

second term is analogous to the various norms which are added when solving the kinematic566

core flow problem; it evaluates the distance between the initial condition and an a priori567

background state xb. That stabilizing term is weighted by the confidence we have in the568

definition of the background state, described by the background error covariance matrix569

Pb1. Defining a background state for the core is no trivial matter. But one may substitute570

(or supplement) the corresponding term in equation 4.1 by (with) another stabilizing term,571

typically a norm, as was done by Talagrand and Courtier (1987) and Courtier and Talagrand572

(1987) in their early numerical experiments with the vorticity equation on the sphere.573

The goal of variational data assimilation is to minimize J by adjusting its control variables (or574

parameters), usually the initial condition x0 (if everything else is held fixed, see Fig. 4.1), as575

implied by our formulation in equation 4.1. Iterative minimization requires the computation576

of the sensitivity (gradient) of J with respect to its control vector, which writes (∇x0J )T577

(the transpose is needed since ∇x0J is by definition a row vector, recall Eq. 2.18). The578

size of the problem (the size of the state vector n) precludes a brute force calculation of the579

gradient (which would imply n realizations of the forward model over [t0, tn]). Fortunately, as580

pointed out early on by Le Dimet and Talagrand (1986) and Talagrand and Courtier (1987),581

a much more affordable method exists: The so-called adjoint method, which is based on the582

1Ide et al. (1997), and many others, use B to denote that matrix, a notation which is preempted in our
case by the magnetic induction.
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⋆: observation yo

I: observation error ǫo(R)

: Model trajectory

⋆

⋆
⋆

⋆

⋆

timetnt0

• • • • •
•

• • • • •
•

• • •

adjust x0

Figure 4.1: The variational approach to data assimilation. After adjustment of the initial
condition x0 (the green bullet on the t = t0 axis) by means of an iterative minimization
algorithm, the model trajectory is corrected over the entire time window, in order to provide
an optimal fit to the data (in a generalized least squares sense). The dashed line corresponds
to the initial (unconstrained) guess of the model trajectory introduced in Fig. 3.1.

integration of the so-called adjoint equation backward in time583

ai−1 = MT
i−1,iai + HT

i−1R
−1
i−1(Hi−1xi−1 − yoi−1) + δi1Pb−1

(
xi−1 − xb

)
, n ≥ i ≥ 1,(4.2)584

starting from an+1 = 0, where a is the adjoint field, and δ is the Kronecker symbol. The585

initial value of the adjoint field provides the sensitivity we seek: (∇x0J )T = a0 (e.g. Fournier586

et al., 2007); a derivation of Eq. (4.2) is provided in Appendix A. Note that when writing587

equation 4.2, we assumed for simplicity that observations were available at every model time-588

step.589

Equation 4.2 indicates that over the course of the backward integration, the adjoint field590

is fed with innovation vectors. Those vectors have an observational component (Hi−1xi−1 −591

yoi−1), and a departure-to-background component
(
x0 − xb

)
for the initial condition, these two592

contributions being weighted by the statistics introduced above. The adjoint model MT in593

equation 4.2 is the adjoint of the tangent linear model M introduced previously in the context594

of the extended Kalman filter (Sec. 3.3.4.1). The adjoint model has a computational cost595

similar to that of the forward model, and makes it possible to use an iterative minimization596

algorithm suitable for large-scale problems.597

A few comments on the adjoint method are in order:598

• It demands the implementation of the adjoint model MT : the rules to follow for deriving599

(and validating) the tangent linear and adjoint codes from an existing forward code are600
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well documented in the literature (e.g. Talagrand, 1991; Giering and Kaminski, 1998),601

and leave no room for improvisation. Still, this process is rather convoluted. It requires602

expertise and deep knowledge of the forward code to begin with. The best situation603

occurs when the forward code is written in a modular fashion, bearing in mind that604

its adjoint will be needed in the future, and by casting as many operations as possible605

in terms of matrix-matrix or matrix-vector products (for a one-dimensional illustration606

with a spectral-element, non-linear magnetohydrodynamic model, see Fournier et al.,607

2007). The task of coding an adjoint by hand can still become beyond human reach in608

the case of a very large model. One might then be tempted to resort to an automated609

differentiation algorithm. Automated differentiation (AD) is a very active field of re-610

search2: several operational tools are now available, some of which have been tested on611

geophysical problems by Sambridge et al. (2007).612

• The discrete adjoint equation 4.2 is based on the already discretized model of core613

dynamics. An alternative exists, which consists first in deriving the adjoint equation614

at the continuous level, and second in discretizing it, using the same machinery as the615

one used to discretize the forward model. In most instances, both approaches to the616

adjoint problem yield the same discrete operators. When in doubt, though, in the617

case of a minimization problem, one should take the safe road and derive the adjoint618

of the already discretized problem: This guarantees that the gradient injected in the619

minimization algorithm is exactly the one corresponding to the discrete cost function620

(equation 4.1), up to numerical roundoff error. Since the efficiency of a minimization621

algorithm grows in proportion to its sensitivity to errors in the gradient, any error in622

the gradient could otherwise result in a suboptimal solution.623

• The adjoint approach is versatile. Aside from the initial state x0, one can declare static624

model parameters (static fields, material properties) adjustable, and add them to the625

control vector.626

• In the case of a non-linear problem, the forward trajectory xi, i ∈ {0, . . . , n}, is needed627

to integrate the adjoint equation. The storage of the complete trajectory may cause628

memory issues (even on parallel computers), which are traditionally resolved using a629

so-called checkpointing strategy. The state of the system is stored at a limited number630

of discrete times, termed checkpoints. Over the course of the backward integration of631

the adjoint model, these checkpoints are then used to recompute local portions of the632

forward trajectory on-the-fly, whenever those portions are needed (e.g. Hersbach, 1998).633

• On a more general note, adjoint methods have gained some popularity in solid Earth634

geophysics over the past few years, a joint consequence (again) of the increase in com-635

putational power and the availability of high-quality satellite, or ground-based, data.636

Adjoint methods are now applied to problems related to the structure and evolution637

of the deep Earth: Electromagnetic induction (Kelbert et al., 2008; Kuvshinov et al.,638

2010), mantle convection (Bunge et al., 2003; Liu and Gurnis, 2008; Liu et al., 2008),639

and seismic wave propagation (Tromp et al., 2005; Fichtner et al., 2006; Tromp et al.,640

2008), building in that last case on the theoretical work of Tarantola (1984, 1988).641

2www.autodiff.org
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Figure 4.2: Principle of sequential smoothing. The state to observation difference (the inno-
vation) at analysis time can be used to retrospectively correct the past products of analysis.

The application of a variational approach to time-dependent problems has been generically642

labeled as the 4D-Var approach to data assimilation (e.g. Courtier, 1997), and is commonly643

referred to as 4D-Var. As such, the standard 4D-Var suffers from two drawbacks: It assumes644

that the model is perfect (η = 0), and it does not provide direct access to the statistics of645

the analysis error - notice its absence in Fig. 4.1. An alternative approach to the “strong646

constraint” assumption (η = 0) consists in adding a term quantifiying the model error in647

the definition of the cost function, a term whose weight is controlled by an a priori forecast648

error covariance. This more general “weak constraint” approach (Sasaki, 1970) has been suc-649

cessfully introduced and implemented (under the name “method of representers”) in physical650

oceanography during the past fifteen years (Egbert et al., 1994; Bennett, 2002, and references651

therein).652

From a general perspective, the advantages of a variational approach are its flexibility re-653

garding the definition and identification of control variables, and its natural ability to handle654

time-dependent observation operators (and possibly time-correlated errors). It is also well-655

suited for the reanalysis of past data records (hindcasting), since the state at a given time656

is estimated using the past and future observations available over the entire time window657

(see Fig. 4.1). Note, however, that hindcasting is also possible if one resorts to sequential658

smoothers (see Fig. 4.2), of the kind described by e.g. Cohn et al. (1994), and applied in an659

oceanic context by e.g. Cosme et al. (2010).660
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Lab 1663

The vibrating string: forward664

modelling665

1.1 Introduction666

A good understanding of the forward model is mandatory before any practice of data assimi-667

lation. The goal of this first lab is to get familiar with the numerical model we will deal with668

in the practicals, which has to do with the description of transverse motion along a vibrating669

string. This is a classical problem in physics which is of musical and academic interest. It670

allows one to derive the one-dimensional wave equation and to introduce the notion of normal671

modes. A nice description of this problem can be found in the textbook by French (1971),672

chapters 6 and 7.673

As shown in Fig. 1.1, the physical system consists of a string of length L, and mass per674

unit length µ, which is stretched in the x direction up to a certain tension T . We assume675

that the string is held fixed at both ends. Tension is precisely the restoring force responsible676

for wave motion. Under the assumptions that the string is non-elastic, and that the angle677

characterizing the deviation of its shape from the horizontal direction remains small, one678

can show that the transverse displacement y obeys the one-dimensional wave equation (aka679

d’Alembert’s equation)680

∂2
t y − c2∂2

xy = 0, (1.1)
y(x = 0, t) = y(x = L, t) = 0. (1.2)

in which c is the wave speed,681

c =

√
T

µ
. (1.3)682

For this second order initial value problem, both the initial displacement y(·, t = 0) and the683

transverse velocity ∂ty(·, t = 0) need be specified. Using the length of the string L as the684

length scale, and the travel time τ = L/c as the time scale, we can conveniently rewrite the685
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y(x, t)

Figure 1.1: The vibrating string in its equilibrium configuration (top), and away from this
configuration (bottom, with vertical exageration). Both ends of the string are held fixed.
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same problem in a non-dimensional form686

∂2
t y − ∂2

xy = 0, (1.4)
y(x = 0, t) = y(x = 1, t) = 0, (1.5)

+initial y and ∂ty. (1.6)

In the following, we will focus on this form of the problem. We approximate its solution using687

the finite difference method in both space and time. In space, the segment [0, 1] is divided688

into N segments of equal length h = 1/N . In time, we resort to an explicit, second-order689

Newmark scheme1, with a time-step size denoted by ∆t.690

1.2 The Courant-Friedrichs-Lewy (CFL) stability condition691

Since it is explicit, the time scheme is subject to the Courant-Friedrichs-Lewy stability con-692

dition: the value of ∆t should not exceed a critical value ∆tmax693

∆t ≤ ∆tmax = cte× h

c
, (1.7)694

in which c is the wave speed (1 in our dimensionless paradise), h is the grid spacing introduced695

above, and cte is a constant whose value depends on the time scheme.696

Q1: Using the param lab1 q1.m parameter file and running the script lab1 q1.m matlab697

script, determine empirically the value of the prefactor cte (trial and error). In other words,698

how does ∆tmax vary with h, for a simple enough initial condition (here the fundamental699

mode of vibration of the string)? A simple inspection of the solution tells you if it is stable700

or not. Feel free to automate the procedure if you feel so inclined.701

Fill the following table702

h 0.1 0.01 0.001 0.0001
∆tmax

703

Q2: Find out if the value of cte depends on the initial condition, by selecting a different704

normal mode imode as the initial condition for displacement, and by varying its amplitude705

amp0, using the param lab1 q2.m parameter file and running the script lab1 q2.m matlab706

script.707

At this stage, we are able to determine ab initio the maximum admissible value for the time708

step ∆t, given a spatial chosen resolution (characterized by h = 1/N). This is what we will709

do automatically in the following.710

1.3 Resolution / dispersion711

Depending on the spatial scale one wishes to resolve, it is important to know which grid712

resolution to prescribe. We will assume a Gaussian initial profile for the displacement, and713

1 of the kind used for seismic wave propagation modelling, see e. g. Komatitsch and Vilotte (1998); Chaljub
and Valette (2004)

36/58 I Magnet Brazil, Búzios, June 5-10, 2011 Fundamentals of data assimilation



1.3. RESOLUTION / DISPERSION 37/58

Figure 1.2: A typical screenshot obtained while answering Q3.

a zero initial velocity. The Gaussian profile is characterized by a standard deviation σ0 (our714

characteristic length scale)715

y(x, t = 0) = A0 exp
[
−(x− x0)2

2σ2
0

]
. (1.8)716

Q3: Use param lab1 q3.m to change the value of σ0 (sigma0) and the grid resolution (N).717

Running script lab1 q3 will allow you to visualize the propagation of the numerical solution718

and to compare it with an analytical solution, constructed using the catalog of normal modes719

of the string. The plot will also display the difference between the two multiplied by a factor720

of 10. For a given value of σ0 the goal is to find the minimum Nmin such that the numerical721

solution still looks okay compared to the reference one, after the equivalent of 5 travel times.722

The arrays L2 diff velo and L2 diff disp contains, for each discrete time ti, the absolute723

error (in a L2 sense) of the numerical solution compared with the analytical one. They724

are plotted to the right of the displacement and velocity fields. Figure 1.2 shows a typical725

screenshot.726

Use these tools to fill the following table727

σ0 0.1 0.05 0.02 0.01 0.001
Nmin

1/Nmin

728
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Knowing which resolution is needed for a given σ0 will allow us to neglect the model error η729

in our assimilation experiments.730

NB: the phenomenon you see appearing when the resolution is not good enough is called731

numerical dispersion. Its effects are stronger as the wave travels a longer distance (I have732

chosen 7.25 travel times as the duration of integration in my script. Feel free to modify it).733

1.4 Generating observations734

[parameter file param lab1 q4.m and script script lab1 q4.m]735

In labs 2 and 3, assimilation will be performed by assimilating displacement and velocity time736

series recorded by an array of receivers, located along the string. For that purpose, we define737

an observation operator H which will generate these time series from the knowledge of the738

displacement and velocity fields on the finite difference grid,739

xk = k × h. (1.9)740

The state vector xi will refer to the column vector containing the values of the displacement741

and velocity fields on the finite difference grid at any discrete time ti742

xi =



y1,i
...
yk,i

...
yN−1,i

ẏ1,i
...
ẏk,i

...
ẏN−1,i



, (1.10)743

where yk,i = y (x = xk, t = ti) (same for ẏ = ∂ty).744

The endpoints 0 and 1 (k = 0 and k = N) are not included since the value of the fields these745

endpoints is specified by the boundary conditions.746

The receivers are located between position x=xrecleft and x=xrecright, and equally747

spaced every deltaxrec. Observations will be noised. The noise level can vary (or not)748

from one receiver to the next. This noise will be Gaussian, with a standard deviation called749

sigmao disp and sigmao velo for displacement and velocity, respectively. The standard750

deviation is to be understood as a fraction of the maximum amplitude of the displacement751

(velocity). For instance, if the initial velocity has an amplitude A0, setting sigmao disp to752

0.01 will generate a Gaussian noise of amplitude 0.01A0.753

Q4: Play around with the various parameters to get a feeling for what the timeseries actually754

look like. An example is shown in Fig. 1.3.755
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Figure 1.3: An example obtained using the following parameters

N=100; % number of segments dividing the interval
duration=5; % duration of the simulation

% Initial condition: zero velocity, Gaussian profile
x0=0.3; % location of the Gaussian peak (between 0 and 1)
sigma0=0.04 ; % Gaussian standard dev
amp0=0.01 ; % amplitude of the Gaussian
xrecleft=0.1; % leftmost coordinate of receiver arrays
xrecright=0.9; % rightmost coordinate of receiver arrays
deltaxrec=0.1 ; % spacing between receivers
sigmao_disp=0.04; %
sigmao_velo=0.04; %
uniform_array=true;%
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Appendix: analytical solution based on normal modes Fourier analysis allows us to756

derive the transverse displacement y(x, t) at any time by expanding the initial displacement757

in a series of sine functions (the normal modes of vibration of the string). For an initial758

displacement α(x) and a zero initial velocity, we find759

y(x, t) =
+∞∑
n=1

αn sin(nπx) cos(ωnt), (1.11)760

in which761

ωn = nπ (1.12)762

and763

αn = 2
∫ 1

0
α(x) sin(nπx)dx. (1.13)764

(Recall that we work in a dimensionless world.)765
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An optimal interpolation scheme767

applied to the vibrating string768

The goal of this lab is to get familiar with the working of a sequential assimilation scheme769

running a so-called twin experiment: A true, reference model trajectory xti is generated, and is770

used to construct a catalog of synthetic observations. These observations are then assimilated771

in order to correct a second model trajectory, which differs from the first one (the true one).772

In our case it will differ because we will assume a different initial condition, x0 6= xt0.773

Twin experiments (also called OSSE, Observing System Assimilation Experiments) are a774

logical first step when implementing an assimilation scheme, since they allow to develop an775

understanding for the behaviour of the scheme, without the additional complexity which may776

arise from the inability of the forward model to represent some of the physics expressed in the777

observations. Today we will run these twin experiments using our vibrating string toy model,778

and we will resort to an optimal interpolation assimilation scheme, of the kind described in779

Sect. 3.3.2.780

2.1 Statistical ingredients781

We need to begin by specifying the statistical bits of information needed by the scheme, in the782

form of the covariance matrices Pb and R of background and observation error, respectively.783

2.1.1 Model784

On the account of our perfect control of both the physics we are interested in and its numerical785

approximation (thanks to lab1), we will neglect modelling errors (as introduced for the first786

time in the notes in Eq. 1.15)787

η = 0. (2.1)788

The background covariance matrix is next defined as in Eq. (3.10)789

Pb = D1/2CD1/2, (2.2)790
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where D is a diagonal matrix holding the variances. We will assume the same value of the791

variance for every grid point, taking792

D1/2 =
[
σmdI 0

0 σmvI

]
, (2.3)793

where σmd and σmv are the model standard deviation for displacement and velocity, respec-794

tively, (which we will be able to vary), and I is the identity matrix of size half the size of795

the state vector (recall its definition, Eq. 1.10 in lab1). In the codes, they are called sigmamd796

and sigmamv. As is the case for the observation standard deviations, these quantities will be797

defined as a fraction of the maximum amplitude of the initial displacement A0 for the first798

one, and as a fraction of the maximum expected velocity for the second one1.799

C is a correlation matrix, defined by800

Cmn =
(

1 + al +
1
3
a2l2

)
exp(−al), (2.4)801

where a is a tunable parameter and l is the distance between the grid points m and n. a can802

be defined as the inverse of the correlation lengthscale,803

a = l−1
c , (2.5)804

The value of lc will we a free parameter as well, and it will appear as lcorr in the matlab805

codes.806

2.1.2 Observations807

Displacement and/or velocities are recorded by the array of receivers (whose properties are808

described in lab 1, Sect. 1.4). We will assume that the observation errors are time independent,809

and that their distribution follows a Gaussian pdf. The observation error covariance matrix810

R is diagonal, of size 2s, s being the number of receivers (nrec in the code). The diagonal811

elements of R hold the variances characterizing the Gaussian noise affecting each receiver.812

The standard deviation of the noise affecting each receiver ir will be denoted by σoir,d and813

σoir,v for displacement and velocity, respectively.814

2.2 Algorithm815

2.2.1 Preparation of data816

In this lab, all the parameters are defined in param lab2.m.817

We set the duration of the experiment (duration in matlab) to a value T . Once xt0 is specified818

(we will again assume a Gaussian profile for displacement, and zero velocity), we know from819

lab1 which resolution N is needed to generate a a clean (that is, not contaminated by a820

1That is, A0/(σ0e
1/2) in the case of a Gaussian displacement of amplitude A0 and standard deviation σ0,

and zero velocity.
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subtantial level of numerical error) true trajectory xti. (Note that once we choose N , the821

timestep ∆t is automatically computed.)822

The specification of the standard deviation of the observation error σir allows us to generate823

observations on-the-fly, while computing the sequence of xti, by the now well-known formula824

yoi = Hxti + εoi , (2.6)825

in which every component εoir,i of the vector of size s εoi is drawn randomly following a normal826

distribution with zero mean and standard deviation σoir (this applies to the displacement827

and/or the velocity).828

The observation operator H is constructed once and for all once the grid resolution, and the829

location of the receivers, are prescribed. Receivers start to operate at time time0 obs.830

2.2.2 Initialization831

[All these steps are taken care of in the init matrices lab2.m script]832

• With lc, σmd and σmv specified, construct the frozen Pb.833

• With the σoir,d and σoir,v already specified, form the block diagonal matrix834

R = blkdiag





σo1,d 0 . . . . . . 0

0
. . . . . . 0

...
...

. . . σoir,d
. . .

...
... 0

. . . . . . 0
0 . . . . . . 0 σos,d



2

,



σo1,v 0 . . . . . . 0

0
. . . . . . 0

...
...

. . . σoir,v,
. . .

...
... 0

. . . . . . 0
0 . . . . . . 0 σos,v



2

.(2.7)835

• Finally, assemble the Kalman gain matrix836

K = PbHT
(
HPbHT + R

)−1
. (2.8)837

2.2.3 Assimilation cycle838

Pick your wrong initial condition, xf0 . (In practice a Gaussian profile again for the displace-839

ment, and zero for the velocity. Setting the amplitude of the Gaussian to 0 amounts to840

choosing a zero initial condition for the displacement.)841

While time has not reached its final value T , do the following842

1. given xai , use the model to compute the forecast xfi+1843

2. If the observations yoi+1 exist, perform the analysis xai+1 = K
(
yoi+1 −Hxfi+1

)
844

The modest size of the problem conviently allows us to store the entire true and analysed845

trajectory, xti, and xai .846

The construction of the trajectory is done in practice by running the run OI lab2.m script.847
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2.2.4 A description of the tools at your disposal for this lab848

Compared to lab 1, there is more flexibility as to what you can choose to do within this lab.849

Here is a summary of the commands which might come in handy:850

• param lab2.m is the parameter file851

• create data lab2.m generates the true trajectory xti and the synthetic observations852

• init matrices lab2.m creates Pb, R and K853

• run OI lab2.m generates the predicted trajectory xai854

• doall lab2.m executes create data lab2.m, init matrices lab2.m, and run OI lab2.m855

in this order856

• compute chi2 disp.m computes the following quantities for the displacement field857

χ2dispi = (yoi −Hxi)TR−1(yoi −Hxi) ∀i ∈ {1, . . . , Nt} , (2.9)

χ2disp =
1
Nt

∑
i

χ2dispi. (2.10)

where we understand that the various vectors and matrices are restricted to their dis-858

placement component. In this formula, Nt is the number of time steps.859

• compute chi2 velo.m does the same for the velocity field. Note that by summing the860

two, you will get the total misfit to the data.861

• plot traj disp plots the time space evolution of the displacement component of the862

true trajectory, the predicted one, and the difference between the two. An example is863

shown in Fig. 3.1.864

• plot traj velo does the same for the velocity865

• compute l2diff state computes, over the last time unit of the simulation (ie, one866

travel time) the quantity867 √∫ T

T−1
(xt − xa)T (xt − xa)dt, (2.11)868

which is returned under the name l2diff. The script also returns l2diff d and869

l2diff v, which are the displacement and velocity restrictions of the first one, nor-870

malized by A0 and A0/(σ0 exp(1/2)), respectively.871

• irec= something followed by plot traces will plot the traces recorded at receiver872

irec (yo), and their prediction (Hxa). These traces can be useful in diagnosing a filter873

divergence (see below).874
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Figure 2.1: A screenshot showing the result of the command plot traj disp.

2.3 Points to address875

Use these tools to try and answer the following questions, or others that might come to mind876

while answering these. I suggest you begin with the parameters listed in param lab2.m to get877

familiar with these routines (in particular, we shall ascribe the same level of noise to every878

receiver).879

Q1: Is the estimate of the displacement field any better when the velocity is observed as880

well? Everything else being fixed, does your answer depend on the ratio σov/σ
o
d? How? And881

why?882

Q2: All other parameters remaining fixed, what it the optimal correlation length lc in883

terms of getting the smallest misfit? The smallest difference (in a L2 sense) between the two884

trajectories over the last cycle of oscillation?885

Q3: Are there values of lc which make the scheme unstable? Does these values depend886

on the grid spacing h (or equivalently, the standard deviation σ0 which defines the initial887

displacement)? How?888

Q4: Is the correlation length lc relevant at all for this one-dimensional problem?889

Q5: Filter divergence is said to occur when one has too much confidence in the numerical890

model compared to the confidence in the observations. Assuming that you observe only the891

velocity, find the corresponding critical σmv/σov ratio.892
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Q6: You are running out of funds. All that is left in your pocket can buy you either893

an ‘array’ of 5 receivers ‘mono’ (which record only the displacement) or 2 receivers ‘stereo’894

(which have the ability to record both the displacement and the velocity, the accuracy on the895

velocity being 100 times better, looking at the standard deviation). You do not know where896

the maximum of the initial Gaussian displacement is located. On the other hand, you know897

the value of the initial σ0 = 0.02. Assuming that the hard disk of your receivers are such898

that you can not record for more that 2 dimensionless time units, find empirically an optimal899

deployment for your 1D array (which must have, as usual, a constant spacing), in the sense900

of producing the best 1D profile of displacement after you’ve recorded for 2 time units. Is is901

better to go ‘mono’ or ‘stereo’?902

Notes after the fact: we focussed on these issues903

• Filter divergence904

• The more data the better? Up to which point?905
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Lab 3906

The Kalman filter applied to the907

vibrating string908

This lab is also concerned with twin experiments of the kind described at length in lab 2.909

The main difference stands in the use of the Kalman filter (KF) for the assimilation algo-910

rithm (Sect. 3.2 in the notes), as opposed to the optimal interpolation (OI) algorithm. This911

implies that the forecast error covariance matrix will not be frozen anymore, and that it will912

evolve following the model trajectory. The only subjective part which remains concerns its913

initialization: the remainder is taken care of by the algorithm.914

This comes with a price, in terms of computer ressources. The propagation of Pa makes the915

calculation n times more expensive, if n denotes the size of the state vector x.916

The settings are essentially the same as those from lab 2.917

3.1 Statistical ingredients918

3.1.1 Model919

Again, we neglect model errors920

η = 0. (3.1)921

Our initial covariance matrix Pa
0 is defined in a way similar to the way we defined the back-922

ground covariance matrix Pb in lab 2. We keep a correlation matrix in order to see how things923

are improved when we use the KF algorithm, as opposed to an OI algorithm.924

Pa
0 = D1/2CD1/2, (3.2)925

where D is a diagonal matrix holding the variances. Again, we will assume the same value of926

the variance for every grid point, taking927

D1/2 =
[
σmdI 0

0 σmvI

]
, (3.3)928
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where σmd and σmv are the model standard deviation for displacement and velocity, respec-929

tively, and I is the identity matrix of size half the size of the state vector. In the codes, they930

are called again sigmamd and sigmamv. As is the case for the observation standard devia-931

tions, these quantities will be defined as a fraction of the maximum amplitude of the initial932

displacement A0 for the first one, and as a fraction of the maximum expected velocity for the933

second one.934

C is a correlation matrix, defined by935

Cmn =
(

1 + al +
1
3
a2l2

)
exp(−al), (3.4)936

where a is a tunable parameter and l is the distance between the grid points m and n. a can937

be defined as the inverse of the correlation lengthscale,938

a = l−1
c , (3.5)939

The value of lc is a free parameter as well, and still appears as lcorr in the matlab codes.940

3.1.2 Observations941

Our observations are strictly the same: displacement and/or velocities are recorded by the942

array of receivers (whose properties are described in lab 1, Sect. 1.4). We will assume that943

the observation errors are time independent, and that their distribution follows a Gaussian944

pdf. The observation error covariance matrix R is diagonal, of size 2s, s being the number945

of receivers (nrec in the code). The diagonal elements of R hold the variances characterizing946

the Gaussian noise affecting each receiver. The standard deviation of the noise affecting each947

receiver ir will be denoted by σoir,d and σoir,v for displacement and velocity, respectively.948

3.2 Algorithm949

3.2.1 Preparation of data950

All the parameters are defined in param lab3.m.951

We set the duration of the experiment (duration in matlab) to a value T . Once xt0 is specified952

(we will again assume a Gaussian profile for displacement, and zero velocity), we know from953

lab1 which resolution N is needed to generate a a clean (that is, not contaminated by a954

subtantial level of numerical error) true trajectory xti (once we choose N , the timestep ∆t is955

automatically computed).956

The specification of the standard deviation of the observation error σir allows us to generate957

observations on-the-fly, while computing the sequence of xti, by the now well-known formula958

yoi = Hxti + εoi , (3.6)959

in which every component εoir,i of the vector of size s εoi is drawn randomly following a normal960

distribution with zero mean and standard deviation σoir (this applies to the displacement961

and/or the velocity).962
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The observation operator H is constructed once and for all once the grid resolution, and the963

location of the receivers, are prescribed. Receivers start to operate at time time0 obs.964

3.2.2 Initialization965

[These two steps are taken care of in the init matrices lab3.m script]966

• With lc, σmd and σmv specified, construct the initial Pa
0.967

• With the σoir,d and σoir,v already specified, form the block diagonal matrix968

R = blkdiag





σo1,d 0 . . . . . . 0

0
. . . . . . 0

...
...

. . . σoir,d
. . .

...
... 0

. . . . . . 0
0 . . . . . . 0 σos,d



2

,



σo1,v 0 . . . . . . 0

0
. . . . . . 0

...
...

. . . σoir,v,
. . .

...
... 0

. . . . . . 0
0 . . . . . . 0 σos,v



2

.(3.7)969

3.2.3 Assimilation cycle970

In addition to your guess Pa
0, pick your wrong initial condition, xf0 . (Our good old Gaussian971

profile for the displacement, and zero for the velocity. Again, setting the amplitude of the972

Gaussian to 0 amounts to choosing a zero initial condition for the displacement.)973

While time has not reached its final value T , do the following974

1. given xai and Pa
i , use the model M to compute975

(a) the forecast state976

xfi+1 = Mxi (3.8)977

(b) the forecast error covariance978

Pf
i+1 = MPa

iM
T (3.9)979

2. If the observations yoi+1 exist, perform the analysis980

(a) compute the Kalman gain matrix981

Ki+1 = Pf
i+1H

T
(
HPf

i+1H
T + R

)−1
. (3.10)982

(b) compute983

xai+1 = Ki+1

(
yoi+1 −Hxfi+1

)
(3.11)984

(c) compute985

Pa
i+1 = (I−Ki+1H) Pf

i+1 (3.12)986

Again, the modest size of the problem conviently allows us to store the entire true and analysed987

trajectory, xti, and xai .988

The construction of the trajectory is done in practice by running the run KF lab3.m script.989
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3.2.4 A description of the tools at your disposal for this lab990

The commands are similar to the ones used in lab 2:991

• param lab3.m is the parameter file992

• create data lab3.m generates the true trajectory xti and the synthetic observations993

• init matrices lab3.m creates Pb, R and K994

• run KF lab3.m generates the predicted trajectory xai995

• doall lab3.m executes create data lab3.m, init matrices lab3.m, and run OI lab3.m996

in this order997

• compute chi2 disp.m computes the following quantities for the displacement field998

χ2dispi = (yoi −Hxi)TR−1(yoi −Hxi) ∀i ∈ {1, . . . , Nt} , (3.13)

χ2disp =
1
Nt

∑
i

χ2dispi. (3.14)

where we understand that the various vectors and matrices are restricted to their dis-999

placement component. In this formula, Nt is the number of time steps.1000

• compute chi2 velo.m does the same for the velocity field. Note that by summing the1001

two, you will get the total misfit to the data.1002

• plot traj disp plots the time space evolution of the displacement component of the1003

true trajectory, the predicted one, and the difference between the two. An example is1004

shown in Fig. 3.1.1005

• plot traj velo does the same for the velocity1006

• compute l2diff state computes, over the last time unit of the simulation (ie, one1007

travel time) the quantity1008 √∫ T

T−1
(xt − xa)T (xt − xa)dt, (3.15)1009

which is returned under the name l2diff. The script also returns l2diff d and1010

l2diff v, which are the displacement and velocity restrictions of the first one, nor-1011

malized by A0 and A0/(σ0 exp(1/2)), respectively.1012

• irec= something followed by plot traces will plot the traces recorded at receiver1013

irec (yo), and their prediction (Hxa). These traces can be useful in diagnosing a filter1014

divergence.1015

• plot variances.m is a new routine which plots the diagonal elements of Pa
i = E

(
εai ε

a
i
T
)

1016

for displacement and velocity as a function of time, normalised using their first value,1017

and using a logarithmic scale. The plots reflect how the pointwise errors vary as a1018

function of time . For instance, you can certainly guess by inspecting Fig. 3.1 where1019

the receivers are located.1020
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Figure 3.1: A screenshot showing the result of the command plot variances, after appli-
cation of the Kalman filter algorithm to correct a model trajectory.

3.3 Points to address1021

There is a lot of flexibility. First get used to running the filter and to diagnosing its behaviour1022

(using traces of records, variances, L2 quantities). Setting lc = 0, try again to find a situation1023

where filter divergence occurs. Still using lc = 0, try to find a situation which illustrates the1024

benefit of using the KF filter as opposed to the OI scheme (this illustration should not depend1025

on our exact knowledge of the true state we are seeking).1026

Notes after the fact: we focussed again on these issues1027

• Filter divergence1028

• The more data the better? Up to which point?1029

Cláudio Paulo found a nice set-up for which the Kalman filter clearly outperforms the OI1030

scheme1031

% PARAMETER FILE for lab21032

%1033

% True trajectory1034

% ---------------1035

duration=10; % duration of the simulation1036

% Initial condition: zero velocity, Gaussian profile for displacement1037

x0=0.7; % location of the Gaussian peak (between 0 and 1)1038

sigma0=0.02 ; % Gaussian standard dev1039
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amp0=0.01 ; % amplitude of the Gaussian1040

N=100; % number of segments dividing the interval (depends on sigma0 , cf. lab1)1041

%1042

% Observations1043

% ------------1044

xrecleft=0.1; % leftmost coordinate of receiver arrays1045

xrecright=0.3; % rightmost coordinate of receiver arrays1046

deltaxrec=0.1; % spacing between receivers1047

sigmao_disp=0.0004; % represents a fraction of amp0 (the maximum displacement)1048

sigmao_velo=0.04; % represents a fraction of the maximum velocity1049

uniform_array=true;% keep it true (always)1050

observ_disp= true; % logical (record disp or not?)1051

observ_velo= false;% logical (record velo or not?)1052

time0_obs = 0.; % t0 obs1053

%1054

% Model statistics1055

% -----------------1056

lcorr=0.01; % correlation length1057

sigmamd=0.5; % Standard deviation for displacement1058

sigmamv=0.5; % Standard deviation for velocity1059

%1060

% Forecast trajectory: initial condition for displacement1061

% --------------------------------------------------------1062

x0f=0.2; % location of the Gaussian peak (between 0 and 1)1063

sigma0f=0.04 ; % Gaussian standard dev1064

amp0f=0.01 ; % amplitude of the Gaussian1065
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Appendix A1165

Derivation of the discrete adjoint1166

equation1167

This derivation is rather standard, and can be found in review papers and textbooks (Tala-1168

grand, 1997; Bennett, 2002; Wunsch, 2006), as well as in the thesis of Canet (2009), in the1169

specific context of the geomagnetic secular variation. We start with the definition of the misfit1170

function (Eq. (4.1)), expressed directly as a function of the initial condition x01171

J (x0) =
1
2

{
n∑
i=0

[Hixi − yoi ]
T R−1

i [Hixi − yoi ] +
[
x0 − xb

]T
Pb−1

[
x0 − xb

]}
, (A.1)1172

in which xi =Mi,i−1 · · ·M1,0x0. Any infinitesimal change δx0 in the initial condition x0 will1173

result in a change in xi, δxi, which writes to first order1174

δxi = Mi,i−1 · · ·M1,0δx0, (A.2)1175

or, in a more compact form,1176

δxi =

j=1∏
j=i

Mj,j−1

 δx0, (A.3)1177

where Mj,j−1 is the tangent linear operator, the Jacobian matrix of local partial derivatives1178

of the components of xj with respect to those of xj−1. Introducing in a similar manner the1179

tangent linear approximation Hi of the observation operator Hi, we find that a change in the1180

initial condition δx0 results in a variation of the objective function δJ given by1181

δJ =
1
2

{
n∑
i=0

δxTi HT
i R−1

i [Hixi − yoi ] +
n∑
i=0

[Hixi − yoi ]
T R−1

i Hiδxi

}

+
1
2

{
δxT0 Pb−1

[
x0 − xb

]
+
[
x0 − xb

]T
Pb−1

δx0

}
. (A.4)

Because of the symmetry of both R and Pb, it is easy to show that1182

δxTi HT
i R−1

i [Hixi − yoi ] = [Hixi − yoi ]
T R−1

i Hiδxi (A.5)
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and that1183

δxT0 Pb−1
[
x0 − xb

]
=

[
x0 − xb

]T
Pb−1

δx0. (A.6)

Using these two equalities along with the compact notation introduced in Eq. (A.3) yields1184

δJ =


n∑
i=0

[Hixi − yoi ]
T R−1

i Hi

j=1∏
j=i

Mj,j−1δx0

+
[
x0 − xb

]T
Pb−1

δx0. (A.7)1185

Reminding ourselves that ∇x0J (a row vector) is defined by δJ = ∇x0J x0, we see that1186

∇x0J =


n∑
i=0

[Hixi − yoi ]
T R−1

i Hi

j=1∏
j=i

Mj,j−1

+
[
x0 − xb

]T
Pb−1

. (A.8)1187

A correction (update) of the initial condition will require to take the transpose of this row1188

vector1189

∇x0J T =


n∑
i=0

j=i∏
j=1

MT
j,j−1H

T
i R−1

i [Hixi − yoi ]

+ Pb−1
[
x0 − xb

]
. (A.9)1190

Let us rewrite this equation in the more inductive following form1191

∇x0J T = MT
0,1

{
MT

1,2

[· · · [MT
n−1,nH

T
nR−1

n [Hnxn − yon]
] · · ·+ HT

1 R−1
1 [H1x1 − yo1]

]
+ HT

0 R−1
0 [H0x0 − yo0]

}
+ Pb−1

[
x0 − xb

]
. (A.10)

If one introduces the auxiliary adjoint field ai, subject to the terminal condition an+1 = 0,1192

and whose backward time evolution is governed by1193

ai−1 = MT
i−1,iai+HT

i−1R
−1
i−1(Hi−1xi−1−yoi−1)+δi1Pb−1

(
xi−1 − xb

)
, n ≥ i ≥ 1,(A.11)1194

the inductive form (A.10) shows why the column vector sought simply writes1195

∇x0J T = a0. (A.12)1196

(δi1 = 1 if i = 1, 0 otherwise.)1197
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