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Maison des Géosciences, BP 53, 38041 Grenoble Cedex 9, FRANCE

e-mail: Alexandre.Fournier@ujf-grenoble.fr

Key words: Magnetohydrodynamics, Fourier–spectral element method, Dirichlet-to-
Neumann, Induction, Dynamo, Taylor–Couette flow

Abstract. We present a Fourier–spectral element approximation of electromagnetic in-
duction (and magnetohydrodynamics) in a domain bounded by a spherical interface. The
electromagnetic problem is cast in terms of electromagnetic potentials, the uniqueness of
which is enforced by the choice of Coulomb’s gauge. A PN − PN−2 approach ensures
the solenoidal character of the magnetic vector potential, and an analytical Dirichlet-to-
Neumann operator is constructed to solve implicitly for the exterior problem. The validity
and convergence of the method is illustrated by examples of increasing complexity: mag-
netic free decay, kinematic dynamo action, and magnetohydrodynamic Taylor–Couette
flow.

1 INTRODUCTION

In geophysics, recent years have seen the implementation of grid-based numerical meth-
ods to model convection/dynamo action in earth’s core1,2,3, or induction in earth’s crust
and mantle4. In the latter case, such an approach is imposed by the three-dimensional
heterogeneities of the medium. Regarding core dynamics, the motivation lies essentially
in the scalability of such local methods, which is supposedly better than the one of global
spectral methods (relying on spherical harmonics Ym

l ), and should therefore allow us to
reach more earth-like parameter regimes. Whereas this remains to be seen, such local
approaches face two difficulties with respect to Ym

l -based methods: the first one con-
cerns the imposition of the divergence-free constraint that applies to the magnetic field
B (or the magnetic vector potential A, if used in conjunction with Coulomb’s gauge);
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Figure 1: Notations. The computational domain Ω
(gray region) contains an electrically conducting fluid,
the motion of which can generate electric currents j. It
is surrounded by an infinite insulating domain Ω̄. These
two domains are separated by the surface Γ, which is as-
sumed to be spherical when the analytical Dirichlet to
Neumann operator is constructed in section 5.

the second stems from the fact that B is defined in R
3. Outside from the region(s) con-

taining its sources (in geophysics, from the top of earth’s core up to the ionosphere, say),
it must decay in a harmonic fashion. While this translates elegantly into a boundary
condition on the surface of the domain in Ym

l -based methods5, it is hard to implement
in local approaches. Several roads (of increasing complexity) can be followed: one can
use approximate boundary conditions3, or mesh a portion of the source-free region and
apply homogeneous Dirichlet boundary conditions at the outermost boundary of this new
domain1,2, or even resort to a boundary element method (BEM) to mimic the presence of
the insulating exterior domain6. In the context of a Fourier–spectral element discretiza-
tion of the induction problem in a domain bounded by a spherical surface Γ, we define
in this paper a Dirichlet to Neumann operator to apply on Γ that solves implicitly the
exterior problem. This approach is less general and elegant than a coupling with a BEM;
it is, however, rather straightforward to implement, especially when one wishes to come
up with an induction/MHD model starting from a Navier–Stokes solver. Besides, in the
framework of a high-order method, its computational cost is limited.

In this paper, emphasis is thus put on the Fourier-spectral element approximation of
electromagnetic induction, since the fluid solver we use was already described in a previous
paper7. Induction is formulated in terms of the electric potential and magnetic vector
potential. We recall governing equations, continuity and boundary conditions in section
2, followed by the weak form of this formalism in section 3. After a short description of
the Fourier-spectral element method in section 4, the Dirichlet to Neumann operator is
extensively described in section 5. The method is then illustrated in section 6 by various
numerical examples of increasing complexity (magnetic free decay, kinematic dynamo
action, and magnetohydrodynamic spherical Taylor–Couette flow).

2 GOVERNING EQUATIONS AND BOUNDARY/CONTINUITY CON-
DITIONS

2.1 The induction equation

An electrically conducting fluid is confined in a bounded domain Ω, surrounded by an
infinite insulating exterior domain Ω̄ (see Fig. 1). We assume that the fluid of interest has
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constant material properties (in particular, its mass density ρf and electrical conductivity
σ). In what follows, unless otherwise noted, the equations we write apply in Ω.

Induction (and MHD) problems can be cast in terms of the electric (scalar) and mag-
netic (vector) potentials V and A, respectively8,9. These potentials are related the mag-
netic and electric fields B and E by

E = −∇V − ∂tA, (1)

B = ∇ × A. (2)

As such, the potentials are not unique. Uniqueness is ensured by a gauge condition. We
choose Coulomb’s gauge8,9

∇ · A = 0. In the framework of the magnetohydrodynamic
approximation8,10, induction in Ω is governed by the following set of equations

∂tA = −∇V + η∇2A + u × (∇ × A) , (3)

∇ · A = 0, (4)

where η = 1/µ0σ is the magnetic diffusivity (µ0 is the permeability of vacuum). This
formulation involves fields whose spatial variations are smoother with respect to the prim-
itive variables B and E. The current density j can be retrieved from the knowledge of A
through the equality:

j = (1/µ0)∇ × ∇ × A = −(1/µ0)∇
2A. (5)

In Eqs. (3)-(4), the electric potential appears as the natural Lagrange multiplier associated
with Coulomb’s gauge constraint on the magnetic vector potential, and should be solved
for. This results in an important computational cost, that one would have to pay anyway
if solving directly for B (through the introduction of a Lagrange multiplier 1,11). Another
interesting feature of this approach, in connection with the exterior problem, is that the
normal derivative A is continuous across Γ (see §2.2).

2.2 Boundary and continuity conditions

2.2.1 General relationships

Let S denote a surface separating two media of different (and finite) electric conductiv-
ity σ− and σ+, and n̂ be the unit surface vector pointing from medium − to medium +,
say. We introduce the jump operator [ ] defined by [f ] = f+−f−. According to Maxwell’s
equations and Ohm’s law, the following jump conditions hold 12:

[n̂ × E] = 0, ε0 [n̂ · E] = χ, [B] = 0, [n̂ · j] = 0,

χ being the surface charge density over S. In terms of the potentials A and V , the
previous set of conditions translate into8

[V ] = 0, (6)

[A] = 0, (7)

[n̂ · ∇A] = 0, (8)
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which all apply to the specific case (of interest for us) of a conducting-insulating interface
(σ− = σ, σ+ = 0). Eq. (8) is particularly useful when deriving the weak formulation
associated with the induction problem cast in terms of potentials (see section 3).

2.2.2 Why one should impose n̂ · A = 0 on Γ

With the continuity conditions in mind, let us return to Coulomb’s gauge constraint.
Taking the divergence of Eq. (5) leads to

∇ · ∇2A = ∇2
∇ · A = 0. (9)

We need boundary conditions for the gauge to be effectively satisfied. Taking n̂· Eq. (5)
yields

−n̂ · ∇2A = µ0n̂ · j. (10)

Since the normal component of j is continuous across Γ, we get n̂ · ∇2A = 0. Now, let us
write n̂ · ∇2A as9

n̂ · ∇2A = ∇ · (n̂ × (∇ × A)) + ∂n∇ · A,

which implies
∇ · (n̂ × (∇ × A)) + ∂n∇ · A = 0. (11)

What follows is now a restriction to the case of a spherical Γ. With (r, θ, φ) the standard
spherical coordinates and (êr, êθ, êφ) the associated basis, one has

n̂ × (∇ × A) =
1

r
{(∂θAr − ∂r(rAθ))êθ + ((1/ sin θ)∂φAr − ∂r(rAφ))êφ} .

Let us impose the extra condition

Ar = n̂ · A = 0 on Γ. (12)

∇ · {n̂ × ∇ × A} now writes

∇ · {n̂ × ∇ × A} =
1

r sin θ
(∂θ sin θ(−1/r∂rrAθ) + ∂φ(−1/r∂rrAφ)) (13)

The continuity condition (8) implies that both 1/r∂rrAθ and 1/r∂rrAφ are continuous
across Γ. If the exterior domain is an insulator, A is toroidal (see §5.1), and described by
a scalar field p such that:

A = ∇ × (pr) =
1

sin θ
∂φpêθ − ∂θpêφ. (14)

It is then straightforward to show that the right-hand side of Eq. (13) vanishes. To
summarize, if one imposes the boundary condition (12), then ∇ · A is controlled by

∇2
∇ · A = 0 in Ω, (15)

∂n∇ · A = 0 on Γ, (16)

which means that ∇ · A is constant. By imposing a zero normal component of A on Γ,
this constant can only be 0.
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2.2.3 Boundary condition for the electric potential V

Setting n̂ ·A = 0 on Γ imposes, in the case of an insulating exterior domain, the value
of the normal derivative of the scalar potential V . Since n̂ · j = 0 on Γ, we have

n̂ · σ (−∂tA − ∇V + u × (∇ × A)) = 0 = −∂t(n̂ · A) − ∂nV + n̂ · (u × (∇ × A)). (17)

The first term vanishes because of Eq. (12), which yields

∂nV = n̂ · (u × (∇ × A)) on Γ. (18)

Now, if homogeneous boundary conditions are prescribed for the velocity field u on Γ
(or if there is no flow at all), the electric potential V satisfies a homogeneous Neumann
boundary condition:

∂nV = 0 on Γ. (19)

3 WEAK FORM OF THE V − A FORMALISM

The similarity of Eqs. (3)–(4) with the Navier–Stokes equations controlling the dy-
namics of an incompressible fluid suggests to introduce the following functional spaces:

L2 (Ω) =

{

w : Ω → R,

√

∫

Ω

w2dΩ < +∞

}

,

and
H1 (Ω) =

{

wj ∈ L2 (Ω); ∂iwj ∈ L2 (Ω), i, j = 1, 2, 3, n̂ · w = 0 on Γ
}

.

With these spaces at hand, the weak form of the V −A formalism writes: For all (w, φ) ∈
H1 (Ω) × L2 (Ω) , find (A, V ) ∈ H1 (Ω) × L2 (Ω) such that

(∂tA,w) + (∇V,w) + η (∇A,∇w) − η (n̂ · ∇A,w)Γ − (u × (∇ × A) ,w) = 0,(20)

(∇ · A, φ) = 0,(21)

in which (·, ·) denotes the standard scalar product over the domain Ω, and (·, ·)Γ its surface
restriction. Integrating by parts the integral involving the electric potential in Eq. (20)
leads to

∫

Ω

∇V · wdΩ =

∫

Γ

n̂ · wV dΓ −

∫

Ω

V∇ · wdΩ. (22)

The test (and shape) functions satisfy the boundary condition (12). We therefore take
the first integral on the right hand-side to be zero.

At this stage, the weak form now reads: For all (w, φ), find (A, V ) such that

(∂tA,w) − (V,∇ · w) + η (∇A,∇w) − η (K(A),w)Γ − (u × (∇ × A) ,w) = 0,(23)

(∇ · A, φ) = 0.(24)

in which K denote the Dirichlet to Neumann operator that returns the value of n̂ · ∇A
on Γ, given A on Γ. In section 5, we shall provide an explicit formulation for K.
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Figure 2: Example of a spectral element mesh
used to discretize a semi-meridional cut of the
northern hemisphere. Here the polynomial order
is set to 11. (s, φ, z) are the cylindrical coordi-
nates: cylindrical radius, longitude, and height.
Note that a different quadrature is used in the s-
direction for those elements sharing an edge with
the axis of symmetry.

4 DISCRETIZATION OF THE INDUCTION PROBLEM

The weak formulation (23)–(24) is discretized by means of a Fourier–spectral element
method (FSEM) in space, and a second-order semi-implicit scheme in time 7. Field vari-
ables are expanded in Fourier series in the periodic direction (the longitude φ), which
gives rise to a collection of problems to solve in the semi-meridional plane. These prob-
lems are tackled by means of a spectral element method, which is suited to handle the
axial singularities that arise when writing the equations in cylindrical coordinates (s, φ, z)
by resorting to a Gauss–Lobatto–Jacobi (0,1) (GLJ01) quadrature in the direction orthog-
onal to the axis of symmetry for those elements sharing an edge with that axis. Otherwise,
a Gauss–Lobatto–Legendre (GLL) quadrature is used. Spatial discretization is thus char-
acterized by the order of the quadrature (N). An example of a spherical mesh is shown in
Fig. 2, for N = 11. For a more detailed description of the method, in particular regarding
the removal of axial singularities, the reader is referred to Fournier et al. 7.

A PN −PN−2 approach is employed13 to discretize A and V , in order to eliminate spu-
rious electric potential modes. The temporal splitting of the resulting coupled problem
occurs at the algebraic level14, resulting in an elliptic problem to solve at each time step
to compute the potential correction that will indeed ensure the divergence-free property
of A. No boundary conditions are prescribed for the electric potential, and the bound-
ary condition (12) is built in the discrete operators that act upon the vector potential.
Diffusive terms are treated fully implicitly, while nonlinear terms are treated explicitly.

The induction problem is therefore very similar to a standard fluid flow problem, with
the exception of the treatment of the exterior harmonic problem, which requires to con-
struct a Dirichlet to Neumann (DtN) operator on Γ. The implementation of the DtN
operator K is detailed in the next section.

5 A DIRICHLET TO NEUMANN OPERATOR FOR THE EXTERIOR
PROBLEM

In what follows, a denotes the radius of Γ.

6



Alexandre Fournier

5.1 Form of the vector potential in the exterior domain Ω̄

We first recall the analytical form of the solution to the exterior problem, in the source-
free region Ω̄. In Ω̄, the magnetic field B is purely poloidal8

B = ∇ × ∇ × rp,

p being the poloidal scalar; it follows that an appropriate expression for A is

A = ∇ × rp+ ∇ψ,

in which ψ is a scalar function. The further requirement that A must follow Coulomb’s
gauge in Ω̄ implies that ψ satisfies Laplace’s equation ∇2ψ = 0. This, together with the
condition that A must tend to zero getting away from the sources, makes ψ a constant.
Therefore, A can be written as A = ∇ × (rp), the spherical components of which are
then

A =
1

sin θ
∂φpêθ − ∂θpêφ. (25)

In order for the electrical current density j to be zero (as it should be), ∇×∇×A must
vanish everywhere in Ω̄.

j = ∇ × ∇ × A =
1

sin θ
∂φ

(

L2p

r2
−

1

r
∂2

rrp

)

êθ + ∂θ

(

1

r
∂2

rrp−
L2p

r2

)

êφ, (26)

in which L2 is the Beltrami operator L2 = (−1/ sin θ)
(

∂θ sin θ∂θ + (1/ sin θ)∂2
φ

)

. Noticing
that the scalar Laplacian writes 1/r∂2

rr−L2T/r2 in spherical coordinates, we can enforce
the absence of electrical currents by choosing p solution to Laplace’s equation ∇2p =
0 in Ω̄. Introducing the basis of spherical harmonics Ym

l ( Ym
l (θ, φ) = P̄m

l (cos θ) exp imφ,
with P̄m

l the normalized associated Legendre function of degree l and order m 15), one can
then expand p as

p(r ≥ a, θ, φ, t) =
l=∞
∑

l=1

m=+l
∑

m=−l

pm
l (t)

(a

r

)l+1

Ym
l (θ, φ). (27)

The coefficients pm
l can be determined through the knowledge of A on the boundary Γ

(at r = a).

5.2 Implementation of the DtN operator

The implementation of the DtN operator proceeds as follows: 1) Given A on Γ (more
precisely its tangential component, since its normal component is zero by construction),
compute the pm

l ’s. 2) Use Eq. (27) to compute the normal (=radial) derivative of the
tangential components of A.
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5.2.1 Calculation of the pm
l ’s

From Eqs. (25) and (27) (and forgetting about time dependence without loss of gen-
erality), we deduce

Aθ(r = a, θ, φ) =
1

sin θ
∂φ

l=∞
∑

l=1

m=+l
∑

m=−l

pm
l Y

m
l (θ, φ), (28)

Aφ(r = a, θ, φ) = −∂θ

l=∞
∑

l=1

m=+l
∑

m=−l

pm
l Y

m
l (θ, φ). (29)

In the FSEM approximation of the interior problem, A is Fourier-decomposed in φ

A =
m=+∞
∑

m=−∞

Am exp imφ, (30)

and we shall now distinguish between axisymmetric (m = 0) and non-axisymmetric (m 6=
0) modes.

5.2.2 Axisymmetric mode

By virtue of Eq. (28), we notice that A0
θ(r = a, θ) = 0. We also have

A0
φ = −∂θ

l=∞
∑

l=1

p0
l P̄l(cos θ). (31)

Since ∂θP̄l = −
√

l(l + 1)P̄ 1
l , we get the following definition for A0

φ:

A0
φ =

l=∞
∑

l=1

√

l(l + 1)p0
lP

1
l (cos θ). (32)

If 〈·, ·〉 denotes the scalar product of two functions over a meridian

〈f, g〉 =

∫ θ=π

θ=0

f(θ)g(θ) sin θdθ, (33)

we can write

∀l ∈ {1, . . . , lmax} , p0
l =

1
√

l(l + 1)
〈A0

φ, P̄
1
l 〉. (34)

Here, lmax denotes the truncation of the spherical harmonic expansion.

8



Alexandre Fournier

5.2.3 Non-axisymmetric modes

Since the colatitudinal component writes

Am
θ =

im

sin θ

lmax
∑

l=|m|

pm
l P̄

m
l (cos θ), (35)

it is straightforward to get

∀m 6= 0, pm
l =

−i

m
〈sin θAm

θ , P̄
m
l 〉. (36)

5.3 Normal derivative of the magnetic vector potential

With the pm
l s at hand, the normal derivative of p in Ω̄ can be computed using Eq. (27):

∂rp(r, θ, φ) =

lmax
∑

l=1

m=l
∑

m=−l

−
l + 1

a

(a

r

)l+2

pm
l Y

m
l (θ, φ). (37)

In particular, if r = a,

∂rp(a, θ, φ) =
lmax
∑

l=1

m=l
∑

m=−l

−
l + 1

a
pm

l Y
m
l (θ, φ). (38)

This allows us to write (at last) the normal derivative of A on Γ :

∂rAθ(r = a, θ, φ) = −
1

sin θ
∂φ

lmax
∑

l=1

l + 1

a

m=l
∑

m=−l

pm
l Y

m
l (θ, φ), (39)

∂rAφ(r = a, θ, φ) = ∂θ

lmax
∑

l=1

l + 1

a

m=l
∑

m=−l

pm
l Y

m
l (θ, φ). (40)

Thinking again in terms of Fourier modes for the magnetic vector potential, we have

∂rA
0
θ = 0, (41)

∂rA
m
θ = −

im

sin θ

lmax
∑

l=|m|

l + 1

a
pm

l P̄
m
l (cos θ), for m 6= 0, (42)

∂rA
m
φ =

lmax
∑

l=|m|

l + 1

a
pm

l ∂θP̄
m
l (cos θ),∀m. (43)

Care is needed when evaluating the second of these sums when θ = 0 or π. If m = ±1,
an explicit expression of the P±1

l is necessary in order to remove the apparent singularity.
Otherwise, the value of ∂rA

m
θ can simply be set to 0.
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5.4 Computational cost

The evaluation of the normal derivative of A consists in a round-trip in the spectral
world (in colatitude) over Γ. Various quantities involving normalized associated Legendre
functions are needed to evaluate the line integrals and subsequent expansions described
above – see Eqs. (34), (36), (42), and (43). They are computed initially and stored
once and for all at the beginning of a simulation. More precisely, they are evaluated at
each one the GLL (or GLJ01) points that belong to Γ. Let us assume that there are NΓ

such collocation points. The number of operations needed to apply the DtN operator is
O(NΓlmaxmmax). This has to be compared with the cost of applying the stiffness matrix,
which is O(neN

3mmax)7, where ne is the number of spectral elements and mmax the
Fourier truncation in longitude. If ne,Γ denotes the number of spectral elements sharing
and edge with Γ, NΓ is approximately ne,ΓN , and the ratio r of the extra workload due
to the DtN operator to the bulk stiffness matrix work is

r ≈
ne,Γlmax

neN2
. (44)

Considering the mesh shown in Fig. 2, we find that r ∝ 2.10−3lmax.

6 NUMERICAL EXAMPLES

6.1 Free decay of fields inside a sphere

We first focus on the free decay of an initially imposed magnetic field, which is governed
by a three-dimensional diffusion equation. Our purpose here is to validate the Fourier–
spectral element implementation of the DtN operator introduced in section 5, in a simple,
linear context, for which an analytical solution exists.

Choosing the radius a of the sphere as the lengthscale and the magnetic diffusion time
a2/η as the timescale, this problem writes: Given A0(r) = A(r, t = 0) and V0(r) =
V (r, t = 0), find A(r, t) and V (r, t) such that

∂tA = ∇2A − ∇V in Ω, (45)

∇2A = 0 in Ω̄, (46)

∇ · A = 0 in R
3. (47)

Taking the divergence of Eq. (45), and using Coulomb’s gauge (47) leads to

∇2V = 0 in Ω, (48)

which, together with the boundary condition (19), ensures that V is constant in Ω.

6.1.1 Analytical solution

This classical problem can be solved by decomposing the magnetic field into is poloidal
(p) and toroidal (q) components – thereby enforcing the divergence free constraint 10.

B(r, t) = ∇ × ∇ × rp(r, t) + ∇ × rq(r, t). (49)

10
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The poloidal component of the magnetic field is the only one that survives in an insulating
region, and is able to exercise the DtN operator. In the remainder of this example, we
thus set q = 0 and concentrate on the poloidal case. The scalar field p satisfies a diffusion
equation in Ω:

∂tp = ∇2p, (50)

subject to the boundary condition10

[p] = [∂rp] = 0 on Γ. (51)

To find p, we expand it in spherical harmonics Ym
l

p(r, θ, φ, t) =
∞

∑

l=1

l
∑

m=−l

pm
l (r, t)Ym

l (θ, φ). (52)

Each degree l and order m is then associated with a one-dimensional radial problem of
the form

[

∂2
r +

2

r
∂r −

l(l + 1)

r2

]

pm
l = ∂tp

m
l , (53)

subject to the boundary condition

∂rp
m
l = −(l + 1)pm

l on Γ, (54)

which ensures that p is harmonic in Ω̄10. The radial dependence is expressed in terms of
spherical Bessel functions jl and we can write

pm
l (r, t) =

∞
∑

n=1

cml,njl (zl−1,nr) exp(−t/z2
l−1,n). (55)

In this expression, zl−1,n is the n-th zero of jl−1. The coefficients cml,n can be adjusted so
that at t = 0 the function (55) takes the required initial value pm

l (r, 0).

6.1.2 Numerical results

Numerical tests are then defined as follows: pick a (l,m, n) triplet to define the initial
poloidal field p0 as an eigenmode of the diffusion problem, compute the associated initial
magnetic vector potential A0 = ∇ × rp0, use this starting field to timestep the problem
following the numerical scheme mentioned in §4, measure numerically the associated decay
time τh, and compare it to the theoretical eigenvalue τa = z2

l−1,n. We show results obtained
in three instances:

• axial dipole : (l = 1,m = 0, n = 1), hereafter referred to as AD,

• equatorial dipole (l = 1,m = 1, n = 1), hereafter referred to as ED,

11
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Figure 3: (a): the spectral element mesh used
to compute the free magnetic decay times in
a sphere, shown here for polynomial order
N = 7. (b): Relative error in free magnetic
decay time as a function of timestep size, for
the axial and equatorial dipole AD and ED,
respectively, and for polynomial order 4 and
7. The dashed line is indicative of a second
order temporal convergence. (c): same as (b)
for the equatorial quadrupole EQ.

• equatorial quadrupole (l = 2,m = 2, n = 1), hereafter referred to as EQ.

The Bessel functions involved in these cases are15

j1(x) =
sinx

x2
−

cos x

x
(AD/ED), (56)

j2(x) =

(

3

x3
−

1

x

)

sinx−
3

x2
cos x (EQ), (57)

and the zeroes needed are z0,1 = π (AD/ED) and z1,1 = 4.493409 (EQ) – the latter is
numerically determined to machine precision using standard root-finding. Having the
azimuthal dependence ranging from m = 0 to 2 enables to verify the implementation of
the three different types of essential axial conditions to impose on A within the FSEM
framework7; more importantly, this also allows us to validate the implementation of the
DtN operator, which differs in the axisymmetric (m = 0) and non-axisymmetric (m 6= 0)
cases (§5).

The spectral element grid used to mesh the meridional section of the sphere is repre-
sented in Fig. 3a. It consists of ne = 10 spectral elements of polynomial order N (N = 7
in Fig. 3a). The truncation level lmax is set to 4, and the timestep ∆t spans 3 orders of
magnitude, from 10−2 down to 10−5, to ensure that there exists a range over which the
spatial error dominates, in case spatial convergence is not reached. The latter is studied
by setting N to either 4 or 7.

Since they correspond to the same physical situation, results for AD and ED are pre-
sented jointly in Fig. 3b, where the relative difference |τh − τa|/τa is shown as a function
of the timestep size ∆t, on a log-log plot. Results obtained for AD and ED are almost
indistinguishable, especially for large timesteps, for which the temporal error dominates.
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Decreasing the timestep decreases the error, which becomes eventually dominated by its
spatial component in the N = 4 case, as the curve flattens for ∆t = 10−5. For N = 7, the
error keeps on decreasing, which shows that spatial convergence is conclusively reached.
Moreover, the slope obtained (−2) confirms the overall order 2 accuracy of the time
marching strategy.

Results for the equatorial quadrupole EQ exhibit the same behavior (see Fig. 3c).
The agreement between the analytical and numerical solution to this diffusion problem
indicates that the DtN operator can be successfully mimic the presence of Ω̄. Note that
to obtain this agreement, it is crucial for the spectral element mesh to describe accurately
the spherical interface. We do so by resorting to an analytical mapping between the
parent element and any curved element touching the interface16.

6.2 Kinematic dynamo action: The Dudley–James s2t2 model

In their comprehensive paper on spherical kinematic dynamos driven by stationary
flows, Dudley & James17 studied in particular the possibility of dynamo action sustained
by the following flow

u = U
(

∇ × t02êr + ε∇ × ∇ × s0
2êr

)

, (58)

in which U is the velocity scale, t02 and s0
2 are the toroidal and poloidal scalars, respectively.

Here, they are equal, and write

s0
2(r, θ, φ) = t02(r, θ, φ) = r2 sin(πr)P̄ 0

2 (cos θ). (59)

The flow therefore consists of 2 counter-rotating axisymmetric rolls (its poloidal compo-
nent ψm) carried eastward (westward) in the upper (lower) hemisphere by the zonal wind
uφ (its toroidal component) – see Fig. 4. The relative intensity of the rolls with respect to
the zonal wind is controlled by the value of ε. Using the same scaling as in the previous
section, we find that the dimensionless induction equation writes:

∂tA = −∇V +Rmu × (∇ × A) + ∇2A, (60)

in which Rm is the magnetic Reynolds number Rm = Ua/η. Dudley & James 17 proved
numerically the existence of growing magnetic fields sustained by this flow for ε = 0.14
and Rm & 54.

Taking the same value for ε, we define the initial magnetic vector potential A0 as the
equatorial dipole seen in §6.1, and monitor the evolution of the induced field to estimate
its growth (or decay) rate. For any Rm, after a transient that lasts for a fraction of a
magnetic diffusion time, the most unstable (or least stable) induced field mode is the
only one remaining, and its evolution obeys an increasing (or decreasing) exponential
law. Fig. 4 (right) shows the growth rate versus Rm, for 0 ≤ Rm ≤ 100. For Rm = 0
(free decay), we retrieve the −π2 seen in §6.1. Apart from a small (initial) decrease,
we observe a increase of the growth rate with Rm. It eventually becomes positive for
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Figure 4: Left: The s2t2 flow of Dudley & James17. The zonal wind is denoted by uφ and is equatorially-
antisymmetric; ψm is the meridional stream function, consisting of 2 counter-rotating rolls. The relative
amplitude of these two flow components is measured by a dimensionless parameter ε. Right: numerical
estimate of the growth rate as a function of the magnetic Reynolds number Rm, for ε = 0.14. The growth
rate is positive for Rm & 53.

Rm & 53, in agreement with the estimate of Dudley & James17. Using the same mesh as
in the free decay case, we find very little sensitivity of the value of the critical magnetic
Reynolds number to the spatial resolution (polynomial order N , truncation level lmax

for the DtN operator), provided that one sets N > 7 and lmax > 3. The accuracy is
essentially determined by the timestep size ∆t, as in the purely diffusive case. With
respect to this problem, the novelty here is due to the presence of the electromotive force
in the induction equation, which acts potentially as a source of numerical divergence for
A, even if the initial A is divergence-free. In our approximation, the level of ∇ · A is
controlled by the convergence tolerance level δ that one sets when inverting iteratively
the elliptic operator acting on the increment of the electric potential (see Fournier et al. 7

for a detailed description of this procedure in the Navier–Stokes case). To illustrate this
idea, Fig. 5 (left) shows the timeseries of the quantity

max |∇ · A|/max
i=s,φ,z

|Ai|

through one magnetic diffusion time, for Rm = 60, δ = 10−6, 10−8, and 10−10. The
divergence level (as measured by this quantity) appears to be permanently under control
as time goes by. Larger values of δ produce the same (scaled) kind of timeseries, but 10−6-
10−7 is the upper bound to choose if one wants to determine the appropriate growth rate.
For completeness, Fig. 5 (right) shows the normal component of the magnetic field n̂ ·B
of the eigenmode on Γ. The initial equatorial dipole has been sheared by the zonal wind
uφ, and the meridional circulation has generated degree 3 flux patches in the northern
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Figure 5: Left: Timeseries of the divergence level, as measured by max |∇ · A|/maxi=s,φ,z |Ai|, for dif-
ferent convergence tolerance level δ in the electric potential solves. Right: the normal component of the
magnetic field n̂ ·B on Γ. Scale is arbitrary (kinematic dynamo action); red (resp. blue) indicates positive
(resp. negative) values.

ω + ∆ω

ω

b

a

Γ

Figure 6: Spherical Taylor–Couette flow set-up. ω and ω + ∆ω are the
rotation rates externally imposed to the outer and inner spheres, respec-
tively. The radius ratio γ is defined by γ = b/a.

and southern hemispheres.

6.3 MHD spherical Taylor–Couette flow

Mechanically-driven liquid metal flows have recently received considerable attention,
since they can possibly lead to a self-sustained dynamo regime. This has already been
shown experimentally in highly constrained geometries18,19. Spherical Taylor–Couette
flow is less constrained, and is directly relevant (geometrically speaking) to dynamo action
in planetary cores20(even though dynamo flows in planetary cores are primarily fed by
thermo-chemical convection, the vigor of which is hard to reproduce in the laboratory).
In Grenoble, the so-called Derviche Tourneur Sodium (DTS) experiment has been built 21:
Sodium is confined between two differentially-rotating spheres, and is permeated by an
imposed dipolar magnetic field B0 (see Nataf et al.21 for details). This experiments aims
at studying the magnetostrophic equilibrium (between the Lorentz and Coriolis forces)
and the feasibility (and relevance) of a larger experiment (able to reach higher Rms),
that could potentially give rise to a dynamo. Fig. 6 introduces the different notations,
and table 1 summarizes the characteristic scales21. In non-dimensional form, the set of
equations which govern this problem writes, in the frame of reference rotating with the
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quantity scale symbol
velocity b∆ω U
length a L
time γ∆ω−1 with γ = b/a
magnetic field ‖B0‖ at the equator B

(at the outer sphere)
magnetic vector potential B/L
electric potential B/T
pressure LUω

Table 1: Scales chosen for the spherical Taylor–Couette problem. The last column on the right indicates
the symbols appearing in the definitions of the non-dimensional numbers.

outer sphere,

Ro∂tu +Ro(u · ∇u) + 2êz × u = −∇P + E∇2u +
EHa2

Rm
(∇ × B) × B, (61)

∇ · u = 0, (62)

∂tA = −∇V +
1

Rm
∇2A + u × B, (63)

∇ · A = 0, (64)

(B = ∇ × A) (65)

where

Ro =
U

Lω
, E =

ν

ωL2
, Ha =

BL
√

µ0ρfνη

are the Rossby, Ekman, and Hartmann numbers, respectively -the definition of Rm has
not changed. The kinematic viscosity of the fluid is denoted by ν (all other parameters
have appeared before). The ratio of ν to η is the magnetic Prandtl number Pm. For
liquid metals, Pm is very small ( Pm . 10−5).

The numerical modeling of such flow has received considerable attention over the past
few years22,23,24; in particular, it has been shown that under certain circumstances, the
topology of the induced currents could lead (via the Lorentz force) to fluid regions having
an angular velocity larger the one of the inner sphere (the so-called super-rotation) 23,24.

Here we present and discuss briefly preliminary results obtained for this problem, re-
lying on previous studies to assess their validity (in a qualitative sense). These results
are obtained for a large value of Pm(= 1), a mild forcing (Rm = 1), and a radius ratio
γ = 1/3. The fluid is initially at rest, with both spheres co-rotating at a rate ω ; at t = 0
the inner sphere is impulsively set to rotate at ω+∆ω, and our MHD code is timestepped
forward in time. The fluid equations are solved in the region comprised between the two
spheres, whereas the magnetic equations are solved inside the fluid region and the inner
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Ha = 10, E = 1 Ha = 10, E = 10−2 Ha = 10, E = 10−4

Figure 7: MHD spherical Taylor–Couette flow: maps of the normalized angular velocity uφ/s∆ω in the
semi-meridional plane. The strength of the imposed magnetic field is constant (Ha = 10), as is the
level of differential rotation (Rm = 1). The background rotation rate increases from left to right by four
orders of magnitude (E = 1 down to E = 10−4). Contours are separated by 1/10, and red indicates
super-rotation (uφ/s∆ω > 1).

sphere. The inner sphere is assumed for simplicity to have the same electrical conductivity
as the surrounding fluid. Induced currents can flow inside the sphere, leading to an effi-
cient magnetic coupling between the sphere and the liquid metal in its vicinity 23. On the
outer boundary, the DtN operator is used to mimic the decay of the induced field outside
the computational domain. At this moderate forcing, we always find steady, axisymmet-
ric (m = 0) solutions. We impose the strength of the imposed magnetic field (setting
Ha = 10), and study the effect of the background rotation rate ω by varying the Ekman
number. In Fig. 7, the normalized angular velocity uφ/s∆ω is represented in the northern
hemisphere (the solution are equatorially symmetric as well), for E = 1, 10−2, and 10−4

(from left to right). The imposed field is strong enough to allow for super-rotation (re-
gions of super-rotation are shown in red). For E = 1 and 10−2 the super-rotating region
follows the geometry of the imposed field. For E = 10−4, rapid rotation tends to make the
flow invariant along the axis of rotation, following the Taylor–Proudman theorem. This
is particularly true in those regions near the outer sphere where the imposed field (which
decreases like 1/r3) is weak. Sufficiently close to the inner sphere, the field is strong
enough to overcome this taylorisation, and a tiny region of super-rotation still exists. As
can be seen from the momentum equation (61), the pertinent number to quantify the
taylorisation of this MHD flow is the Elsasser number Λ = EHa2/Rm = B2/µ0LωU . As
Ha is defined by the value of ‖B0‖ on the outer sphere Γ, Λ > 1 implies that magnetic
effects dominate throughout Ω. This is the case for E = 1 (Λ = 102) and E = 10−2

(Λ = 1). For Λ < 1, the outermost regions of the fluid are dominated by the effects of
rotation, as is the case for E = 10−4 (Λ = 10−2).

Albeit encouraging, these preliminary results correspond to parameters far away from
the experimental ones21. Before pushing them into unknown territories, a benchmark
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Figure 8: Sketch illustrating the possible extension of the approach detailed in this paper to elliptical
(left) and trapezoidal (right) geometries.

with other, Ym
l -based, codes23,25,26 needs to be performed. Such a benchmark is currently

being set up27, and will allow us to get a quantitative feeling of the accuracy and relevance
of our approach.

7 CONCLUSION

In the context of the numerical approximation of electromagnetic induction or magne-
tohydrodynamics inside a bounded domain Ω, we have presented a solve strategy relying
on a (V,A) potential formulation, discretized with a Fourier–spectral element method
(FSEM). It includes a Dirichlet to Neumann operator that corrects the boundary values
of A to account for its harmonic decay in the exterior domain Ω̄. The cost of this op-
erator is reasonable for a high-order method such as the FSEM. This approach could be
extended to a non-spherical Ω, provided that one meshes a buffer region between Ω and
an imaginary spherical interface Γ that contains Ω (see Fig. 8). Magnetic diffusion should
be solved within this buffer region, and the DtN operator used to correct for the value of
the diffusing field on Γ.

Even if further tests are needed to assess the efficiency and accuracy of this method,
preliminary tests show good agreement with reference solutions and suggest that this ap-
proach could provide a good compromise between local (grid-based) and global (spectral)
numerical models of planetary core dynamics.
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