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S U M M A R Y
We develop a spectral-element method for computing the full 3-D moment-tensor and point-
force response of a spherically symmetric earth model in a 2-D semi-circular computational
domain. The full elastodynamic response to a six-component moment tensor at an earthquake
hypocentre and a three-component point force at a seismic station can be determined by solving
six independent 2-D problems, three for a monopole source, two for a dipole source, and one for
a quadrupole source. This divide-and-conquer 3-D to 2-D reduction strategy provides a basis
for the efficient computation of exact Fréchet sensitivity kernels in a spherically symmetric
earth, with all wavefield features accounted for. To focus on the novel inclusion of the full
source in a cylindrical coordinate system, we describe the 2-D weak formulation of the set of
elastodynamic equations, its discretization using spectral elements, and the associated axial
boundary conditions and source representations for each of the excitation types in the case of a
homogeneous, solid elastic sphere. The method is numerically validated against both analytical
solutions and normal-mode summation.

Key words: elastic-wave theory, finite-element methods, global seismology, numerical tech-
niques, seismic-wave propagation, synthetic seismograms.

1 I N T RO D U C T I O N

The sensitivity of seismic waves to 3-D earth structure is becoming increasingly well understood and important in the age of high-quality digital
broadband seismic data, improved path coverage, and computational advances in both hardware and software. Our aim is to construct full
waveform sensitivity kernels in the first-order Born approximation as suggested in the preceding paper (Nissen-Meyer et al. 2007), allowing
for diffracted-phase traveltime inversions to better sample regions like D′′. To do this, one needs to know the velocity and strain responses to
all six source moment-tensor components and three station single-force polarizations in a spherically symmetric reference model throughout
space and time, while reaching wavelengths that correspond to the structures of interest. Further constraints imposed on the calculation of
these responses are the ease of parallelization to reach sufficient frequencies on conventional clusters and high accuracy for the entire wavefield
at any spatial and temporal distance from the source.

The problem of generating spherical-earth synthetics has been attacked from many different angles. Spherical harmonics are utilized
for normal-mode summation (Dahlen & Tromp 1998; Lognonné & Romanowicz 1990) or numerical computation of the Green function in
the frequency domain (GEMINI, Friederich & Dalkolmo 1995). Both approaches account for the moment tensor and complete waveforms,
however, mode summation is computationally problematic when calculating complete, high-frequency seismograms (e.g. Geller & Ohminato
1994). GEMINI overcomes the problem of intense summation by numerically integrating the elastodynamic system of ordinary differential
equations in the frequency domain. The computational effort here is proportional to the length and number of seismograms, which for our
postulated storage of long time series at all spatial points is again a formidable challenge. A technique based on weighted residuals is the
direct solution method or DSM (Geller & Ohminato 1994; Cummins et al. 1994a,b), a Galerkin formulation expanding the solution to the
frequency-domain elastodynamic weak form in terms of trial functions, which has recently been extended to transversely isotropic media up to
frequencies of 2 Hz (Kawai et al. 2006). This method is highly efficient in computing single, complete seismograms at a range of frequencies,
but the cost mainly depends on the number of frequencies and trial functions, number and length of seismograms due to the inverse Fourier
transform performed to obtain time-series. DSM computation times seem intractable for our purposes of storing the entire wavefield since the
collection of Green tensors appropriate for inversions requires many long time-series sampling a large number of frequencies. Furthermore, for
all of the above methods, current implementations do not simultaneously calculate the velocity field and strain tensor (the DSM uses piecewise
radial splines for displacements), which may be a major challenge since both the spatial and temporal derivatives can cause significant extra
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CPU time and degraded accuracy. Additionally, the global expansion, for example, in terms of spherical harmonics, severely limits distributed
computing in a parallel sense, which is problematic since the storage of all waveforms exceeds any reasonable hardware device capabilities
on a single machine. While theoretically expedient for our purposes, most of the actual implementations of the methods outlined above are
either not stable or seem computationally unfeasible for storing global waveforms up to 1 Hz signals. Hence, our modus operandi will be a
direct, time-domain, and easily parallelizable numerical representation of the elastic wave equation, evaluating the velocity and strain tensor
as natural field variables at grid points throughout the domain.

A plethora of such grid-based numerical approaches to elastodynamics for 2-D and 3-D has emerged in the last few decades, ranging
from purely local operators to global functional representation. Axisymmetric finite difference (FD) methods (Chaljub & Tarantola 1997;
Igel & Weber 1995, 1996; Thomas et al. 2000; Toyokuni et al. 2005) make use of the lateral model invariance and solve the 3-D wave
propagation problem on a 2-D mesh. Being based on the strong form of the equations of motion, these algorithms are unfortunately not
capable of including the full moment tensor and all three single-force sources. In the typical velocity–stress formulation, it is also not
possible to simultaneously compute the displacement, velocity and strain tensor without introducing additional expensive and accuracy-
degrading derivative operations. Furthermore, FD methods generally suffer from large numerical dispersion, especially for surface waves
due to approximate free-surface boundary conditions and diffracted waves near internal discontinuities due to the staggered grid (Robertsson
1996). This is a crucial drawback inasmuch as one of our primary interests is the computation of sensitivity kernels around the D′′ region. The
accuracy of such local FD operators has been subject to improvements which lead to optimal operators minimizing the joint error in spatial
and temporal discretization (Geller & Takeuchi 1998; Takeuchi et al. 2000), but efficient meshing of the globe remains an unsurmounted
task. Pseudospectral solutions for global, axisymmetric domains (e.g. Furumura et al. 1998), while known to be more accurate in general,
are inferior to FD when sharp discontinuities are included and face issues of parallelization due to the global memory access required by the
Fourier transform (Mizutani et al. 2000). Classical finite elements (e.g. Bao et al. 1998) which are naturally adaptable to any geometry, have
been applied to seismic-wave propagation, but remain largely inefficient due to significant numerical dispersion and expensive time marching
as a result of inverting large linear systems. Most recently, the arbitrary high-order discontinuous Galerkin method has successfully been
implemented for 2-D global wave propagation (Käser & Dumbser 2006). While this approach looks promising with respect to accuracy and
efficiently meshing the globe, it is still in its seismological infancy and will be subject to benchmarking both accuracy and computational
cost.

The most prevalent method that has been developed to the point of tackling full complex 3-D wave propagation in detail is the spectral-
element method (SEM) on regional (Faccioli et al. 1997; Seriani 1998; Komatitsch & Vilotte 1998; Komatitsch & Tromp 1999) and especially
global scales (Komatitsch & Tromp 2002a,b; Komatitsch et al. 2003; Chaljub et al. 2003; Chaljub & Valette 2004; Chaljub et al. 2006).
However, the SEM has globally been applied to minimal periods of 3.5 s (Tsuboi et al. 2003) due to computational limitations even on
the largest existing machines. For our purposes of calculating seismic sensitivity, the amount of potential data storage in 3-D exceeds any
reasonable hardware capabilities as we need to store spatial grid points every few kilometres to resolve frequencies up to one hertz, that
is, the maximal frequencies in global seismology. Hence, we seek an alternative in solving the 3-D problem with a computational effort
corresponding to 2-D much like axisymmetric FD. In the preceding paper (Nissen-Meyer et al. 2007), we derive a weak formulation for 3-D
wave propagation through spherically symmetric background models in a 2-D domain. For a given earthquake location, the problem at hand
is a number of 2-D weak equations to be solved numerically with the remaining angular dependence then known via analytical continuation.
Based on our criteria to compute sensitivity kernels (accurate wavefields for all distances and phases, high frequencies, full moment tensor),
we note that no existing approach meets these constraints and we, therefore, devise an axisymmetric approach based on the spectral-element
technique (e.g. Bernardi et al. 1999; Fournier et al. 2004) which can reach desirable resolutions on conventional Beowulf clusters and can
handle the full source representation.

This paper is organized as follows: In Section 2, we briefly recall, summarize and recast the 2-D weak formulation of the elastodynamic
equations derived in the previous paper (Nissen-Meyer et al. 2007), restricting attention to an everywhere solid earth model in the interest of
simplicity. In Section 3, we specify the crucial concepts of the spectral-element method in an axisymmetric setting to compose the toolbox
needed to discretize the system with a specific focus on discretization at the axis. In Section 4, we synthesize elemental contributions to a
global system and associated evolution in time, and then successively depict the discretized versions of source, mass, and stiffness terms.
Section 5 validates the implementation against both analytical and normal-mode reference solutions. Finally, there are extensive appendices
dealing with definitions of mapping relations and polynomial representations (Appendix A), the full discretized and optimized stiffness system
for all source types (Appendix B), and a derivation of toroidal eigenfunctions in a homogeneous sphere (Appendix C), which constitute the
reference solution needed in Section 5.1. The problems of discretizing the fluid core, solid-fluid coupling, more reasonable 1-D background
models and mesh optimization thereof at high frequencies as well as parallelization will be addressed in a subsequent paper.

2 E Q UAT I O N S O F M O T I O N : S O L I D M E D I A

As a first step toward the long-term goal of computing full spherical-earth Fréchet sensitivity kernels numerically, we set out to solve the 3-D
elastodynamic equations of motion in a solid, isotropic, non-rotating, non-gravitating earth model ⊕. In the variational or weak formulation,
one seeks a solution u in a space of admissible displacements having square-integrable derivatives, such that for all admissible test functions
(also known as trial solutions or virtual displacements, see Hughes (1987)) w,
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∫
⊕

{
ρ(r)w(r) · ∂2

t u(r, t) + λ(r) [∇ · w(r)] [∇ · u(r, t)] + µ(r)∇w(r) :
[
∇u(r, t) + (∇u(r, t))T] }

d3r

=
{

p̂ · w(rrẑ) δ(t)
M :∇w(rsẑ) H (t)

}
, (1)

where ρ is the mass density, λ and µ the Lamé parameters, p̂ the single-force unity vector at the receiver at radius rr, and M the moment
tensor at the source at radius rs, assuming that source and receiver locations have been rotated to the pole as detailed in Nissen-Meyer et al.
(2007). As usual, δ(t) and H(t) are the Dirac impulse and Heaviside step functions, respectively characterizing the temporal evolution of the
point-force and moment-tensor sources. Restricting ourselves to spherically symmetric earth models such that λ = λ(r ), µ = µ(r ), ρ = ρ(r ),
we may revert to a 2-D computational domain (Nissen-Meyer et al. 2007). While retaining the (s, φ, z) cylindrical coordinate system for the
monopole and quadrupole cases, we develop the dipole system in the (+, −, z) system, such that

u±(s, z) = 1
2 [us(s, z) ± uφ(s, z)], (2)

w±(s, z) = 1
2 [ws(s, z) ± wφ(s, z)], (3)

inasmuch as this enables easier implementation of the axial boundary conditions given by

Monopole: (us = ws)s=0 = 0,

Dipole: (u− = w− = uz = wz)s=0 = 0,

Quadrupole: (us = ws = uφ = wφ = uz = wz)s=0 = 0. (4)

Following Nissen-Meyer et al. (2007), eqs (56), (63), and (71), we write the system, equivalent to eq. (1), in a 2-D semi-circular computational
domain � for monopole, dipole and quadrupole sources, respectively, as∫

�

{
ρ
(
ws∂

2
t us + wz∂

2
t uz

) + λ
(
∂sws + ∂zwz + s−1ws

)(
∂sus + ∂zuz + s−1us

)
+ 2µ

(
∂sws∂sus + ∂zwz∂zuz + s−2wsus

) + µ(∂swz + ∂zws)(∂suz + ∂zus)
}
s ds dz

= 1

2π




pz wz(0, rr) δ(t)

Mzz ∂zwz(0, rs) H (t)
1
2

(
Mxx + Myy

) [
2∂sws(0, rs)

]
H (t)


 , (5)

∫
�

{
ρ
(
2w+∂2

t u+ + 2w−∂2
t u− + wz∂

2
t uz

) + λ
(
∂sw+ + ∂sw− + ∂zwz + 2s−1w−

) (
∂su+ + ∂su− + ∂zuz + 2s−1u−

)
+2µ[(∂sw+ + ∂sw−)(∂su+ + ∂su−) + ∂zwz∂zuz + 4s−2w−u−] + µ(∂swz + ∂zw+ + ∂zw−)(∂suz + ∂zu+ + ∂zu−)

+µ
(
∂sw+ − ∂sw− + 2s−1w−

) (
∂su+ − ∂su− + 2s−1u−

) + µ
(
∂zw+ − ∂zw− + s−1wz

)(
∂zu+ − ∂zu− + s−1uz

)}
s ds dz

= 1

π

{
(px or py) w+(0, rr) δ(t)

(Mxz or Myz) [∂swz(0, rs) + ∂zw+(0, rs)] H (t)

}
, (6)

∫
�

{
ρ(ws∂

2
t us + wz∂

2
t uz + wφ∂2

t uφ) + λ
[
∂sws + ∂zwz + s−1(ws − 2wφ)

][
∂sus + ∂zuz + s−1(us − 2uφ)

]
+ 2µ

[
∂sws∂sus + ∂zwz∂zuz + s−2(ws − 2wφ)(us − 2uφ)

] + µ(∂swz + ∂zws)(∂suz + ∂zus)

+ µ
[
∂swφ + s−1(2ws − wφ)

][
∂suφ + s−1(2us − uφ)

] + µ(∂zwφ + 2s−1wz)
(
∂zuφ + 2s−1uz

)}
s ds dz

= 1

π

[
1
2 (Mxx − Myy) or Mxy

]
[2∂sw+(0, rs)] H (t). (7)

In the following two sections, we introduce a spectral-element approach to solve the above systems. This step from the analytical weak form
to its numerical counterpart encompasses the restriction from an infinite-dimensional space to a finite-dimensional space of solutions in the
context of a Galerkin method (Hughes 1987).

3 A X I S Y M M E T R I C S P E C T R A L - E L E M E N T M E T H O D O L O G Y

In this section, we give a brief overview of the aspects of the spectral-element method (SEM) that are relevant for the discretization, which we
take up in the following sections. The reader is referred to the detailed literature for a full description of the approach, for example, Deville
et al. (2002) and Karniadakis & Sherwin (1999) on the mathematical foundations of the SEM with a focus on fluid dynamics; Komatitsch &
Vilotte (1998), Komatitsch & Tromp (1999, 2002a), Chaljub et al. (2003) and Chaljub et al. (2006) on the elastodynamic SEM; and Bernardi
et al. (1999) and Fournier et al. (2004) on discretizing an axisymmetric system.

C© 2007 The Authors, GJI, 168, 1067–1092

Journal compilation C© 2007 RAS



1070 T. Nissen-Meyer, A. Fournier and F. A. Dahlen

ξ−1

1

1

η

−1

north

south

z

s

(c)(a)

(b) z

s

Ωe

Figure 1. The mesh architecture. The geometric mapping mentioned in Section 3.1 transforms the unit square element (a), within which all computations are
undertaken, into any quadrilateral element �e or �̄e (b). (c) shows the actual mesh used in the simulations described in Section 5. Three different element
geometries, as defined in Appendix A1 and Fig. A1, are used to construct this mesh such that spacing variations are kept small. The radius of the earth is r0,
and the left straight edge is the non-physical axis of symmetry for which we employ different discretization rules due to the appearance of singularities.

3.1 Geometrical mapping and discretization

As in any element-based method, we discretize and decompose the continuous, open domain � with boundary ∂� into a union of non-
overlapping elements. For clarity, we shall distinguish the so-called axial elements, which share an edge with the axis of symmetry s = 0, from
the remaining ones. Any axial element is then denoted by �̄e, e = 1, . . . , n̄, while a non-axial element is represented by �e, e = 1, . . . , n,
such that the total number of elements forming the skeleton of the spectral-element mesh is n + n̄. Throughout the paper, we will consistently
utilize an overbar to identify axial quantities. This decomposition permits us to break any global integration over � up into n + n̄ local
integrations, each spanning their respective elements, such that we define all integrands on the elemental level and only connect these to the
global system when marching forward in time, as detailed in Section 4. In the 2-D spectral-element discretization used here, we confine �e

or �̄e to be a quadrilateral image of a reference square spanning −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1, defined by the invertible mapping s = s(ξ , η),
z = z(ξ , η) (Figs 1a and b). The exclusion of other geometries such as triangular elements will not hamper the feasibility of our approach
given the spherical nature of spherical-earth discontinuities, that is, the mildly deformed elemental shape. The D-shaped, planar domain with
radius r0 is shown in Fig. 1(c), along with the mesh discretization as used throughout this paper. Note that we included several conforming
coarsening levels to reduce grid spacing variations (Komatitsch & Tromp 2002a) which generally trade off the time step (depending on the
minimal spacing) with the frequency resolution (depending on the maximal spacing) in any numerical scheme. The centre is discretized using
rectangular elements (Chaljub 2000). The expression of the mapping depends on the elemental shape and is either analytical or subparametric
(Fournier et al. 2004). Explicit formulae and illustrations are given in Appendix A1. With a given element shape, we can then compute the
elemental Jacobian

J (ξ, η) = ∂(s, z)

∂(ξ, η)
= det

(
∂ξ s ∂ηs
∂ξ z ∂ηz

)
. (8)

Derivatives ∂ s and ∂ z of a function u(s(ξ , η), z(ξ , η)) map into the reference square as

∂su(s, z) = [
∂ηz(ξ, η)∂ξ u(s(ξ, η), z(ξ, η)) − ∂ξ z(ξ, η)∂ηu(s(ξ, η), z(ξ, η))

]
J −1(ξ, η), (9)
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∂zu(s, z) = [−∂ηs(ξ, η)∂ξ u(s(ξ, η), z(ξ, η)) + ∂ξ s(ξ, η)∂ηu(s(ξ, η), z(ξ, η))]J −1(ξ, η). (10)

Elements �̄e adjacent to the non-physical boundary s = 0 (i.e. the axis of symmetry) are treated separately to accommodate singularities
arising from terms involving s−1 in the equations of motion (5)–(7). We describe the treatment of the non-axial elements in Section 3.2 and
briefly discuss the additional complexities for the axial elements in Section 3.3.

3.2 General non-axial functional discretization

The spectral-element approach presented here relies on quadrature of the Gauss–Lobatto type, allowing us to enforce continuity across
element boundaries conveniently by including the nodes ξ = −1, 1. N th-order Legendre polynomials PN (see Appendix A, eq. A15) are then
invoked to define the most accurate and natural quadrature rule (Deville et al. 2002). Quadrature nodes are hereupon defined as the zeroes
of (1 − ξ 2)∂ ξPN (ξ ), denoted as Gauss–Lobatto–Legendre (GLL) points ξp , 0 ≤ p ≤ N . To interpolate functions upon these GLL nodes,
we introduce Lagrange interpolating functions lN

i (ξp) of polynomial order N , 0 ≤ i , p ≤ N , such that: lN
i (ξp) = δ i p (see Appendix A2).

For clarity, we shall denote GLL nodes in the ξ direction as ξi and in the η direction as ηj . The choice of Lagrangian interpolation upon
GLL nodes yields the desirable property of a diagonal mass matrix, thereby greatly reducing the effort on time marching (see Section 4).
Furthermore, the orthogonality of coordinates ξ and η in a quadrilateral element geometry allows for separation of variables and leads to
efficiently implemented tensor products (see Appendix B1). Elemental integrals over (s, z) may now be mapped into (ξ , η) and discretized as∫

�e

u(s, z, t) s ds dz =
∫ 1

−1

∫ 1

−1
u(s(ξ, η), z(ξ, η), t)s(ξ, η)J (ξ, η) dξ dη ≈

N∑
p,q=0

σ N
p σ N

q s(ξp, ηq )J (ξp, ηq )u(ξp, ηq , t), (11)

where σp,q = ∫ 1
−1 l N

p,q (ξ ) dξ are the integration weights for non-axial elements. Time-dependent field variables such as the displacement are
approximated as

uα(ξ, η, t) ≈
N∑

i, j=0

ui j
α (t)l N

i (ξ )l N
j (η), (12)

where uα stands for any of the components us , u z , uφ , or u±. The coefficients ui j
α (t) carry the actual function values at the nodes (ξ i , η j ).

Similarly, we define test functions wβ as

wβ (ξ, η) ≈
N∑

I,J=0

w I J
β l N

I (ξ )l N
J (η), (13)

where β is the analogue of α for test functions. We set the coefficients wIJ
β in the discretized version of eqs (5)–(7) equal to zero for all points

except (ξ I , η J ), effectively cancelling the summation and replacing elemental integrations with quantities defined at each point (I , J ). For
the remainder of the paper, we will adhere to the index convention (I , J , β) for test functions, (i , j , α) for displacements, and (p, q) arising
from the quadrature. Using eqs (9) and (10), derivatives are expanded, for example, as

∂su(s(ξ, η), z(ξ, η)) ≈
[
∂ηz(ξ, η)

N∑
i, j=0

∂ξ l N
i (ξ )l N

j (η)ui j − ∂ξ z(ξ, η)
N∑

i, j=0

l N
i (ξ )∂ηl N

j (η)ui j

]
J −1(ξ, η). (14)

In what follows, we will drop dependencies on t , (s, z), (ξ , η), and N for conciseness unless indispensable. We will also adopt the abbreviations
l ′

i (ξ ) = ∂ ξ l i (ξ ), l ′
j (η) = ∂ ηl j (η), and, for example, si j

ξ = ∂ξ s(ξi , η j ). Summation over I , J , i , j , and p, q always goes from 0 to N , unless
otherwise noted. Each elemental integral term is computed by discretizing uα and wβ , evaluating the integral with GLL quadrature, and
recasting the system such that we obtain expressions over I , J as the free indices (see Section 4). For example, a typical term within the
elemental monopole stiffness integral may be discretized as∫

�e

λ ∂zwzs
−1uss ds dz ≈

∑
I J

w I J
z

[∑
i

−λi J σiσJ si J
η l ′

I (ξi )u
i J
s +

∑
j

λI jσI σ j s
I j
ξ l ′

J (η j )u
I j
s

]
. (15)

We will elaborate upon the whole system in Section 4.4 and Appendix B.

3.3 Gauss–Lobatto–Jacobi (0,1) quadrature in axial elements

Particular attention must be focused on the elements adjacent to the axis for which the case s = 0 needs to be addressed. A convenient remedy
is to introduce an additional factor in the quadrature formulae, and apply L’Hospital’s rule if needed. Consequently, while retaining the GLL
quadrature in the η direction, we resort to a Gauss-Lobatto–Jacobi (GLJ) (0,1) quadrature rule in the ξ direction and introduce Lagrange
interpolating functions l̄i (ξ̄p) over the set of associated quadrature nodes ξ̄p, 0 ≤ p ≤ N (e.g. Fournier et al. 2005; Bernardi et al. 1999, see
Fig. 2 for the relative distribution of GLJ versus GLL points, and Appendix A3 for definitions). Elemental integrals within axial elements are
then expressed as∫

�̄e

u (s, z) s ds dz ≈
∑

pq

σ̄p(1 + ξ̄p)−1σq s(ξ̄p, ηq )J (ξ̄p, ηq )u(ξ̄p, ηq ). (16)
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Figure 2. Moment-tensor source gallery. Due to the polynomial representation of functions in the spectral-element method, a point-like moment-tensor source,
containing ∇w, spreads out over the bearing element in its discretized form. The figure shows all non-zero source vector components fβ as defined in
eqs (24)–(30) for the element containing the source at polynomial order N = 8. Arrow lengths represent the relative values of the magnitude of fβ . The physical
source location on the axis s = 0 is denoted by a large black dot. Neighbouring elements (not shown) share the same values as the edge of the shown element,
thus a maximum of four elements may have non-zero source terms. Note that the location and relative spacing of grid points within the element is different for
directions parallel and perpendicular to the axis, reflecting the axial discretization in terms of GLJ points for the ξ (and s) directions, and GLL points for the η

(and z) directions (see Sections 3.2, 3.3 and Appendices A2, A3).

This definition introduces the singular term (1 + ξ̄p)−1 on the axis ξ̄0 = −1, which can be removed by applying L’Hospital’s rule s(ξ̄0, η j )(1 +
ξ̄0)−1 = s0 j

ξ . When evaluating stiffness integral expressions, we also make use of the axial identities l̄i (ξ̄0)(1 + ξ̄0)−1 = ∂ξ l̄i (ξ̄0), zη|s=0 =
(J s−1

ξ )|s=0 and ∂su|s=0 = s−1 u|s=0 if u|s=0 = 0. For each integrand in eqs (5)–(7), we need to honour the two cases p > 0 and p = 0. For the
latter location on the axis, L’Hospital’s rule is invoked to evaluate terms involving s−1. Similarly to the non-axial case, we obtain for example∫

�̄e

λ ∂zwzs
−1uss ds dz ≈

∑
I J

w I J
z

[∑
i

−λi J σ̄iσJ (1 + ξ̄i )
−1si J

η l̄ ′
I (ξ̄i )u

i J
s +

∑
j

λI j σ̄I σ j (1 + ξ̄I )−1s I j
ξ l ′

J (η j )u
I j
s

+
∑

j

σ̄0σ jλ
0 j s0 j

ξ l̄ ′
I (ξ̄0)l ′

J (η j )u
0 j
s

]
+

∑
J

w0J
z

[
σ̄0σJ λ

0J s0J
ξ

∑
i

l̄ ′
i (ξ̄0)

∑
j

l ′
J (η j )u

i j
s

]
. (17)

The two terms in the second row appear due to the singularity removal via L’Hospital’s rule; the first depends upon the displacement along
the axis and contributes to the whole element wIJ , whereas the second depends on the displacement in the whole element and appears only on
the axis w0J . Depending on the essential boundary condition, maximally one of these two terms is non-zero since in all cases either w0J = 0
or u0 j = 0 for this type of integral. Section 4.4 contains details on the different terms and the full stiffness system is derived in Appendix B.

4 D I S C R E T I Z E D E Q UAT I O N S O F M O T I O N

In this section, we will present the equations of motion for the multipole source system in discretized form, elaborate the scheme for time
marching, and present the expanded expressions for all terms involved. Upon inserting eqs (12) and (13) into the equations of motion (5)–(7),
we obtain a system of ordinary differential equations in time for each element

∑
I J

∑
β

w I J
β

[ ∑
i j

∑
α

M I Ji j
βα üi j

α (t) +
∑

i j

∑
α

K I Ji j
βα ui j

α (t)

]
=

∑
I J

∑
β

w I J
β f I J

β (t), (18)
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where a double dot denotes the second partial derivative with respect to time, f IJ
β are the expansion coefficients of the source term, and we

abbreviated the elemental mass matrix by MIJij
βα and the elemental stiffness matrix by K IJij

βα . In matrix notation, let Ke now be such a stiffness
matrix of element e. We may then merge these elemental (local) contributions to a block-diagonal matrix KL (unassembled, global stiffness
matrix) defined by

KL =




K1

. . .

Kn

Γ̄K̄1Γ̄
. . .

Γ̄K̄n̄Γ̄




, (19)

where Γ̄ is the diagonal matrix that acts as a ‘mask’ to set all components to zero which vanish on the axis in accordance with the essential
axial boundary conditions eq. (4) (Nissen-Meyer et al. 2007; Fournier et al. 2004; Bernardi et al. 1999). We associate with each distinct node
(i.e. counting nodes at ξ , η = −1, 1 only once) in � a unique global number (Deville et al. 2002) upon which we define the global displacement
u. We shall always use sans serif font to refer to global matrices of this assembled form. A Boolean connectivity matrix Q mapping u to uL,
i.e. uL=Qu, copies values from the global vector into the collection of local vectors (‘scatter’). The transpose operation QT (‘gather’) sums
up element edge/corner contributions. The joint application of Q QT is called the direct stiffness summation and constitutes the stiffness
assembly stage; we denote the global, assembled stiffness matrix as K = QTKLQ. Summing over all elemental stiffness terms w

i j
β K IJij

βα ui j
α as

in eq. (18), we write
n+n̄∑
e=1

wT
e Keue = wT

LKLuL = wTQTKLQu = wTKu. (20)

The same concept applies to the mass and source terms ML and fL. Construction of a global coordinate mesh and its relation to elemental
nodes are based upon a global numbering technique (Deville et al. 2002). To obtain the semi-discretized version of eqs (5)–(7), we span the
discrete space of test functions by setting each w to 1 at a specific grid point, and zero everywhere else. We can then drop summations over
(I , J ) and β to form an assembled, linear algebraic system of ordinary differential equations in time

Mü(t) + Ku(t) = f(t). (21)

4.1 Time marching

We solve the global system eq. (21) by an explicit acceleration-driven Newmark scheme of second-order accuracy (Chaljub & Valette 2004).
If t denotes the time-step size, then the displacement, acceleration and velocity fields at time t + t can successively be calculated from
their values at time t as

Step 1: u(t + t) = u(t) + t u̇(t) + 1
2 t2ü(t),

Step 2: ü(t + t) = M−1 [f(t + t) − Ku(t + t)] ,

Step 3: u̇(t + t) = u̇(t) + 1
2 t [ü(t) + ü(t + t)] , (22)

with initial conditions u(0) = 0, u̇(0) = 0, and ü(0) = 0. This scheme is conditionally stable, subject to the stability criterion (‘Courant-
Friedrichs-Levy Condition’)

t < C min
�

(
h

vp

)
, (23)

where h is the distance between neighbouring nodes, vp the P wave velocity, and C the Courant number, which depends upon the dimensionality,
order of the scheme and mesh geometry, and is empirically chosen to be between 0.3–0.6 (e.g. Komatitsch & Tromp 2002a). The scheme
eq. (22) will prove useful when including fluid regions since it is fully explicit, avoiding iterations over boundary integrals (compare Komatitsch
& Tromp 2002a, Section 3.7). The stiffness matrix is never computed itself, but rather only its action on the displacement Ku. Note that, in the
context of computing sensitivity kernels, the velocity u̇ is an intrinsic field variable and the strain tensor 1

2 (∇u + (∇u)T) comes at a minimal
cost to compute from the stiffness terms. The bulk computational effort is concentrated in step 2, specifically the stiffness term. We will now
successively describe the different unassembled terms f, MLüL, and KLuL involved in step 2 at the elemental level.

4.2 Source terms

Due to the inherent cylindrical symmetry, point sources are always located on the axis such that rs = rsẑ for moment tensors and rr = rrẑ
for point forces. We additionally assume here that sources coincide with mesh nodes which is not a compulsory limitation of the method,
but will suffice for immediate purposes. Discretized moment-tensor source terms effectively get ‘spread out’ over the bearing element due to
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the polynomial representation of the ∇w operation, as can be verified from the sum appearing in terms such as eq. (14). Point forces px,y,z

on the other hand remain non-zero only at rr = (0, rr). We compute the non-zero components fβ of the respective source types appearing in
eqs (5)–(7) for the monopole as

f I J
z (pz, t) = (2π )−1δI 0δJ Jrδ(t), (24)

f I J
z (Mzz, t) = (2π )−1 M0δI 0l ′

J (ηs)z
0Js
η H (t), (25)

f I J
s ((Mxx + Myy)/2, t) = (2π )−1 M0δJ Js (1 − δI 0)l̄ ′

I (ξ̄0)s0Js
ξ H (t), (26)

for the dipole as

f I J
+ (px , t) = f I J

+ (py, t) = π−1δI 0δJ Jrδ(t), (27)

f I J
+ (Mxz, t) = f I J

+ (Myz, t) = π−1δI 0l ′
J (ηs)z

0Js
η H (t), (28)

f I J
z (Mxz, t) = f I J

z (Myz, t) = π−1 M0δJ Js (1 − δI 0)l̄ ′
I (ξ̄0)s0Js

ξ H (t), (29)

and for the quadrupole as

f I J
s,φ (Mxy, t) = f I J

s,φ ((Mxx − Myy)/2, t) = π−1 M0δJ Js (1 − δI 0)l̄ ′
I (ξ̄0)s0Js

ξ H (t), (30)

where M 0 is the scalar moment. Fig. 2 illustrates the spatial distribution of functions f IJ
β for the moment-tensor sources to emphasize the

spreading of the source representation across the whole element. The actual physical source location (large black dot) has zero source-vector
amplitude. Note also that up to three elements neighbouring the source element carry non-zero values as assembled from the element edges
shared with the source-bearing element.

4.3 Mass terms

The mass matrix is diagonal by construction and, therefore, readily invertible. One can deduce from eq. (11) that the mass terms of non-axial
elements (as in eq. 18) take the form for monopole sources,∑

i j

∑
α

(
M I Ji j

sα + M I Ji j
zα

)
üi j

α = ρ I J σI σJ s I JJ I J
(
ü I J

s + ü I J
z

)
, (31)

for dipole sources,∑
i j

∑
α

(
M I Ji j

+α + M I Ji j
−α + M I Ji j

zα

)
üi j

α = ρ I J σI σJ s I JJ I J
(
2ü I J

+ + 2ü I J
− + ü I J

z

)
, (32)

and for quadrupole sources,∑
i j

∑
α

(
M I Ji j

sα + M I Ji j
φα + M I Ji j

zα

)
üi j

α = ρ I J σI σJ s I JJ I J
(
ü I J

s + ü I J
φ + ü I J

z

)
. (33)

The factors preceding the acceleration components are statically pre-computed and inverted, hence the operation M−1 in step 2 of eq. (22) is
merely a point-by-point multiplication. The axial case is equivalent after the substitution σI → σ̄I (1 + ξ̄I )−1 and application of L’Hospital’s
rule on the axis: s0J (1 + ξ̄0)−1 = (∂ξ s)0J .

4.4 Stiffness terms

We relegate the description of the composite stiffness term to Appendix B and only sketch the solution to the different types of integrals
here. Discretization yields a number of pre-computable quantities A, B, C , D, and G which are collectively defined in Table 1 for axial and
non-axial elements using the definitions in Section 3.2 and the axial expressions from Section 3.3. The terms involved in the stiffness matrix
are computationally most demanding and need to be optimized. The two contributing factors of (i) recasting terms to avoid repeated operations
and (ii) usage of cache-access optimized tensor products are explained in Appendix B. Here, we simply depict the different types of integrals,
for example, for non-axial elements∫

�e

ε
wβ

s

uα

s
s ds dz ≈

∑
I J

w I J
β

(
ε AI J u I J

α

) =
∑

I J

w I J
β

(
Rα

1

)I J
, (34)

∫
�e

ε
wβ

s
∂x uαs ds dz ≈

∑
I J

w I J
β

(
ε B I J

χη

∑
i

Di I
ξ ui J

α + ε B I J
χξ

∑
j

D j J
η uI j

α

)
=

∑
I J

w I J
β

(
Rα

2

)I J
, (35)

∫
�e

ε∂xwβ

uα

s
s ds dz ≈

∑
I J

w I J
β

(∑
i

ε Bi J
χη

DIi
ξ ui J

α +
∑

j

ε B I j
χξ

D J j
η uI j

α

)
=

∑
I J

w I J
β

(
Rα

3

)I J
, (36)
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Table 1. Definitions for pre-computable matrices of the stiffness term (ε = λ, µ or any combination thereof).

Matrix Non-axial elements Axial elements (i > 0) Axial elements (i = 0)

ε Ai j εi j σi σ j (si j )−1J i j εi j σ̄i (1 + ξ̄i )−1σ j (si j )−1J i j
ε A0 j = ε0 j σ̄0σ jJ 0 j (s0 j

ξ )−1

ε Bi j
zη εi j σ i σ j zi j

η εi j σ̄i (1 + ξ̄i )−1σ j zi j
η ε B0 j

zη = ε0 j σ̄0σ j z0 j
η = ε A0 j

Ci j σi σ j si j (J i j )−1 σ̄i σ j si j (1 + ξ̄i )−1(J i j )−1 C0 j = σ̄0σ j s
0 j
ξ (J 0 j )−1

DIi
ξ ∂ ξ lI (ξi ) ∂ξ l̄ I (ξ̄i ) ∂ξ l̄ I (ξ̄0)

D J j
η ∂ ηlJ (ηj ) = ∂ ξ lJ (ξ j ) ∂ ηlJ (ηj )

(Gxy
k )i j k = 1 k = 2 k = 3 k = 4

x = s, y = s zi j
ξ zi j

η zi j
η zi j

η zi j
ξ zi j

η zi j
ξ zi j

ξ

x = s, y = z zi j
ξ si j

ξ zi j
η si j

η zi j
ξ si j

η zi j
ξ si j

ξ

x = z, y = s si j
η zi j

ξ si j
η zi j

η si j
ξ zi j

η si j
ξ zi j

ξ

x = z, y = z si j
ξ si j

η si j
η si j

η si j
ξ si j

η si j
ξ si j

ξ

∫
�e

ε∂xwβ∂yuαs ds dz ≈
∑

I J

w I J
β

[ ∑
i

DI i
ξ Ci J

(
Gxy

1

)i J ∑
j

D j J
η ui j

α +
∑

p

DI p
ξ C pJ

(
Gxy

2

)pJ ∑
i

Dip
ξ ui J

α

+
∑

j

D J j
η C I j (Gxy

3 )I j
∑

i

Di I
ξ ui j

α +
∑

q

D Jq
η C I q

(
Gxy

4

)I q ∑
j

D jq
η uI j

α

]
=

∑
I J

w I J
β

(
Rα

4

)I J
,

(37)

where the pre-computed matrices Ai j , Bi j
χξ

, Ci j as given in Table 1 may generally contain integration weights, the Jacobian, mapping derivatives,
the coordinate s, and elastic parameters. If ∂x = ∂s then χ = z, and if ∂x = ∂z then χ = s. We abbreviated the quantities in brackets as (Rα

k )IJ ,
which contain the actual operations to be carried out to obtain Ku, the stiffness matrix acting on the displacement. In addition, we collected
twice-appearing mapping derivatives into (Gxy

k )i j , defined in Table 1. Inspecting the equations of motion (5)–(7), we note that whenever factors
s−1 wβ appear, wβ vanishes at the axis; and equivalently for uα . Thus, a number of sums are developed for the two cases I > 0 and I = 0,
resulting in summation for I > 0 and additional terms for I = 0. An equivalent scenario prevails for uα and the corresponding summation
over i. The respective integrals for axial elements are then approximated as∫

�̄e
ε
wβ

s

uα

s
s ds dz ≈

∑
I>0 J

w I J
β

(
ε AI J u I J

β + DI 0
ξ A0J

∑
i>0

Di0
ξ ui J

β

)
=

∑
I>0 J

w I J
β

(
R̄α

1

)I J
, (38)

∫
�̄e

ε
wβ

s
∂x uαs ds dz ≈

∑
I>0 J

w I J
β

[
ε B I J

χη

∑
i

Di I
ξ ui J

α + ε B I J
χξ

∑
j

D j J
η uI j

α + L̄1(uα)I J

]
=

∑
I>0 J

w I J
β

(
R̄α

2

)I J
, (39)

∫
�̄e

ε∂xwβ

uα

s
s ds dz ≈

∑
I J

w I J
β

[∑
i>0

ε
Bi J

χη
DIi

ξ ui J
α +

∑
j

ε
B I j

χξ
D J j

η uI j
α + L̄2(uα)I J

]
=

∑
I J

w I J
β

(
R̄α

3

)I J
, (40)

∫
�̄e

ε∂xwβ∂yuαs ds dz ≈
∑

I J

w I J
β

[ ∑
i

DI i
ξ Ci J

(
Gxy

1

)i J ∑
j

D j J
η ui j

α +
∑

p

DI p
ξ C pJ (Gxy

2 )pJ
∑

i

Dip
ξ ui J

α

+
∑

j

D J j
η C I j

(
Gxy

3

)I j ∑
i

Di I
ξ ui j

α +
∑

q

D Jq
η C I q

(
Gxy

4

)I q ∑
j

D jq
η uI j

α

]
=

∑
I J

w I J
β

(
R̄α

4

)I J
.

(41)

We do not explicitly differentiate between axial and non-axial pre-computed matrices of Table 1 but rather acknowledge that the usage
automatically conforms with the respective definitions. The additional terms L̄ I J

1,2 depend on the direction of the derivative:

Case ∂x = ∂s : L̄1(uα)I J = L̄2(uα)I J = DI 0
ξ ε A0J

∑
i

Di0
ξ ui J

α , (42)

Case ∂x = ∂z : L̄1(uα)I J = DI 0
ξ ε B0J

sξ

∑
j

D j J
η u0 j

α + ε B0J
sξ

∑
j

D j J
η

∑
i

Di0
ξ ui j

α , (43)

L̄2(uα)I J = DI 0
ξ

∑
j

D J j
η ε B0 j

sξ
u0 j

α +
∑

j

D J j
η ε B0 j

sξ

∑
i>0

Di0
ξ ui j

α . (44)
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Since z ξ |s=0 = s η|s=0 = 0, there are no terms involving B0 j
zξ

and B0 j
sη

. Also note that in the case of ∂z (eqs 43–44), the respective former term

depends upon the displacement along the axis and contributes to the whole axial element in (R̄α
(2,3))

I J , whereas the latter term is synthesized
from the displacement in the whole element and only inhabits the axis within (R̄α

(2,3))
0J . Hence if, for example, uα|s=0 = wβ |s=0 = 0, then

there is no additional axial term for ∂x = ∂z , i.e. L̄1 = L̄2 = 0. The expressions (Rα
k )IJ and (R̄α

k )I J are the building blocks for the discretized
stiffness term, subject to rearrangement and tensorization for optimization purposes. All details are discussed in Appendix B. In summary,
the stiffness term is approximated as follows:

(i) Axial masking of displacement u,
(ii) Computation of elemental stiffness terms Ku,
(iii) Axial masking of Ku,
(iv) Assembly to obtain Ku.

5 N U M E R I C A L VA L I DAT I O N

In the remainder of the paper, we will examine a homogeneous sphere with vp = 10 km s−1, v s = 5.77 km s−1, and ρ = 3000 kg m−3. For
the purpose of a reliable validation of all relevant aspects of the method as discussed in Section 4, we separately address the stiffness and
mass terms, the source terms and full-wave propagation. We will commence with an elastostatic comparison with the analytical toroidal
eigenfunctions to constrain the accuracy of the dipole and quadrupole stiffness terms, followed by an explosion source simulation to examine
the emanating wavefield in the source vicinity using an exact analytical solution and lastly, we show globally distributed seismograms along
with solutions from normal-mode summation, and associated energy conservation of the scheme.

5.1 Spatial accuracy: toroidal eigenfunctions

The most complex and computationally intense part of the algorithm is the stiffness term, as detailed in Appendix B. In this section, we
specifically validate its implementation by solving the source-free elastostatic wave equation. While the full-wave propagation problem is
of a different nature and complication, we recall that our sought solution is the entire 2-D wavefield to be stored for the computation of
sensitivity kernels, which motivates us to elaborate on the accuracy over the whole domain, rather than at selected stations at the surface. To
this end, this test enables an easy computation of the residual misfit for the spatial discretization of the scheme at every grid point. The toroidal
eigenfunctions (see Appendix C for a derivation and illustration) compose the displacement field u as a solution to the elastostatic problem,
allowing for variable resolution by changing the degree l and overtone n. In the interest of simplicity, we restrict ourselves to the toroidal
type. The resulting omission of the monopole case poses no major limitation since the quadrupole stiffness term embraces the full non-axial
monopole term (see Table A2 and a number of the additional axial terms in eqs (B18) and (B19) and eqs (B26)–(B28). The validation lies in
using the eigenfunction u for a given eigenfrequency nωl to compute the assembled term M−1(Ku) using our SEM as described in Section 4
and compare it to the equivalent reference term nω l

2u (see Appendix C). Fig. 3 exemplifies this concept via 1-D profiles of both the reference
(dots) and SEM-based terms (solid lines) for various l and n, along the axis s = 0 in (D1) and (D2), the equator z = 0 in (Q1) and (Q2), the
surface r = r 0 in (D3), and at fixed radii r 1 = 2701 km and r 2 = 2931 km in (D4)–(D6), (Q3) and (Q4) which are just above and below the
middle coarsening level in Fig. 1 (c). Dots denote the location of grid points for polynomial order N = 5 as used in these simulations and
components are shown in the spherical system (r̂, θ̂, φ̂) such that r̂ ·u = 0 for the toroidal case. (D1) is a simple, low-resolution case validating
the axial representation of functions with sensitivity throughout all depths, hence sampling all variants of the mesh geometry, especially the
central region, which is largely ignored by higher-degree eigenfunctions. (D2) shows the axial profile of the φ component for l = n = 71
which corresponds to more than one eigenfunction lobe per element, indicating very sparse sampling. Consequently, the approximation is
slightly ragged, as shown in the magnified window which illustrates that 5 grid points per lobe are still sufficient to yield correct values at the
grid points. A critical location for accuracy studies is any coarsening level, inasmuch as it encompasses a doubling in grid spacing. (D4) is
a constant-depth, global profile of the φ components just above the central coarsening level, yielding a smooth and accurate representation
of eigenfunctions, whereas profile (D5), extracted from just below the coarsening and hence consisting of half the number of grid points,
shows large errors at local maxima due to the poor grid point density at l = n = 51. Decreased resolution (l = n = 36) in (D6) again yields
acceptable results for that coarsened level. The same situation is underscored in (Q3)–(Q4) for the quadrupole θ component. (D3) on the other
hand depicts a free-surface profile for l = n = 71 without imprecisions, adhering to the particularly dense element population at the surface.
(Q2) verifies that the radial component vanishes, here along the equator for l = n = 71, which indicates that there will be no spurious radial
modes numerically excited, for example, for insufficient grid resolution. In summary, typical spatial wavelengths need to be sampled by about
ten grid points to guarantee a smooth representation of the waveform everywhere in the domain, as may be seen in (D2), (D5) and (Q3). The
coarsening levels are subject to significant elemental distortion and hence most prone to inaccuracies, whereas the remaining domain by and
large may well allow for fewer spatial points per wavelength. One may resort to placing each of the coarsening layers deeper than shown here
to reach smaller grid spacings and errors. To quantify the overall accuracy, we compute the L

2 norm of spatial residuals,

�space =
{∫

�

[
M−1 (Ku) − nω

2
l u

]2
d�∫

�

(
nω

2
l u

)2
d�

}1/2

, (45)
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Figure 3. 1-D profiles of reference (dots) and SEM-based solutions (solid lines) to the elastostatic wave equation, based on toroidal eigenfunctions (Appendix
C). The dots furthermore denote the location of grid points for polynomial order N = 5. The top panels (D1)–(D6) depict various cases for the dipole system,
the bottom panels (Q1)–(Q4) depict the quadrupole. Choices of degree l and overtone n are given at the top of each panel, and the respective components are
subscribed on axis labels. The profiles are along the axis s = 0 in (D1) and (D2), along the equator z = 0 in (Q1) and (Q2), along the free surface r = r0 (D6),
and at fixed radii r1 = 2701 km and r2 = 2931 km in (D3)–(D5) and (Q3)–(Q4). For (D2), we added a magnified window to illustrate the sparse grid point
distribution. r1 is the radius at which the grid spacing is (horizontally) maximal, that is, just beneath the middle grid coarsening in Fig. 1, and r2 is just above
that level.

as a function of polynomial order N , hence depicting the accuracy averaged across each grid point. This is shown in Fig. 4 for both the dipole
(left) and quadrupole (right) excitation types. The function follows a quasi-linear trend indicative of spectral convergence, one of the merits of
a spectral approach like the SEM. The accuracy varies by a few orders of magnitude depending on the choice of N or l, n. The graphs are cut
off below 10−8 since spherical Bessel functions and eigenfrequencies (as needed for the eigenfunctions) are only computed to this precision.
Since their stiffness systems differ significantly, it is noteworthy to recognize the striking similarity in accuracy for both dipole and quadrupole
cases, suggesting a consistently accurate representation of all source types. To avoid inaccuracies such as in Fig. 3 (D5) and (Q3), we shall
only accept values of �space < 10−3. Generally, it is expected that the overall error for seismic-wave propagation, i.e. including the temporal
error stemming from the second-order time discretization to be addressed in Section 5.3, will exceed the spatial error computed here. Thus,
rather than appointing a selective, even more stringent accuracy level, these spatial results mainly confirm the high convergence rate, correct
implementation of all stiffness and mass terms, assembly and global numbering technique across each grid point of the mesh, including the
free surface, coarsening levels and the axis s = 0. Furthermore, this validation technique may generally be useful for global solutions to
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Figure 4. Global spatial convergence based upon toroidal eigenfunctions (see Appendix C). The L
2 norm for the residual between reference and SEM solutions

�space as defined in eq. (45), is shown as a function of the polynomial order N for four different choices of degree l and overtone n (left: dipole, right: quadrupole).
The quasi-linearity on a semi-logarithmic plot is indicative of the expected spectral convergence. The reference solution depends upon spherical Bessel functions
and the eigenfrequencies, which have been computed with an accuracy tolerance of about 10−8. We only show errors above that margin. Note the striking
similarity in accuracy for both dipole and quadrupole, given their differing stiffness terms.

the elastostatic variational problem, for example, as a thorough benchmark test for spatial accuracy, in that it is an easily implemented and
computed test case to determine global accuracy and convergence properties.

5.2 The source vicinity: explosive radiation

Since one of the most significant aspects of our spectral-element method is the inclusion of a full 3-D moment tensor in a 2-D domain, we
deem it important to zoom in to the source region. In this context, we conduct an accuracy study in the source vicinity, especially in light
of computing kernels which depend upon the global and hence also near-source wavefield. The source element itself is expected to exhibit
imprecise results due to the spatially spread-out moment-tensor representation (Section 4.2); for example, Faccioli et al. (1997) conclude that
the wavefield resumes acceptable accuracy at least one wavelength away from the physical source location. Moreover, in 3-D SEM-based
seismic-wave propagation, a spurious direct S wave from an explosion source has been observed and labelled as potentially resulting from
the spread-out source representation (Schuberth 2003). We address all these issues by comparing with the exact analytical radiation for an
explosion in a homogeneous medium, given by

u(r ′, t) = M0

4πρv2
p


 g

(
t − r ′

vp

)
r ′2 +

ġ
(
t − r ′

vp

)
r ′vp


 , (46)

where r ′ = |r −rs| is the distance from the source, M 0 = 1020 Nm is the moment, and g(t) is the source time function, here taken as a Gaussian
g(t) = exp(−γ (t/T0 − τ )2) with γ = 12.25, and τ = 1.5 at a dominant period T0 = 70 s. Note that eq. (46) is a purely radial displacement
of a direct P wave. The explosion source Mxx + Myy + Mzz validates all variants of the moment tensor source types, inasmuch as it includes
both generic derivatives ∂ sw and ∂ zw from eqs (5)–(7). Fig. 5 shows simulations of an explosion at rs = 3835 km using the mesh in Fig. 1
with polynomial order N = 5 and a time step t = 0.25 s, leading to a Courant number C = 0.37. Snapshots in the source region at t =
157.3 s for the exact analytical (top left) and the SEM-based solutions (top centre) are indistinguishable for the propagating P wave but exhibit
differences in the immediate source vicinity, as shown in two close-up plots of the elements around the source (black square). It is important
to notice that not only the element containing the physical point source location bears a non-zero source vector field f (denoted by large black
dots), but also some of the adjacent element edges, namely above, below and to the right for an explosion moment tensor. Labels 1–8 indicate
the locations of the displacement time-series shown on the right along with their respective distances from the source in terms of dominant
wavelengths of the P wave. All locations are well inside the near-field regime as can also be seen from the waveform shapes. The differences
between the SEM and exact solutions gradually decrease from 1 to 4, yielding very good alignments at location 4, two elements away from
the physical source location even if well less than one wavelength away. This means that we can obtain correct near-field representations, a
potentially important feature for computing sensitivity kernels. This good agreement also validates the correct treatment of the axial boundary
conditions and discretization, including the additional axial terms. As expected, waveforms 1–3, located between one and two elements away
from the source, show more significant misfits, mainly in the amplitude. Time-series 5–8 show improved alignment at locations similar to
1–4 but away from the axis, especially at the second trace. This improvement may be caused by the asymmetric source term itself, with the
physical location being closer to location 1 than 5. All these observations suggest that our source implementation is very well behaved when
recording wavefields more than two elements away from the physical source location. In applications, the erroneous source elements may
either be left out, or computed via analytical expressions such as eq. (46) for the explosion, assuming near-source constant material properties
and no reflections. For any realistic earth-like parameter choice, the source elements will have a negligible influence on sensitivity kernels
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Figure 5. Explosion source radiation. Snapshots at t = 157.3 s are shown for both the reference (eq. 46, left) and the SEM-based solution (centre) for an
explosion source at r s = 3835 km with dominant period T 0 = 70 s. While the direct P wave away from the source is identical between both cases, one can
observe differences in the immediate source vicinity. Seismograms labelled 1 to 4 represent locations downwards along the axis, and 5 to 8 are locations
perpendicular from the axis as shown in the zoomed snapshots at the bottom left. The black square is the physical source location, large black dots are the
non-zero source vector locations, small black circles denote (shared) element edges and corners. Analytical and SEM traces vastly differ within the source
element, but are acceptably similar for trace 4. Fractions of λ depict respective distances in terms of dominant wavelengths, that is, all locations are still well
inside the near-field regime. We conclude that the source-bearing elements are partly erroneous as expected, but one element away yields satisfactory results.

in a global sense, particularly when attention is focused on diffracted or triplicated phases. Furthermore, the spatial extent of these elements
may well be within the source location uncertainty. Additionally, we do not observe any spurious shear motion trailing the compressional
wave. Should any such phase exist, then it does not seem to directly originate in the source representation of a spread-out moment tensor.
Note however, in this context, that our source location favourably coincides with a GLL point, resulting in higher accuracy than freely chosen
(ξ , η) (Deville et al. 2002).

5.3 Global wave propagation

After validating the stiffness terms and source terms, respectively, we now take on full global wave propagation. The moment-tensor source
with magnitude M0 = 1020 Nm is located at a depth of r s = 344 km, the unity single force is applied at the surface r r = r 0 and the respective
source time functions are Dirac delta functions. We record seismic displacement along the surface within the φ = 0 plane at epicentral distances
7.5◦ ≤ θrec ≤ 180◦, separated by 7.5◦, using the mesh in Fig. 1 and polynomial order N = 5. The time step is t = 0.25 s leading to a Courant
number C = 0.37, and seismogram length tmax = 8000 s. We convolve the Green functions with a Ricker wavelet (first derivative of a Gaussian
as defined in Section 5.2) of dominant period T0 = 100 s. The number of grid points per wavelength is nλ = vT0/h, where v is the seismic
velocity and h is the grid spacing. For the mesh and parameter choice in this section, the dominant frequencies of an S wave are sampled by
8 ≤ nλ ≤ 85 grid points, depending on the location within the mesh. Note that maximal frequencies of the source time functions are about
two times higher than dominant frequencies, such that nλ is in accordance with heuristic choices in 3-D SEM simulations (e.g. Komatitsch &
Tromp 2002a). We remain at relatively low frequencies in this test case since the SEM is scalable and the critical parameter, the number of
points per wavelength, is independent of the period. Our meshes are automatically adapted to these numerical parameters accordingly and as
such, absolute frequencies do not intrinsically determine accuracy interpretations. Rather than describing additional issues resulting from high
frequencies such as parallelization or computation time, our objective here is to delineate the accuracy of the whole wavefield penetrating the
sphere for all source types. All SEM-based seismograms are compared to synthetics from normal-mode summation, using a mode catalogue
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Figure 6. Global wave propagation upon an (Mxx + Myy ) monopole source located at 344 km depth. The top (bottom) left panel depicts the r (θ ) component
of both SEM-based (solid lines) and normal-mode displacements (dashed lines) along the surface in the φ = 0 plane for a dominant period of T0 = 100 s.
The amplitudes have been scaled with a factor of θ rec

1/3 to identify most phases at all distances. Some prominent direct, multiple and surface wave phases
are labelled in the top left figure. The panels on the right depict two sample traces from the sections on the left for both SEM (solid lines) and normal-mode
simulations (thicker, dashed lines) in absolute displacement values. Below each seismogram is the residual waveform between SEM and normal-mode trace,
magnified by a factor of 10. Note the different absolute displacement scales for each of the single trace panels.

up to 45 mHz. In Figs 6–9, we show seismograms for each of the respective source types and varying displacement components. For brevity,
we only show one moment-tensor source of each multipole type and one point-force source, i.e. four different cases. We chose excitation types
for which the φ component vanishes at φ = 0, i.e. only show r and θ components of the displacement. All traces in the global sections are
scaled by the same, but distance-dependent factor of θrec

1/3 to maintain a visible amplitude for most phases at all distances. For orientation, the
predominant phase reaching the antipode at 3900 s is the Rayleigh wave. The fit between the SEM (solid lines) and normal-mode summation
(dashed lines) is very good for all source types, phases, and distances, inasmuch as the two traces are indistinguishable for all global sections.
Also note that we correctly obtain the large amplitudes on the last trace at 180◦ (e.g. Fig. 6 top left) for all phases, in particular those that meet
at the antipode, such as surface waves and multiples. For each type and component, we show two sample traces at distances 67.5◦ and 157.5◦,
in which we can verify the excellent fits of all phases. A magnified residual waveform, defined as u = 10 × (u ref − uSEM) for any of the
components, is shown below each of the single traces to underscore the notion that for all cases we observe very small residuals of comparable
size for all distances, seismic phases, and source types. The accuracy is of the same order of magnitude as other SEM-based wave-propagation
algorithms, for example, in 3-D. We quantify the residual in an L

2 sense similar to the static case (eq. 45), but averaged over time for a given
receiver at epicentral distance θrec, as

�time(θrec) =
{∫ tmax

0 [uref(θrec, t) − uSEM(θrec, t)]2 dt∫ tmax

0 [uref(θrec, t)]2 dt

}1/2

, (47)

which is shown in Fig. 10 for the r and θ components corresponding to the four simulations of Figs 6–9. We plot �time as a function of
epicentral distances 15◦ ≤ θrec ≤ 180◦ only, since closer traces are subject to faulty source ghost phases appearing in the mode summation
and should hence be ignored for detailed accuracy studies, especially after our validation of the accuracy in the source vicinity in the last
section. The effect can still be observed in slightly larger residuals at 7.5◦ which result from these erroneous phases. The first key observation
in Fig. 10 is the apparent independence of epicentral distance and, consequently, lack of numerical dispersion, which is important for our
ultimate purpose of storing global wavefields. One should, however, bear in mind that we employ a second-order time extrapolation scheme
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Figure 7. Global wave propagation upon an Mxz dipole source located at 344 km depth. See Fig. 6 for further details.

whose dispersive error is simply buried within our acceptable thresholds, mainly due to the restrictive small time step as constrained by
eq. (23). Secondly, the L

2 residuals are of similar magnitude for all excitation types and both components, again an important consideration
for accurately representing the full moment tensor and receiver components. The L

2 residual is consistently between 0.5 and 1 per cent,
which supports our previous assertion that full-wave propagation is prone to significantly larger L

2 residuals than the static case, but still very
favourable compared to other wave propagation methods such as FD which often have squared L

2 norms (‘energy misfit’) around 1 per cent
in similar settings (e.g. Igel et al. 2002), that is, more than 10 times higher than our results in Fig. 10. One should, however, exercise caution to
generalize these comparisons, since the specific accuracy depends on a variety of parameters such as polynomial order, dimensionality, mesh
topology and extent of distortion, background model, or number of points per wavelength. The mildly higher residuals for the vertical single
force at ≤ 60◦ stem from the fact that the source is located at the surface and hence generates, relative to other phases, larger surface waves at
small distances, in addition to the abundance of erroneous ghost phases in the mode summation, as evidenced by residual amplitudes at 150 s
in Fig. 9. The dipole simulations (Fig. 7) show a slightly smaller residual compared to other excitation types due to the lack of significant
high-frequency multiples which dominate the accuracy in other cases (e.g. Fig. 6, at 4500 s on the bottom right panel showing the θ component
at distance 67.5◦). These high-frequency arrivals are naturally the most critical and least accurate fractions of a seismogram.

5.4 Energy conservation

Examining the energy conservation of the numerical scheme is a simple check on the consistency especially of the temporal discretization.
In fact, the explicit Newmark scheme used here (eq. 22) does not specifically conserve energy, but the resultant total energy is expected to
exhibit a bounded fluctuation (e.g. Kane et al. 2000; Hughes 1987). The total energy following excitation by a source is Etot = Ekin + Epot,
where the kinetic energy at time t is given by

Ekin(t) = 1

2

∫
⊕

ρ [∂t u(t)]2 d3r ≈ 1

2
u̇T(t)Mu̇(t), (48)

and the stored, potential or elastic energy in an isotropic earth at time t is

Epot(t) = 1

2

∫
⊕

{
λ [∇ · u(t)]2 + µ∇u(t) :

[
∇u(t) + (∇u(t))T] }

d3r ≈ 1

2
uT(t)Ku(t). (49)

Fig. 11 shows the kinetic, potential and half of the total energy calculated at every 10th time step for the simulations in Section 5.3. The time
window chosen includes the case of kinetic and potential energy reaching respective extrema when SS and higher multiples (between 3200
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Figure 8. Global wave propagation upon an (Mxx − Myy ) quadrupole source located at 344 km depth. See Fig. 6 for further details.

and 3500 s) or globe-encircling surface waves (at 3900 s) pass through the antipode. The total energy, indicated by the bold straight line, is
constant over time for all cases. Note the differing magnitude for each of the excitation systems. We conclude that the time evolution scheme
we employ does not dissipate or show any non-conserving behaviour throughout any of the simulations. Additionally, the energy conservation
indicates the fact that the approach is based upon a fully (3-D) enclosed system without artificial boundaries; for example, the masking for
axial boundary conditions is indeed ‘essential’ and not absorbing or damping.

6 C O N C L U S I O N S

This paper introduces a spectral-element method to solve the 3-D forward wave-propagation problem of spherically symmetric earth models as
a source-decomposed, equivalent system of six 2-D problems. Axial elements are treated using a different quadrature compared to non-axial
elements to accommodate the axial boundary conditions. The resultant system consists of three weak systems for monopole, dipole, and
quadrupole excitation types. The implementation of the method is thoroughly benchmarked for specific settings emulating the different terms
of the discrete system. The mass and stiffness terms are validated using toroidal eigenfunctions to solve the elastostatic wave equation in a
homogeneous solid sphere. These eigenfunctions allow for an easily implemented solution at each grid point, hence highlighting differences
in accuracy depending upon local mesh properties such as the vicinity of coarsening levels, the axis or the free surface. By varying degree
n and overtone l, we obtain a handle on the resolution capacity of a given mesh. Quantitatively, we compute the L

2 norm of the residual to
demonstrate the spectral convergence as a function of the polynomial order for both dipole and quadrupole types. The remaining source term
is analysed by studying the near-source radiation upon an explosion, verified using exact analytical expressions. We observe partly significant
misfits in the elements bearing non-zero source vectors in the spread-out moment-tensor formulation for the SEM, which disappear when
recording the wavefield at least two elements away from the actual physical source location, leading to highly accurate displacement traces.
Global wave propagation in a homogeneous solid sphere is validated against normal-mode summation for all source types and again reveals
an excellent fit for all spatial and temporal points. The accuracy is furthermore independent of distance, time, and source type. The lack of
dispersion for the overall wavefield is merely a consequence of the spatially spectral accuracy and a time step chosen sufficiently small such
that the temporal error does not hamper the overall accuracy. For instance, if we considered the L

2 norm of a singular phase only, we expect a
linear increase in error with distance which is, however, still negligible due to the small time step. Higher-order extrapolation schemes may
be considered in the future to further reduce dispersion. Finally, the total energy of the numerical scheme is conserved for all source types,
indicating a consistent time-stepping algorithm as well as an enclosed domain with proper boundary treatment. At large, this approach is a
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novel and fully functional method for including seismic moment tensors in a 2-D computational domain while retaining the 3-D wavefield
properties. This stage of verifying the 3-D to 2-D reduction for all source types represents the crucial accomplishment towards eventually
computing full Fréchet sensitivity kernels. Clearly, the extension to earth-like background models such as PREM (Dziewonski & Anderson
1981) is the subject of ongoing work, to appear in a subsequent paper.
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A P P E N D I X A : S P E C T R A L - E L E M E N T L I B R A RY

In the interest of completeness, we list all relevant mathematical foundations underlying the SEM as used here, without proofs or further
explanation. For details, see Hughes (1987) and Karniadakis & Sherwin (1999) on the general finite element method including geometrical
mapping, Komatitsch & Tromp (1999) on the elastodynamic spectral-element method, Bernardi et al. (1999); Fournier et al. (2004); Fournier
(2004) on axisymmetric spectral elements, and Deville et al. (2002) on tensor products and global numbering.

A1 Geometrical mapping

Depending on the geometrical complexity of elements, we employ either analytical or subparametric mapping between the reference system
(ξ , η) and the physical coordinates x = (s, z) (Fournier et al. 2004). We distinguish three fundamental elemental geometries as depicted
in Fig. A1. Given the set of vertex coordinates {x1, x3, x5, x7} for the most common, circular type (A) and the circular-linear transi-
tion type (C), any (s, z) corresponding to reference coordinates (ξ , η) is computed by analytical transformation formulae for the z ≥ 0
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Figure A1. Elemental shapes. Sketch illustrating the three fundamental element-shape geometries used to construct the mesh. The mesh on the left is a
low-resolution example to simply highlight the skeleton. (A) is the analytically expressed circular element shape, (B) is the purely rectangular element shape
necessary to mesh the central part of the domain and computed in a subparametric fashion (serendipity quadrilateral), and (C) is the connecting type between
(A) and (B), mapped using an analytical formula similar to type (A). Both (A) and (C) take on two different shapes, one of which is located within the coarsening
region, respectively. Numbers denote the collocation point indices as used in Appendix A1.

hemisphere

s(ξ, η) = 1
2

[
(1 − η) s̃bot(ξ ) + (1 + η) s̃top(ξ )

]
, z(ξ, η) = 1

2

[
(1 − η) z̃bot(ξ ) + (1 + η) z̃top(ξ )

]
, (A1)

where {s̃, z̃}top are the same for both types:

s̃top(ξ ) = r7 sin
{

1
2

[(1 − ξ ) θ7 + (1 + ξ ) θ5]
}
, z̃top(ξ ) = r7 cos

{
1
2

[(1 − ξ ) θ7 + (1 + ξ ) θ5]
}
. (A2)

{s̃, z̃}bot for type (A) read

s̃bot(ξ ) = r1 sin
{

1
2

[(1 − ξ ) θ1 + (1 + ξ ) θ3]
}
, z̃bot(ξ ) = r1 cos

{
1
2

[(1 − ξ ) θ1 + (1 + ξ ) θ3]
}
, (A3)

and for type (C)

s̃bot(ξ ) = 1
2 r1 [(1 − ξ ) sin θ1 + (1 + ξ ) sin θ3] , z̃bot = 1

2 r1 [(1 − ξ ) cos θ1 + (1 + ξ ) cos θ3] . (A4)

For z < 0, the mesh is mirrored by swapping the respective vertices x1 ←→ x7 and x3 ←→ x5 in the above formulae. The linear element
type (B) is parametrized via eight control nodes as shown in Fig. A1. We approximate the mapping by (e.g. Komatitsch & Tromp 1999)

x(ξ, η) =
na∑

a=1

Na(ξ, η)xa, and derivatives as
dx(ξ, η)

d(ξ, η)
=

na∑
a=1

d Na(ξ, η)

d(ξ, η)
xa, (A5)

where Na are shape functions defining the geometry anchored at the na = 8 control points xa , which define the so-called serendipity quadrilateral
(Hughes 1987). The shape functions are given by

N1(ξ, η) = (1 − ξ )(1 − η)(−1 − ξ − η)/4, (A6)

N2(ξ, η) = (1 − ξ 2)(1 − η)/2, (A7)

N3(ξ, η) = (1 + ξ )(1 − η)(−1 + ξ − η)/4, (A8)

N4(ξ, η) = (1 + ξ )(1 − η2)/2, (A9)

N5(ξ, η) = (1 + ξ )(1 + η)(−1 + ξ + η)/4, (A10)

N6(ξ, η) = (1 − ξ 2)(1 + η)/2, (A11)

N7(ξ, η) = (1 − ξ )(1 + η)(−1 − ξ + η)/4, (A12)

N8(ξ, η) = (1 − ξ )(1 − η2)/2. (A13)
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Table A1. Definitions of tensor notations and product operations, based on definitions in Table 1.

Type Matrix notation Index notation Axial vector notation Axial index notation

Pre-computed tensor εBsξ ε Bi j
sξ εB0

sξ ε B0 j
sξ

Derivative tensor ξ Dξ DIi
ξ D0

ξ DI 0
ξ

Transpose of Dξ DT
ξ Di I

ξ (D0
ξ )T Di0

ξ

Derivative tensor η Dη DjJ
η

Matrix product X = u ⊗ Dη X I J = ∑
j u I j D j J

η X0 = u0 ⊗ Dη X0J = ∑
j u0 j D j J

η

Hadamard product X = A � u XIJ = AIJ uIJ X0 = εB0
sξ � u0 X0 j = ε B0 j

zη u0 j

Dyadic product X = D0
ξ u0 XIJ = DI 0

ξ u0J

Given the coordinates xa at the eight control nodes, one may then readily compute coordinates at any point x (ξ , η), particularly the grid points
used in the quadrature, as defined in the following section. Partial derivatives ∂x/∂(ξ , η) and the Jacobian J = ∂ξ s∂ηz − ∂ξ z∂ηs are obtained
by straightforward differentiation of eqs (A1)–(A13).

A2 Gauss-Lobatto–Legendre quadrature

The solution to the differential equation

∂ξ [(1 − ξ 2)∂ξ PN ] = −N (N + 1) PN (A14)

with P N (1) = 1 and P N (−1) = (−1)N is a Legendre polynomial P N of order N

PN (ξ ) = 1

2N N !

d N

dξ N
(ξ 2 − 1)N (A15)

which may be computed using the induction formula

PN (ξ ) = 1

N
[(2N − 1)ξ PN−1(ξ ) − (N − 1)PN−2(ξ )] , P0(ξ ) = 1, P1(ξ ) = ξ. (A16)

Legendre Polynomials are orthogonal in L
2:∫ 1

−1
PN1 (ξ )PN2 (ξ ) dξ =

{
0, (N1 �= N2),

1/(N1 + 1/2), (N1 = N2).
(A17)

We utilize Gauss–Lobatto–Legendre nodes as quadrature points ξ N
i , 0 ≤ i ≤ N as the zeroes of (1 − ξ 2)∂ξ PN (ξ ). Gauss-Lobatto–Legendre

quadrature weights σ N
i for non-axial elements are given by

σ N
i = 2

N (N + 1)[PN (ξ N
i )]2

(A18)

and the corresponding basis functions, the Lagrange interpolating functions lN
i (ξ ), may be calculated via

l N
i (ξ ) =




(−1)N (1−ξ )P ′
N (ξ )

N (N+1) , i = 0,

1
N (N+1)PN (ξ N

i )

(1−ξ2)P ′
N (ξ )

ξ N
i −ξ

, 0 < i < N ,

(1+ξ )P ′
N (ξ )

N (N+1) , i = N .

(A19)

Note also that lN
i (ξ j ) = δ i j , which is an important property inasmuch as it gives rise to the diagonality of the mass matrix. Derivatives ∂ ξ lN

i (ξ )
are found using eq. (A14), as (Fournier 2004)

∂ξ li (ξI ) =




PN (ξI )
PN (ξi )

1
ξI −ξi

i �= I,

−N (N+1)
4 i = I = 0,

N (N+1)
4 i = I = N ,

0 otherwise.

(A20)

All of the above holds true for polynomial representation in the η direction for all elements, and the ξ direction for non-axial elements.
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A3 Gauss-Lobatto–Jacobi (0,1) quadrature

A detailed description of different quadrature rules can be found in Bernardi et al. (1999) and Karniadakis & Sherwin (1999, Appendix B),
where our specific case of (0,1) is given by setting the integrand powers equal to α = 0 and β = 1. The polynomial representation of the ξ

direction within axial elements is constructed using a different set of polynomials, defined by

P̄N (ξ ) = PN (ξ ) + PN+1(ξ )

1 + ξ
, (A21)

satisfying the differential equation

∂ξ

(
(1 + ξ 2)(1 − ξ )∂ξ P̄N

) = −N (N + 2)(1 + ξ )P̄N . (A22)

These polynomials are orthogonal in L
2
1:∫ 1

−1
P̄N1 (ξ )P̄N2 (ξ )(1 + ξ ) dξ =

{
0 (N1 �= N2),

2/(N1 + 1) (N1 = N2).
(A23)

With starting values P̄0(ξ ) = 1 and P̄1(ξ ) = 1
2 (3ξ − 1), the induction formula for N ≥ 1 reads

P̄N+1(ξ ) =
[

2N + 3

N + 2
ξ − 1

(2N + 1)(N + 2)

]
P̄N (ξ ) − N (N + 2)

(2N + 1)(2N + 3)
P̄N−1(ξ ). (A24)

Here, we define Gauss-Lobatto–Jabobi points ξ̄ N
i , 0 ≤ i ≤ N as the zeroes of (1 − ξ 2)∂ξP̄N (ξ ). Gauss-Lobatto–Jacobi (0,1) quadrature

weights σ̄ N
i are

σ̄ N
i = 4

N (N + 2)P̄2
N (ξ̄ N

i )
for 1 ≤ i ≤ N and σ̄ N

0 = 8

N (N + 2)(N + 1)2
. (A25)

The corresponding basis functions may then be computed as

l̄ N
i (ξ ) =




2(−1)N (ξ−1)∂ξ P̄N (ξ )
N (N+1)(N+2) i = 0,

1
N (N+2)P̄N (ξ̄ N

I )

(1−ξ2)∂ξ P̄N (ξ )

ξ̄ N
i −ξ

0 < i < N ,

(1+ξ )∂ξ P̄N (ξ )
N (N+2) i = N .

(A26)

Again, derivatives ∂ξ l̄ N
i (ξ ) may be found using eq. (A22), leading to (Fournier 2004)

∂ξ l̄i (ξ̄I ) =




−N (N+2)
6 i = I = 0,

2(−1)N P̄N (ξ̄I )
(1+ξ̄I )(N+1)

i = 0, 1 ≤ I ≤ N − 1,

(−1)N

N+1 i = 0, I = N ,

(−1)N+1(N+1)
2P̄N (ξ̄i )(1+ξ̄i )

1 ≤ i ≤ N − 1, I = 0,

1
ξ̄I −ξ̄i

P̄N (ξ̄I )
P̄N (ξ̄i )

1 ≤ i ≤ N − 1, 1 ≤ I ≤ N − 1, i �= I,

−1
2(1+ξ̄i )

1 ≤ i ≤ N − 1, I = i,

1
P̄N (ξ̄I )(1−ξ̄i )

1 ≤ i ≤ N − 1, I = N ,

(−1)N+1(N+1)
4 i = N , I = 0,

−P̄N (ξ̄I )
(1−ξ̄I )

i = N , 1 ≤ I ≤ N − 1,

N (N+2)−1
4 i = N , I = N .

(A27)

A P P E N D I X B : S T I F F N E S S T E R M S

In this section, we present the whole stiffness term as a tensorized system for monopole, dipole and quadrupole source types.

B1 Matrix notation, tensor products and recast stiffness system

In the interest of a succinct description, we revert to matrix/vector notation as defined in Table A1. Let us start by rewriting the non-axial
expressions eqs (34)–(37) in terms of these matrix operations as

Rα
1 = εA � uα, (B1)

Rα
2 = εBχη

� (
DT

ξ ⊗ uα

) + εBχξ
� (uα ⊗ Dη), (B2)

Rα
3 = Dξ ⊗ (

εBχη
� uα

) + (
εBχξ

� uα

) ⊗ DT
η , (B3)
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Table A2. Pre-computed matrices (E (k)
βα)i j of the leading order terms.

α k = 1 k = 2 k = 3 k = 4

Monopole & Quadrupole β = s

s (λi j + 2µi j )zi j
ξ zi j

η + µi j si j
ξ si j

η (λi j + 2µi j )(zi j
η )2 + µi j (si j

η )2 (λi j + 2µi j )zi j
ξ zi j

η + µi j si j
ξ si j

η (λi j + 2µi j )(zi j
ξ )2 + µi j (si j

ξ )2

z λi j si j
ξ zi j

η + µi j zi j
ξ si j

η (λi j + µi j )si j
η zi j

η λi j zi j
ξ si j

η + µi j si j
ξ zi j

η (λi j + µi j )si j
ξ zi j

ξ

Monopole & Quadrupole β = z

s µi j zi j
ξ zi j

η + (λi j + 2µi j )si j
ξ si j

η µi j (zi j
η )2 + (λi j + 2µi j )(si j

η )2 µi j zi j
ξ zi j

η + (λi j + 2µi j )si j
ξ si j

η µi j (zi j
ξ )2 + (λi j + 2µi j )(si j

ξ )2

z λi j zi j
ξ si j

η + µi j si j
ξ zi j

η (λi j + µi j )si j
η zi j

η λi j si j
ξ zi j

η + µi j zi j
ξ si j

η (λi j + µi j )si j
ξ zi j

ξ

Quadrupole β = φ

φ µi j (zi j
ξ zi j

η + si j
ξ si j

η ) µi j ((zi j
η )2 + (si j

η )2) µi j (zi j
ξ zi j

η + si j
ξ si j

η ) µi j ((zi j
ξ )2 + (si j

ξ )2)

Dipole β = +
+ (λi j + 3µi j )zi j

ξ zi j
η + 2µi j si j

ξ si j
η (λi j + 3µi j )(zi j

η )2 + 2µi j (si j
η )2 (λi j + 3µi j )zi j

ξ zi j
η + 2µi j si j

ξ si j
η (λi j + 3µi j )(zi j

ξ )2 + 2µi j (si j
ξ )2

− (λi j + µi j )zi j
ξ zi j

η (λi j + µi j )(zi j
η )2 (λi j + µi j )zi j

ξ zi j
η (λi j + µi j )(zi j

ξ )2

z λi j si j
ξ zi j

η + µi j zi j
ξ si j

η (λi j + µi j )si j
η zi j

η λi j zi j
ξ si j

η + µi j si j
ξ zi j

η (λi j + µi j )si j
ξ zi j

ξ

Dipole β = −
+ (λi j + µi j )zi j

ξ zi j
η (λi j + µi j )(zi j

η )2 (λi j + µi j )zi j
ξ zi j

η (λi j + µi j )(zi j
ξ )2

− (λi j + 3µi j )zi j
ξ zi j

η + 2µi j si j
ξ si j

η (λi j + 3µi j )(zi j
η )2 + 2µi j (si j

η )2 (λi j + 3µi j )zi j
ξ zi j

η + 2µi j si j
ξ si j

η (λi j + 3µi j )(zi j
ξ )2 + 2µi j (si j

ξ )2

z λi j si j
ξ zi j

η + µi j zi j
ξ si j

η (λi j + µi j )si j
η zi j

η λi j zi j
ξ si j

η + µi j si j
ξ zi j

η (λi j + µi j )si j
ξ zi j

ξ

Dipole β = z

± λi j zi j
ξ si j

η + µi j si j
ξ zi j

η (λi j + µi j )si j
η zi j

η λi j si j
ξ zi j

η + µi j zi j
ξ si j

η (λi j + µi j )si j
ξ zi j

ξ

z µi j zi j
ξ zi j

η + (λi j + 2µi j )si j
ξ si j

η µi j (zi j
η )2 + (λi j + 2µi j )(si j

η )2 µi j zi j
ξ zi j

η + (λi j + 2µi j )si j
ξ si j

η µi j (zi j
ξ )2 + (λi j + 2µi j )(si j

ξ )2

Rα
4 = Dξ ⊗ [

C � Gxy
1 � (

uα ⊗ Dη

)] + Dξ ⊗ [
C � Gxy

2 � (
DT

ξ ⊗ uα

)]
+ [

C � Gxy
2 � (

DT
ξ ⊗ uα

)] ⊗ DT
η + [

C � Gxy
3 � (

uα ⊗ Dη

)] ⊗ DT
η .

(B4)

The axial discretization eqs (38)–(41) takes the form

R̄α
1 = Rα

1 + D0
ξ

[
εA0 � (

(D0
ξ )T ⊗ uα

)]
, (B5)

R̄α
2 = Rα

2 +



D0
ξ

[
εA0 � (

(D0
ξ )T ⊗ uα

)]
(∂x = ∂s)

D0
ξ

[
εB0

sξ
� (

u0
α ⊗ Dη

)] + εB0
sξ

� [(
(D0

ξ )T ⊗ uα

) ⊗ Dη

]
(∂x = ∂z)


 , (B6)

R̄α
3 = Rα

3 +



D0
ξ

[
εA0 � (

(D0
ξ )T ⊗ uα

)]
(∂x = ∂s)

D0
ξ

[(
εB0

sξ
� u0

α

)
⊗ DT

η

]
+

[
εB0

sξ
� (

(D0
ξ )T ⊗ uα

)] ⊗ DT
η (∂x = ∂z)


 , (B7)

R̄α
4 = Rα

4 . (B8)

We assumed here that whenever summation starts at I > 0 as in eqs (38)–(40), then pre-computed matrices vanish at I = 0. Both elemental
operations ⊗ and � are optimized using unrolled loops and unit-stride cache access (Deville et al. 2002). Schematically, we start out by
computing all necessary ⊗ and � operations, and then successively add different terms before computing the next round of operations ⊗ or
�. For notational clarity, let S = ∑

β Sβ, β = s, φ, z or β = +, −, z be the original, continuous elemental stiffness integral such that
S ≈ wTKu. We are then interested in evaluating the ‘components’ (Ku)β . Additionally, we rearrange the integrand into the two sets
Sβ = S∂∂

β + S∂
β and accordingly, (Ku)β = (Ku)∂∂

β + (Ku)∂β , where S∂∂
β is the collection of integrands containing derivatives of both wβ

and uα (‘leading order’), and S∂
β is the remaining part with maximally one derivative (‘lower order’).

B2 Leading order terms

For completeness, the analytical, initial integral form of the leading order terms is, for the monopole

S∂∂
s =

∫
�e

[
(λ + 2µ) ∂sws∂sus + λ∂sws∂zuz + µ∂zws (∂suz + ∂zus)

]
s ds dz, (B9)
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S∂∂
z =

∫
�e

[
(λ + 2µ) ∂zwz∂zuz + λ∂zwz∂sus + µ∂swz (∂suz + ∂zus)

]
s ds dz, (B10)

and for the dipole,

S∂∂
+ =

∫
�e

[
(λ + 3µ) ∂sw+∂su+ + (λ + µ) ∂sw+∂su− + 2µ∂zw+∂zu+ + λ∂sw+∂zuz + µ∂zw+∂suz

]
s ds dz, (B11)

S∂∂
− =

∫
�e

[
(λ + 3µ) ∂sw−∂su− + (λ + µ) ∂sw−∂su+ + 2µ∂zw−∂zu− + λ∂sw−∂zuz + µ∂zw−∂suz

]
s ds dz, (B12)

S∂∂
z =

∫
�e

[
∂zwz [(λ + 2µ) ∂zuz + λ (∂su+ + ∂su−)] + µ∂swz (∂suz + ∂zu+ + ∂zu−)

]
s ds dz. (B13)

In the quadrupole case, S∂∂
s and S∂∂

z are identical to the monopole case, and we get additionally

S∂∂
φ =

∫
�e

[
∂swφ∂suφ + ∂zwφ∂zuφ

]
s ds dz. (B14)

Rearranging these terms into groups of identical or partly similar operations, we end up with a system of pre-computed matrices detailed in
Table A2 for the terms of the Rα

4 -type and each source type. For any given element, this entire leading order part of the stiffness matrix is then
compacted into

(Ku)∂∂
β =

∑
α

{
Dξ ⊗ [

C � E(1)
βα � (uα ⊗ Dη)

] + Dξ ⊗ [
C � E(2)

βα � (DT
η ⊗ uα)

]
+[

C � E(3)
βα � (

DT
η ⊗ uα

) ] ⊗ DT
ξ + [

C � E(4)
βα � (

uα ⊗ Dη

) ] ⊗ DT
ξ

}
, (B15)

where the difference between source types is concentrated in E(k)
βα . The quantities E(k)

βα are listed in Table A2 for monopole, dipole, and
quadrupole source types, respectively. The difference in axial versus non-axial elements is abundant in quantities C and D as defined in
Table 1. The explicit expansion of all lower-order terms for axial or non-axial elements is given in the following subsections for each source
type separately.

B3 Lower-order terms: Monopole

The lower-order terms for the monopole case are

S∂
s =

∫
�e

{
(λ + 2µ)

wsus

s2
+ λ

[
∂sws

us

s
+ ws

s
(∂sus + ∂zuz)

] }
s ds dz, (B16)

S∂
z =

∫
�e

λ∂zwz
us

s
s ds dz. (B17)

Honouring the additional terms exclusive to axial elements (see eqs B5–B7), we will develop the discretization with these additional terms in
curly braces being preceded by δeē, such that the description applies to all elements. The discretized form for any element unfolds as

(Ku)∂s = λBsξ � (
uz ⊗ Dη

) + λBsη � (
DT

ξ ⊗ uz

) + λBzξ
� (

us ⊗ Dη

) + λBzη
� (

DT
ξ ⊗ us

) + Dξ ⊗ (
λBzη

� us

)
+ (

λBzξ
� us

) ⊗ DT
η + (λ+2µ)A � us + δeē

{
D0

ξ

[
λB0

sξ
� (

u0
z ⊗ Dη

) + 3λ+2µA0 �
((

D0
ξ

)T ⊗ us

)] }
, (B18)

(Ku)∂z = Dξ ⊗ (
λBsη � us

) + (
λBsξ � us

) ⊗ DT
η + δeē

{[
λB0

sξ
�

((
D0

ξ

)T ⊗ us

)]
⊗ DT

η

}
. (B19)

B4 Lower-order terms: Dipole

We again write the dipole system in the (+, −, z) coordinate system to properly implement the axial boundary conditions in eq. (4). After
rearrangement, the stiffness system of lower-order terms then takes the form

S∂
+ =

∫
�e

{
2 (λ + µ) ∂sw+

u−
s

+ µ∂zw+
uz

s

}
s ds dz, (B20)

S∂
− =

∫
�e

{
2 (λ − µ) ∂sw−

u−
s

− µ∂zw−
uz

s
+ 2

w−
s

[
2 (λ + 3µ)

u−
s

+ (λ + µ) ∂su+ + (λ − µ) ∂su− + λ∂zuz

] }
s ds dz, (B21)

S∂
z =

∫
�e

{
2λ∂zwz

u−
s

+ µ
wz

s

(
∂zu+ − ∂zu− + uz

s

)}
s ds dz. (B22)
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For any element, the discretized version of the lower-order terms of the dipole stiffness term is

(Ku)∂+ = Dξ ⊗ (
2(λ+µ)Bzη

� u−
) + (

2(λ+µ)Bzξ
� u−

) ⊗ DT
η + Dξ ⊗ (

µBsη � uz

) + (
µBsξ � uz

) ⊗ DT
η

+δeē

{
D0

ξ

[
2(λ+µ)A0 �

((
D0

ξ

)T ⊗ u−
)]

+
[

µB0
sξ

�
((

D0
ξ

)T ⊗ uz

)]
⊗ DT

η

}
, (B23)

(Ku)∂− = Dξ ⊗ (
2(λ−µ)Bzη

� u−
) + (

2(λ−µ)Bzξ
� u−

) ⊗ DT
η − Dξ ⊗ (

µBsη � uz

) − (
µBsξ � uz

) ⊗ DT
η

+4(λ+3µ)A � u− + 2λBsξ � (
uz ⊗ Dη

) + 2λBsη � (
DT

ξ ⊗ uz

) + 2(λ+µ)Bzη
� (

DT
ξ ⊗ u+

)
+2(λ−µ)Bzη

� (
DT

ξ ⊗ u−
) + 2(λ+µ)Bzξ

� (
u+ ⊗ Dη

) + 2(λ−µ)Bzξ
� (

u− ⊗ Dη

)
+δeē

{
D0

ξ

[
2(λ+µ)A0 �

(
4

(
D0

ξ

)T ⊗ u− + (
D0

ξ

)T ⊗ u+
)]}

, (B24)

(Ku)∂z = Dξ ⊗ (
2λBsη � u−

) + (
2λBsξ � u−

) ⊗ DT
η + µA � uz + µBsξ � [

(u+ − u−) ⊗ Dη

]
+µBsη � [

DT
ξ ⊗ (u+ − u−)

] + δeē

{
D0

ξ

[
µA0 �

((
D0

ξ

)T ⊗ uz

)
+ µB0

sξ
� (

u0
+ ⊗ Dη

)] }
. (B25)

This system is computationally slightly more expensive than the monopole case.

B5 Lower-order terms: Quadrupole

In the quadrupole case, lower-order terms of the integral form eq. (7) are

S∂
s =

∫
�e

{
(λ + 2µ)

ws

s2

(
us − 2uφ

) + λ

[
∂sws

us − 2uφ

s
+ ws

s
(∂sus + ∂zuz)

]
+ 2µ

ws

s

(
∂suφ + 2us − uφ

s

)}
s ds dz, (B26)

S∂
φ =

∫
�e

{
wφ

s

[
− (2λ + 6µ)

us

s
+ (4λ + 9µ)

uφ

s
− λ∂sus + λ∂zuz − µ∂suφ

]
+ µ∂swφ

2us − uφ

s
+ 2µ∂zwφ

uz

s

}
s ds dz, (B27)

S∂
z =

∫
�e

{
λ∂zwz

us − 2uφ

s
+ 2µ

wz

s

(
∂zuφ + 2uz

s

) }
s ds dz. (B28)

The discretized version for the lower-order terms in the quadrupole case reads

(Ku)∂s = λBsξ � (
uz ⊗ Dη

) + λBsη � (
DT

ξ ⊗ uz

) + λBzξ
� (

us ⊗ Dη

) + λBzη
� (

DT
ξ ⊗ us

)
+Dξ ⊗ (

λBzη
� us

) + (
λBzξ

� us

) ⊗ DT
η +(λ+6µ) A � us − Dξ ⊗ (

2λBzη
� uφ

)
− (

2λBzξ
� uφ

) ⊗ DT
η + 2µBzξ

� (
uφ ⊗ Dη

) + 2µBzη
� (

DT
ξ ⊗ uφ

) − 2λ+6µA � uφ

+δeē

{
D0

ξ

[
3(λ+2µ)A0 �

((
D0

ξ

)T ⊗ us

)
− 4(λ+µ)A0 �

((
D0

ξ

)T ⊗ uφ

)]}
, (B29)

(Ku)∂φ = Dξ ⊗ (
2µBzη

� us

) + (
2µBzξ

� us

) ⊗ DT
η − Dξ ⊗ (

µBzη
� uφ

) − (
µBzξ

� uφ

) ⊗ DT
η + Dξ ⊗ (

2µBsη � uz

)
+ (

2µBsξ � uz

) ⊗ DT
η − 2λBzξ

� (
us ⊗ Dη

) − 2λBzη
� (

DT
ξ ⊗ us

) − 2λBsξ � (
uz ⊗ Dη

)
−2λBsη � (

DT
ξ ⊗ uz

) − µBzξ
� (

uφ ⊗ Dη

) + µBzη
� (

DT
ξ ⊗ uφ

) − 2λ+6µA � us + 4λ+9µA � uφ

+δeē

{
D0

ξ

[
−4(λ+µ)A0 �

((
D0

ξ

)T ⊗ us

)
+ 4λ+7µA0 �

((
D0

ξ

)T ⊗ uφ

)]}
, (B30)

(Ku)∂z = Dξ ⊗ (
λBsη � us

) + (
λBsξ � us

) ⊗ DT
η − Dξ ⊗ (

2λBsη � uφ

) − (
2λBsξ � uφ

) ⊗ DT
η

+2µBsξ � (
uφ ⊗ Dη

) + 2µBsη � (
DT

ξ ⊗ uφ

) + 4µA � uz + δeē

{
D0

ξ

[
4µA0 �

((
D0

ξ

)T ⊗ uz

)]}
. (B31)

Since all components vanish at the axis, all non-zero additional terms are of the same kind and for ∂ x = ∂ s . Note that the non-axial quadrupole
case includes the non-axial monopole case.

A P P E N D I X C : T O RO I DA L E I G E N F U N C T I O N S I N A H O M O G E N E O U S S P H E R E

In this section, we derive toroidal eigenfunctions for the dipole and quadrupole excitation types. These functions satisfy the source-free,
frequency-domain wave equation

−ρω2u = ∇ · T in �, (C1)

subject to the traction-free surface boundary condition r̂ · T = 0 at |r| = r0. After multiplication with a test function and partial integration,
the resultant weak form corresponding to eq. (C1) leads to the discretized, global linear system

Ku = nω
2
l Mu, (C2)
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Figure A2. Toroidal eigenfunctions in a homogeneous sphere for l = n = 11. Shown are the s and φ components of the dipole eigenfunction u1 (eq. C7) and the
quadrupole eigenfunction u2 (eq. C8), respectively as denoted above each plot. These functions multiplied with nω2

l are the reference solution to be compared
to the term M−1(Ku) as obtained by the spectral-element approach of this paper. Shading is indicative of positive (white) and negative (black) displacements.

similar to eq. (18). Given a known solution u to eq. (C1), we proceed with eq. (C2) using the exact same approach as detailed in Section 4,
setting f = 0. A solution u is the toroidal eigenfunction, given by (Dahlen & Tromp 1998)

u(r) = jl (nωlr/vs) [−r̂ × ∇1 Xlm(θ ) sin mφ] , (C3)

where jl are spherical Bessel functions (Zhang & Jin 1996), nωl are the toroidal eigenfrequencies of degree l and overtone n, vs is the constant
shear-wave velocity, −r̂ × ∇1 = −φ̂∂θ + θ̂(sin θ )−1∂φ , and Xlm are harmonics with order m. Ignoring normalization factors (i.e. Xlm →
Plm), we obtain eigenfunctions for a given eigenfrequency nωl ,

um(r) = jl (nωlr/vs)
[
−φ̂∂θ Plm(cos θ ) sin mφ + θ̂ m

sin θ
Plm(cos θ ) cos mφ

]
=

jl (nωlr/vs)
[
(ŝ cot θ − ẑ) m Plm(cos θ ) cos mφ − φ̂∂θ Plm(cos θ ) sin mφ

]
, (C4)

where Plm are the associated Legendre functions

Plm(µ) = (1 − µ2)m/2

(
d

dµ

)m

Pl (µ) (C5)

with µ = cos θ and Legendre polynomials P l (µ) as defined in eq. (A15). The derivatives Rlm(µ) = ( d
dµ

)m Pl (µ) may be computed using the
recursion formula from (Dahlen & Tromp 1998, eq. B.115)

Rl+1 m(µ) = [(2l + 1)µRlm(µ) − (l + m)Rl−1 m(µ)] (l − m + 1)−1 (C6)

with starting values R11 = 1, R21 = 3µ, R22 = 3, and R32 = 15µ. Using common identities for the derivatives of Legendre polynomials
(Dahlen & Tromp 1998), we then find for the dipole case

u1(r, θ, nωl ) = jl

(
nωlr

vs

) {
ŝRl1(cos θ ) cos θ + φ̂

[
Rl1(cos θ ) cos θ − Rl2(cos θ ) sin2 θ

] − ẑRl1(cos θ ) sin θ
}
. (C7)

Similarly, the eigenfunctions for the quadrupole case are

u2(r, θ, nωl ) = jl

(
nωlr

vs

)
sin θ

{
ŝ2Rl2(cos θ ) cos θ + φ̂ [(l − 1)(l + 2)Rl1(cos θ ) − 2Rl2(cos θ ) cos θ ] − ẑ2Rl2(cos θ ) sin θ

}
. (C8)

Note the multiplicative factor sin θ which satisfies the axial boundary conditions eq. (4) for the quadrupole. Eqs (C8) and (C7) compose the
system used for the SEM validation. Fig. A2 illustrates the s and φ components of u for dipole and quadrupole cases, respectively, at l = n =
11, where shading indicates positive (white) and negative (black) displacements. In the spherical coordinate system, we obtain for both dipole
and quadrupole cases, after dropping dependencies, θ̂ · um = jl Rlm, r̂ · um = 0, and φ̂ · um as in the cylindrical case. The eigenfrequencies

nωl are numerically computed by solving

(l − 1) jl

(
ωr0

vs

)
=

(
ωr0

vs

)
jl+1

(
ωr0

vs

)
(C9)

for each l via standard root-finding. In summary, we insert eigenfunctions u into our SEM and compute Ku following Appendix B. The
validation then lies in using the SEM to compute M−1(Ku) and comparing the result with nω l

2u.
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