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Accepted 2008 April 4. Received 2008 February 17; in original form 2007 October 23

S U M M A R Y
We portray a dedicated spectral-element method to solve the elastodynamic wave equation upon
spherically symmetric earth models at the expense of a 2-D domain. Using this method, 3-D
wavefields of arbitrary resolution may be computed to obtain Fréchet sensitivity kernels, es-
pecially for diffracted arrivals. The meshing process is presented for varying frequencies in
terms of its efficiency as measured by the total number of elements, their spacing variations
and stability criteria. We assess the mesh quantitatively by defining these numerical parameters
in a general non-dimensionalized form such that comparisons to other grid-based methods are
straightforward. Efficient-mesh generation for the PREM example and a minimum-messaging
domain decomposition and parallelization strategy lay foundations for waveforms up to fre-
quencies of 1 Hz on moderate PC clusters. The discretization of fluid, solid and respective
boundary regions is similar to previous spectral-element implementations, save for a fluid
potential formulation that incorporates the density, thereby yielding identical boundary terms
on fluid and solid sides. We compare the second-order Newmark time extrapolation scheme
with a newly implemented fourth-order symplectic scheme and argue in favour of the latter in
cases of propagation over many wavelengths due to drastic accuracy improvements. Various
validation examples such as full moment-tensor seismograms, wavefield snapshots, and energy
conservation illustrate the favourable behaviour and potential of the method.
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1 I N T RO D U C T I O N

The solution to the 3-D elastodynamic wave equation in spherically

symmetric background models has been addressed from various

angles in the past such as normal-mode summation (Lognonné &

Romanowicz 1990; Dahlen & Tromp 1998), direct solution method

(Cummins et al. 1994; Geller & Ohminato 1994; Kawai et al.
2006), GEMINI (Friederich & Dalkolmo 1995), or axisymmetric

finite differences (Igel & Weber 1995, 1996; Chaljub & Tarantola

1997; Toyokuni et al. 2005; Toyokuni & Takenaka 2006). While

these methods present reasonable approximations or precise solu-

tions to the problem of singular seismograms upon such media,

the task of saving full time–space wavefields to construct exact,

arbitrary-resolution seismic sensitivity kernels at the global scale

(Nissen-Meyer et al. 2007a) has remained unfulfilled, mostly due

to the computational load of such high-frequency fields (e.g. 1 Hz)

in terms of CPU time (up to years), run-time memory occupation

(Terabytes) and disk storage (1018 bytes). As proposed in Nissen-

Meyer et al. (2007b), we argue for usage of a 2-D spectral-element

method (SEM) on these grounds due to its favourable cost-accuracy

trade-off for whole wavefields at the desired resolutions with its rela-

tive ease to accurately compute all necessary displacement, velocity,

and strain tensor fields throughout the domain. In that introductory,

methodological paper, we showed how to solve and implement a 2-D

weak (variational) form of elastodynamics for a full moment-tensor

source and validated the solution against normal-mode summation

for a homogeneous solid domain. Here, we shall address all aspects

related to realistic earth models, that is, the solid–fluid discretiza-

tion given a number of arbitrary discontinuity radii and velocities

in a spherical semi-disk as shown in Fig. 1 (compare similar finite

difference domains, e.g. Igel & Weber 1996; Thomas et al. 2000;

Toyokuni et al. 2005). One generally constructs spheroidal skeletons

of quadrilateral grid cells for respective finite depth ranges and con-

nects these either conformingly or non-conformingly. While this is

certainly not an ideal approach to accommodate grid spacing varia-

tions and seismic velocities, it has gained widest popularity due to its

simplicity. Alternatively, one may optimize the mesh construction

based on triangles (Käser & Dumbser 2006; Mercerat et al. 2006)

or irregular grids (Käser & Igel 2001), both of which are supe-

rior for meshing but carry an inevitable computational burden since

either interpolations, topological book-keeping, and index arrays

need to be invoked, or the system may loose advantages such as the

explicit time scheme, or tensorized matrix terms. Exploiting the ad-

vantageous simplicity of this 2-D computational domain, the mesh-

ing technique presented here is tailored towards flexible input such

as the maximal frequencies and a mere list of discontinuities. The

problem that velocities increase, while spherical-grid arc lengths

decrease with depth has been tackled in 3-D SEM incarnations
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Figure 1. Left-hand panel: The semicircular, solid–fluid domain � = �s + �f discretized for the PREM background model using quadrilateral elements �e

for dominant source period T0 = 20 s. Note that all discontinuities are honoured and several conforming coarsening levels are included to maintain a relatively

constant resolution throughout the domain. Top right-hand panel: Enlargement of the crust for one (right-hand side) and two (left-hand side) crustal layers, and

the upper mantle, including one mesh coarsening region. Note the variable vertical spacing due to discontinuities. Bottom right-hand panel: To circumvent the

singularity at the centre, we apply eq. (5) to reshape rectangular elements, warranting an easy handle on grid spacing which varies maximally at the outermost

elements of this central region.

by including coarsening regions such that the lateral number of

elements above these is twice the number of elements below

(Komatitsch & Tromp 2002) which we adopted for our simpler 2-

D case (Nissen-Meyer et al. 2007b). Even in 2-D, we need a divide
et impera parallelization concept for source periods below about 5 s.

The convenient disk topology suggests a cake-piece decomposition

to account for maximal load balancing and minimal communication,

following the one-message approach of Tufo & Fischer (2001) and

Deville et al. (2002). With the generation of high-frequency global

wavefields in mind, we aim at maintaining high accuracy after prop-

agation over many wavelengths. We therefore adapt a symplectic

fourth-order time scheme which enjoys wide popularity in numer-

ical astrophysics and molecular dynamics (e.g. Channell & Scovel

1990; McLachlan & Quispel 2006) and has recently been suggested

for the elastodynamic case (Ampuero & Nissen-Meyer 2008). Its

CPU cost is about 2.5 times that of the conventional second-order

Newmark scheme, but the accuracy significantly higher. Finally,

we show seismograms for various settings and validate their accu-

racy against normal-mode summation. In addition, we examine the

method via wavefield snapshots at critical depths such as the solid–

fluid interface and the crust in light of relying on spatio-temporal

global wavefields as the backbone for sensitivity kernels. The ap-

pendix provides some background on symplectic schemes.

2 M E S H I N G O F 1 - D B A C KG RO U N D

M O D E L S

2.1 Preliminaries and general constraints

Let us first define some geometric notation. As shown in Fig. 1 on

the left-hand panel, we work in a semi-disk � = �s + �f of outer

radius r0 spanned by x̂2D = ŝ + ẑ = r̂ + θ̂, where s ∈ [0, r 0],
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Figure 2. Left-hand panel: Elementally minimal and maximal characteristic lead times scaled by the time step and Courant number, τp,sC0/�t in the spherical

part of the model space as a function of radius for PREM with source period T0 = 10 s. The vertical line to the left denotes unity, that is, minimal possible

min[τ p] due to the definition of �t in eq. (2), and the vertical line to the right the corresponding maximal value given by the relationship for the source period,

eq. (1), that is, T0C0/(n0
��t). Right-hand panel: Local temporal oversampling in terms of period and time step. Unity would be equivalent to the ideal case

of no variation for the characteristic lead time τ whatsoever, impossible for any elastic medium. A more realistic aim, the empty circles to the left denote the

ratio τ p/τ s which represents the limiting case of ideal meshing for the given background model and the inevitable grid spacing variation due to the polynomial

basis of Gauss–Lobatto–Legendre points (Nissen-Meyer et al. 2007b), that is, with no oversampling due to suboptimal meshing. The vertical line to the right

is the constant ratio (T0/�t)(C0/n0
�), that is, the global worst case scenario after which these parameters have been chosen.

z ∈ [−r 0, r 0] refer to cylindrical coordinates, and radius r ∈ [0, r 0]

and colatitude θ ∈ [0, π ] denote the spherical system. The longitude

φ ∈ [0, 2π [ is identical for both coordinate systems, x̂3D = x̂2D + φ̂.

Material properties are invariant in φ, and the seismic wavefields

either invariant (monopole sources) or analytically continued from

the (s, z) plane (Nissen-Meyer et al. 2007a); as a result we do not

need to discretize this third dimension. The grid structure represents

the tiling into non-overlapping solid (�s
e) and fluid (�f

e) elements

within which functions are analytically mapped to a reference square

[−1, +1]2 to be expanded upon a polynomial basis (see Section 3.2).

The generation of a tangible mesh is no trivial matter. The fol-

lowing factors need to be considered as specific constraints from

the spectral-element approach (see also Nissen-Meyer et al. 2007b,

Sections 3.1 and 4.1):

(i) Quadrilateral element shapes.

(ii) Non-overlapping element boundaries.

(iii) Discontinuities to coincide with element boundaries.

Point (i) is a minor issue inasmuch as the nature of sharp global

boundaries is spherical, that is, mildly deformed and we do not need

to accommodate sharp wedges such as in regional velocity mod-

els which may considerably influence the spacing variability and

accuracy. We however face the complication that the seismic ve-

locity vp,s(r) generally increases, while horizontal grid spacing (for

spheroidal topologies) decreases with depth which works as a doubly

detrimental effect for meshing purposes. Thus, we need to employ

mesh coarsening to remediate these issues. Unless the expensive

mortar element method (Chaljub et al. 2003) or a discontinuous

Galerkin approach based on numerical fluxes (Käser & Dumbser

2006) are used, constraint (ii) only permits conforming coarsening

architectures (Komatitsch & Tromp 2002), which is what we chose

(Nissen-Meyer et al. 2007b). Due to the latter point (iii), however,

we are faced with problems such as discretizing the thin crustal lay-

ers even for long periods, or the existence of the fluid outer core

(FOC), and drastic velocity changes across the inner-core boundary

(ICB, see Section 2.3). For elastic-wave phenomena, one seeks a

discretization in which the local P- or S-velocity-dependent wave-

length �[vp,s(r )] is sampled by a minimal variation in the number of

gridpoints per wavelength n� anywhere in the spatial domain, and,

simultaneously, minimal variation in the number of time samples

T0/�t for the source-induced, constant dominant (i.e. peak spec-

trum) period T0 = �[v(r )]/v(r ). The limiting values for the number

of gridpoints per wavelength, n0
� = min[n�(r , θ)], controlling the

resolution, and the Courant number, C0 = max [C(r, θ )], controlling

the stability, are inherent properties of the numerical scheme. They

are related to T0 and �t via the characteristic lead time τ p,s(r , θ ) =
�x(r , θ )/vp,s(r )1

T0 = n0
� max [τs(r, θ )], (1)

�t = C0 min [τp(r, θ )], (2)

where for each element, grid spacing �x(r, θ ) also depends on θ

due to the irregular Gauss–Lobatto–Legendre (GLL) point distribu-

tion across elements (Nissen-Meyer et al. 2007b), the occurrence

of coarsening levels and the discretization of the central region.

Meshing in light of these constraints and ideas principally aims at

accommodating two factors: (i) obtaining a smallest possible total

number of elements to minimize the run-time memory cost with (ii)

the least variation in τ p,s(r , θ ). This non-unique meshing procedure

can be addressed from many angles.

1 Subscripts p,s are mnemonic indicators for adhering to the respectively

largest and smallest velocities for a given location; τs in the fluid for exam-

ple is defined by the overarching P-wave velocity, and near the surface by

surface-wave velocities.
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Table 1. Characteristic lead times and time steps for various mesh resolutions and Courant number

C0 = 0.6 and n0
� = 6.

T0 [s] min (τ lat
p ) [s] min (τ rad

p ) [s] max (τ lat
s ) [s] �t [s] max (τs)C0/�t T0/min (�teff)

5 0.0917 0.117 0.832 0.0555 9.08 8.99

10 0.182 0.234 1.66 0.111 8.97 9.16

20 0.356 0.239 3.32 0.121 16.46 13.9

40 0.687 0.239 6.45 0.121 32.0 27.9

2.2 The background-model based spherical mesh

We chose a straightforward approach to define the mesh for our 2-D

geometry: Given an anticipated period T0 to be resolved, n0
�, and

the location and velocity jump across discontinuities, we calculate

the smallest global grid spacing and relate that to an appropriate

number of lateral elements at the surface via the number of coarsen-

ing levels and the number of processors Nproc (see Section 2.5). The

global time step is found given the limiting Courant number C0 and

min[τ p] from the newly created mesh. For the SEM, the minimal

possible number of points per wavelength is n0
� ≈ 4 (e.g. Ampuero &

Nissen-Meyer 2008), whereas C0 is usually determined empirically

and depends on the type and order of the time extrapolation scheme

(see Section 3.4) and model-space dimension. We obtain stable, ac-

curate simulations up to C0 = 0.6, but one should treat this choice

carefully for each different mesh and time scheme (see Section 3.4).

Clearly, for any mesh containing model property or grid spacing

variations, �t and T0 are the global worst-case combinations, and

the actual, local Courant number and number of gridpoints per wave-

length are variables across the mesh. All applications in this paper

are undertaken with a polynomial order Npol = 4. Note that small

polynomial orders ease matters in two ways: the smallest grid spac-

ing within elements upon a GLL basis varies as N−2
pol, and, secondly,

smaller element sizes allow for easier adaptation to material inter-

faces, especially regarding closely spaced discontinuities like in the

crust. Fig. 1 shows an example of a PREM model discretization for

T0 = 20 s (left-hand panel), and two magnified regions of interest,

that is, the crust and upper mantle (top right-hand panel) and the

central region (bottom right-hand panel, see next section). Lower

resolutions are less effective and expose larger spacing variations,

as seen in the crust. Note the variable vertical spacing due to the

discretization of adjacent discontinuities such as 600 and 660 km.

Generally, meshing is done only upon the lowest velocities (surface

waves near the surface, S waves in deeper solid, P waves in fluid), but

one subsequently determines the time step based on largest (P wave)

velocities. It is thus desirable to assess this non-unique, potentially

iterative process in terms of efficiency and overall cost. We present

the mesh realization in terms of non-dimensionalized parameters,

namely the characteristic lead time

τp,s

min[τp]
= τp,s

C0

�t
, (3)

and the local oversampling ratio

T0

�t eff(x)
= T0

n0
�τp(x)

. (4)

In both cases, the definition contains all relevant constant parame-

ters such that this analysis can be viewed as independent both of the

actual mesh resolution and the choice of the spatio-temporal dis-

cretization scheme (spectral elements, finite differences, etc.) and

may, therefore, be useful in estimating the mesh quality for varying

resolutions and methods. In Fig. 2 on the left-hand panel, we show

the variation of the characteristic lead time for the spherical part of

the domain as a function of radius for a PREM model realization

with T0 = 10 s. We plot radial/lateral and maximal/minimal values

of τ p,s for each element, respectively. Clearly, the mesh coarsening

is reflected by the jumps in lateral spacing, whereas the radial struc-

ture is smoothly kept within the bounds set by the lateral values.

Another apparent feature is the fact that the lateral characteristic

lead times τp seem to follow two profiles, that is, for a given ra-

dius, there are two minimal spacings. This is merely the result of

the fact that we employ a different polynomial basis within axial

elements [Gauss–Lobatto–Jacobi (GLJ) points] than for non-axial

elements (GLL points). The profile with smaller values is due to ax-

ial elements, and all others follow the profile for larger values (see

Nissen-Meyer et al. 2007b, Section 3). The distinction only exists

for lateral τ as we utilize the same GLL points in the radial direc-

tion for all axial and non-axial elements. The right-hand panel in

Fig. 2 shows the local oversampling ratio as a function of radius, and

denotes the local numerical gap between defining largest grid spac-

ing upon the period, but simultaneously noting the smallest spacing

to abide stability for the temporal extrapolation. The lower bound is

the mere τp/τs ratio, that is, the ideal case with local oversampling

due to meshing, and the higher bound is the scaled ratio of period

and time step T0/�t , that is, the global worst case. As before, the

radial spacing follows a relatively smooth profile along the idealized

case of the characteristic lead time ratio, whereas the lateral spacing

is subject to coarsening layers and the main contributor to spacing

variability or deviation from the smooth profile. Both these plots

give an idea about the mesh quality, inasmuch as they delineate ex-

cursions from the respective minimal values (compare Komatitsch

& Tromp 2002). Table 1 summarizes all relevant parameters for

resolutions between T0 = 5 s and T0 = 40 s. Evidently, the smallest

radial spacing is constant for meshes above 10 s such that the time

step does not increase with the period, and the ratio of minimal ver-

sus maximal τ increases with the period. Apart from these cases of

T0 > 10 s, the meshing process is consistent and independent of the

resolution in that source period T0 and τ are linearly related and their

ratio remains constant. The non-dimensionalized oversampling ra-

tio in the last column is equally independent of the actual resolution

as long as discontinuity locations do not determine the grid spacing

as for T0 ≥ 10 s.

2.3 The central region

The singularity at r = 0 is circumvented using linear elements

(Chaljub 2000) which introduces an additional problem: the vast

spacing variations between linear r < rsl and circular regions r >

rsl. We accommodate this by defining

|x |p + |y|p = |r |p, x = s + z, y = s − z, 1 ≤ p ≤ 2, (5)

where the exponent p can vary either linearly, quadratically, or cubi-

cally with the radius r (see Fig. 1). We then maintain an acceptable
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min [τp] ≤ τ p,s(r < rsl, θ ) ≤ max[τs] where we take the extremal

values of τ p,s from the spherical domain r ≥ rsl, thereby avoiding

the case that these linear elements determine the overall cost. Ap-

plying the mapping eq. (5), elements along the diagonal directions

x = 0 and y = 0 are extremely deformed, and therefore, subse-

quently stretched outwards by half an element size, respectively

(see Fig. 1c). The high mesh density in the inner-core stems from

the fact that we effectively follow a drastic velocity drop across the

inner-core boundary (ICB) since we only need to resolve outer-core

P waves but inner-core S waves.

2.4 Mesh scaling and computational cost

Based on the two previous sections, we now revert to estimating the

overall cost of the scheme that is launched upon a mesh as defined

here. In recent work, Ampuero & Nissen-Meyer (2008) suggest for

the cost on a topologically and structurally homogeneous mesh the

factor [L/(Npol�x)]D[(L/v)/�t] for fixed polynomial order Npol,

where L is the total propagation length, and D the dimension. As-

sessing the highly non-regular mesh, we modify this expression such

that we can determine the quality and scaling properties as a func-

tion of the resolution. Let the cost be factorized into instantaneous

cost (or an indicator for run-time memory occupation) I formed by

the total number of elements Nel, and the extrapolation cost E , that

is, the number of time steps:

I = Nel

N ref
el

= 2

πr 2
0

(Npol�xmax)2 Nel, (6)

E = �t ref

�t
= T0

2�t
. (7)

In eq. (6), we scale Nel with an approximate reference number of

fewest possible elements, assuming global coverage by the largest

grid spacing such that min[I] = 1 represents the idealized scenario

were there no velocity and spacing variation for a given period T0.

In eq. (7), we take the sampling rate from the Nyquist sampling

theorem as �t ref = T0/2, such that again min[E] = 1 represents

the cheapest possible setting. Fig. 3 depicts the instantaneous and

extrapolation cost, respectively, as a function of period for PREM

and PREM-1-crust realizations of the meshing technique. Evidently,

low resolution is relatively ineffective inasmuch as the time step is

controlled by the smallest grid spacing which in turn is the mere ra-

dial separation of the two closest discontinuities, mostly in the crust.

For both cost functions, we enter another regime below 10 s, where

the meshing process itself controls the computational cost and the

two models are equally expensive. The slight increase of instanta-

neous cost with higher resolution below 7 s represents the cutoff

resolution below which the instantaneous cost does not decrease

any further due to the background model heterogeneities, overall

velocity contrasts and the necessity to honor smaller velocities with

smaller element sizes, independent from the actual resolution. The

asymptotic convergence to 50 for the extrapolation cost reflects the

ratio T0/�t (as shown on the right-hand side of Fig. 2) which is then

independent of the resolution but merely the difference in maximal

and minimal characteristic lead times. In both instantaneous and ex-

trapolating cost functions, the mesh is more cost-effective with in-

creasing resolution, which is expected as we asymptotically mimic a

continuous medium when increasing resolution at fixed background

structure: we are progressively less limited by grid constraints such

as discontinuity locations, permissible lateral number of elements,

coarsening levels, and hemispheric mirror symmetry.
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Figure 3. Computational cost of the mesh. Top panel: Instantaneous cost,

that is, the size of the mesh. Bottom panel: Extrapolation cost, that is, the

number of time steps. Both functions are constructed in a non-dimensiona-

lized fashion such that they cancel out resolution dependencies when plotted

as a function of the source period T0.

2.5 Parallelization and domain decomposition

The 2-D meshes described in the previous section are dense enough

to reach typical memory limits when going below T0 ∼ 5 s. Such a

mesh contains about 107 gridpoints, each carrying up to 40 (single-

precision) global, scalar floating-point numbers at run-time mem-

ory, summing up to 1.5 GByte shared memory. This shall not remain

a centennial problem in the wake of hardware improvements, but

as we do strive to compute sensitivity kernels down to 1 s, it is

indispensible to parallelize the method, especially in light of the

extensive wavefield output. With the limited life-time of the paral-

lelized version in mind, the code is written such that all message

passing, communication and domain decomposition issues are con-

fined to a single module and small amount of call statements to

allow for a trivial denunciation of the parallel world. When spread-

ing the computational workload across several CPUs and memory

units, one seeks to minimize inefficiency (work imbalance), latency
(number of neighbouring processors) and bandwidth (vector length

to be communicated). We follow an approach by Tufo & Fischer

(2001) (see also, Deville et al. 2002) with predefined index vectors

of arbitrarily located gridpoints for each processor-processor pair

to be exchanged such that processors may harbour separate subdo-

mains or share multiple edges but always exchange one message

with any neighbour. Fig. 4 shows examples of the domain decom-

position strategy for the mesh down to T0 = 10 s for four, eight and

16 processors from left- to right-hand side. We chose to split the

domain laterally such that each processor has an equal amount of

fluid and solid elements at the inevitable expense of focusing the

axial workload (additional terms and source) onto two processors

that occupy most of the axis (e.g. black and green domains in the
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Figure 4. Domain decomposition for T0 = 10 s and four (left-hand panel), eight (middle panel) and sixteen (right-hand side two panels) processors. Each

processor has the same number of elements (load-balance), and maximally two neighbours (minimal latency) with small shared boundaries (small bandwidth).

Each processor touches the axis, albeit to varying amounts. Axial terms are however 1-D, and do not add any countable CPU time to the overall scheme. The

central region is subdivided such that each processor has exactly the same amount of elements.

left-hand panel). With axis treatment being 1-D, this does not hamper

the favourable scaling of the parallelization. At this point, it is im-

portant to recall the application of saving spatio-temporal wavefields

for the computation of sensitivity kernels, that is, such extensive I/O

shall overshadow any slight processor imbalance due to additional

axial terms or the source by and large. The actual number of pro-

cessors needs to be an even multiplicative of 2 due to the equatorial

symmetry and the connection of the spheroidal with the central re-

gion. While the former is trivial to decompose simply based upon

colatitude, the latter central part poses a problem in keeping with

the load-balance philosophy. We tackled this issue as seen in the

magnified right-hand panel of Fig. 4 by defining discrete polyno-

mials z(s) under the premises of covering the same discrete area,

maintaining a respective vertical and diagonal ‘thickness’ of at least

one element, choosing outer-end locations given by the spheroidal

processor latitudes, and touching the axis with at least one element.

Most importantly, this approach guarantees exact load balancing in

terms of number of elements, and minimal communication such

that each processor only touches maximally two neighbours, taking

an inherent topological advantage of the 2-D semi-disk bounded by

the axis. Detailed analyses of fractional run-times and quantitative

scaling can be found in Nissen-Meyer (2007).

3 T H E S O L I D – F L U I D S Y S T E M

3.1 3-D weak form

For the remainder of this paper, we will treat a non-rotating, non-

gravitating, isotropic (Lamé parameters λ, μ) earth model. The 3-D

elastodynamic weak form comprises the following three integral

equalities for the displacement-potential vector (u, χ ) in an appro-

priate space with square-integrable derivatives for all admissible test

or trial functions (w, w) (Nissen-Meyer et al. 2007a):

0 =
∫

SIC

ρ w · ü d3x −
∫

ICB

(r̂ · w)χ̈ d2x

+
∫

SIC

{
λ(∇ · w)(∇ · u) + μ∇w :

[
∇u + (∇u)T ]}

d3x, (8)

0 =
∫

FOC

κ−1wχ̈ d3x +
∫

ICB

w(r̂ · u) d2x

−
∫

CMB

w(r̂ · u) d2x +
∫

FOC

ρ−1∇w · ∇χ d3x, (9)

{
p̂ · w(rr ẑ)δ(t)

M : ∇w(rs ẑ)H (t)

}

=
∫

SMC

ρ w · ü d3x +
∫

CMB

(r̂ · w)χ̈ d2x

+
∫

SMC

{
λ(∇ · w)(∇ · u) + μ∇w :

[
∇u + (∇u)T ]}

d3x, (10)

where ρ is the mass density, κ the incompressibility, p̂δ(t) the im-

pulsive unity single-force vector acting at the receiver at axial radius

r r and M H(t) the moment tensor at the source at axial radius r s as a

step function in time, and second time derivatives are abbreviated as

χ̈ = ∂2
t χ . Regions solid-inner core (SIC), fluid-outer core (FOC),

and solid mantle and crust (SMC) in eqs (8)–(10) are coupled by

virtue of the surface integrals over inner-core boundary (ICB) and

core–mantle boundary (CMB). The fluid region eq. (9) is treated via

a displacement potential formulation (Nissen-Meyer et al. 2007a)

u = ρ−1∇χ, (11)

such that the fluid-domain wave equation becomes

κ−1χ̈ = ∇ · (ρ−1∇χ ). (12)
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Note that the inclusion of the inverse density in this definition of

the potential χ results in boundary integrals in eqs (8)–(10) that

are independent of any intrinsic material properties. This is differ-

ent from other spectral-element applications (Komatitsch & Tromp

2002; Chaljub & Valette 2004), in which the density-free potential

leads to solid–fluid boundary terms that depend upon the discon-

tinuity jumps. This is necessitated by their inclusion of gravita-

tion, but in our gravity-free case it is indeed feasible to pursue this

convenient definition in eq. (11). For spherically symmetric mod-

els, the 3-D weak system eqs (8)–(10) may be reduced to its 2-D

equivalent by factorizing (u, χ ) and (w, w) into their (s, z) and φ

dependencies and analytically evaluating the longitudinal integrals

such as
∫ 2π

0
sin2 φ dφ = π as shown in Nissen-Meyer et al. (2007a,

Section 4.4).

3.2 Spatial discretization: the fluid core and its boundaries

The dimension reduction yields a collection of integrals to be eval-

uated over the fluid and solid parts of the D-shaped domain, as well

as along their boundaries. These integrals are broken into a sum

of elemental integrals, the evaluation of which requires knowledge

of the geometrical mapping, and usage of a quadrature rule in the

parent domain [−1, +1]2. Following Nissen-Meyer et al. (2007b,

Sections 3.2–3.3), we approximate integrals over a fluid element �f
e

by∫
�f

e

χ (s, z, t) s ds dz ≈

N∑
p,q=0

σ N
p σ N

q s(ξp, ηq )J (ξp, ηq )
N∑

i, j=0

l N
i (ξp)l N

j (ηq )χ i j (t), (13)

where σ p,q are integration weights, J the Jacobian, and lN
i (ξp) the

ith Lagrange interpolating function of polynomial order N eval-

uated at GLJ points ξp in an element touching the axis, or GLL

points elsewhere in the domain (Fournier et al. 2004). We will re-

frain from a notational distinction between axial and non-axial ele-

ments for the sake of brevity, and note special axial treatment when

necessary.

3.2.1 Fluid mass and stiffness terms

Using the notation of Nissen-Meyer et al. (2007b, Section 4), the

mass term for a non-axial element inside the fluid reads∫
�f

e

κ−1wχ̈s ds dz ≈
∑

I J

w I J
∑

i j

M I Ji j
f χ̈ i j =

∑
I J

w I J (κ I J )−1σI σJ s I JJ I J χ̈ I J . (14)

Axial elements are treated equivalently after the substitution

σI → σ̄I (1 + ξ̄I )−1 and application of L’Hospital’s rule on the axis

s0J (1 + ξ̄0)−1 = (
∂ξ s

)0J
(Nissen-Meyer et al. 2007b, Section 3.3).

Note that the mass terms are the same for monopole, dipole and

quadrupole source types, respectively, since the average over sin2 φ

and cos2 φ is the same as over sin2 2φ and cos2 2φ. Compared to the

lengthy solid stiffness terms in Nissen-Meyer et al. (2007b, appendix

B), the fluid stiffness terms take on a straightforward, computation-

ally light form. All source types contain the basic scalar, monopole

Solid

s
f
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Fluid

rsf

1

r

s

z

e
f

(0,0)

(0,N)

(N,N)

(N,0)

s
e

q

q

q

W

W

S

Figure 5. Sketch to illustrate our nomenclature around a solid–fluid bound-

ary (in this case CMB). rsf is the radius, and �s
f the surface of the boundary.

(.,.) denote the respective elemental indices (I , J ) of Gauss–Lobatto–

Legendre points of the boundary-hugging corner points of elements above

and below.

Laplacian integral∫
�f

e

ρ−1 (∂sw∂sχ + ∂zw∂zχ ) s ds dz ≈
∑

I J

w I J

[ ∑
i

DI i
ξ Ci J Gi J

1

∑
j

D j J
η χ i j +

∑
p

DI p
ξ C pJ G pJ

2

∑
i

Dip
ξ χ i J

+
∑

j

D J j
η C I j G I j

3

∑
i

Di I
ξ χ i j +

∑
q

D Jq
η C I q G I q

4

∑
j

D jq
η χ I j

]
.

(15)

The dipole fluid stiffness term is completed by adding to eq. (15)

once, and the quadrupole fluid stiffness term four times, the expres-

sion∫
�f

e

ρ−1s−2wχs ds dz ≈
∑

I J

w I J (ρ I J )−1σI σJ (s I J )−1J I J χ I J (16)

for non-axial elements and∫
�f

e

ρ−1s−2wχs ds dz ≈
∑
I>0 J

w I J σJ

[
(ρ I J )−1σI (s I J )−1J I J χ I J

+DI 0
ξ (ρ0J )−1σ̄0J 0J (∂ξ s0J )−1

∑
i>0

Di0
ξ χ i J

]
(17)

for axial elements. We abbreviated several quantities as defined in

Nissen-Meyer et al. (2007b, Table 1):

Ci j = σiσ j si j (J i j )−1 (non-axial),

Ci j = σ̄iσ j si j (1 + ξ̄i )
−1(J i j )−1 (axial, i > 0),

C0 j = σ̄0σ j s
0 j
ξ (J 0 j )−1 (axial, i = 0),

DIi
ξ = ∂ξ lI (ξi ), D J j

η = ∂ηlJ (η j ) = ∂ξ lJ (ξ j ),

Gi J
1 = zi J

ξ zi J
η + si J

ξ si J
η , G pJ

2 = z pJ
η z pJ

η + s pJ
η s pJ

η ,

G I j
3 = z I j

ξ z I j
η + s I j

ξ s I j
η , G I q

4 = z I q
ξ z I q

ξ + s I q
ξ s I q

ξ ,

where for example, s ξ = ∂ ξ s.
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Figure 6. Left-hand panel: Global seismograms from the symplectic SEM and normal-mode summation for a spherical version of Lamb’s problem, with

the surface wave window used to compute the errors. Differences between the methods are indistinguishable. Right-hand panels: Longitudinal-component

seismograms at � = 97.5◦ for the symplectic scheme (top panel) and the Newmark scheme (bottom panel) compared to mode synthetics. Both panels contain

the ten-fold exaggerated residual between the two traces below the seismogram.

3.2.2 Solid–fluid coupling terms

Let
∑ = ∑s

f

⋃ ∑f
s denote the union of solid–fluid boundaries such

that we can specify, for example, those non-axial element edges in

the solid that touch the boundary at radius rsf from above by
∑s

e

and those axial element edges in the fluid that touch the boundary

from below by
∑e

f , as shown in Fig. 5. Note that only purely circular

element types (see Nissen-Meyer et al. 2007b, Appendix A) may be

located at discontinuities. We also define the colatitudinal element

boundaries such that within an element θ 1 ≤ θ ≤ θ 2 for the northern

hemisphere and vice versa for the southern hemisphere. We can then

represent the two types of boundary terms as∫
∑s

e

(ws sin θ + wz cos θ ) χ̈ r 2 sin θ dθ ≈ r 2
sf

2
|θ2 − θ1|∑

I

σI (sin θ )I 0

[
w I 0

s (sin θ )I 0 + w I 0
z (cos θ )I 0

]
χ̈I 0 (18)

for non-axial elements inside the solid region, and∫
∑e

f

w (us sin θ + uz cos θ ) r 2 sin θ dθ ≈ r 2
sf

2
|θ2 − θ1|∑

I

w I 0σI (sin θ )I 0

[
uI 0

s (sin θ )I 0 + uI 0
z (cos θ )I 0

]
(19)

for non-axial elements inside the fluid. Note that the statically pre-

computable factors such as (r 2
sf/2)|θ2 − θ1|σI (sin θ )2

I 0 are identical

in both cases and on both sides of the boundary since our potential

formulation eq. (11) results in such material-independent boundary

terms. Furthermore, the coupling terms are identical for all exci-

tation types for the same reason as the mass terms. For axial ele-

ments, we again replace σ I by σ̄I (1 + ξ0)−1 in eqs (18) and (19),

respectively. For the axis I = 0 itself, we apply L’Hospital’s rule to

remove the singularity: (sin θ )00(1 + ξ0)−1 = (∂ξ s)00 = 1
2
θ2rsf. In

practice, the solid–fluid model leads to two distinct domains with

respective global numbers such that the corresponding indices from

both sides in the boundary terms need to be found based on a coor-

dinate search. Being a 1-D operator, the boundary term is compu-

tationally invisible to the overall cost of the scheme, similar to axial

stiffness terms.

3.3 Global system in time

Upon inserting the polynomial expansion outlined above, the 2-D

set of weak equations translates to its discretized counterpart, a cou-

pled, global system of ordinary differential equations in time, which,

following the same procedure as in Nissen-Meyer et al. (2007b, Sec-

tion 4), reads

Msü(t) + Ksu(t) + Bf
sχ̈(t) = 0, (20)

Mfχ̈(t) + Kfχ(t) − Bs
fu(t) + Bf

su(t) = 0, (21)

Msü(t) + Ksu(t) + Bs
fχ̈(t) = f(t). (22)

We discussed the action of the fluid mass matrix Mf, fluid stiffness

matrix Kf, and the solid–fluid coupling matrices Bs,f on u and χ̈
in Section 3.2. The solid-domain terms involving the mass matrix

Ms, stiffness matrix Ks, and source terms f , as well as the relation

to their elemental counterparts are detailed in Nissen-Meyer et al.
(2007b, Section 4 and appendix B). We now turn our attention on

the temporal discretization, using two different approaches.

3.4 Temporal discretization

Temporal evolution problems such as eqs (20)–(22) are ubiquitous in

a variety of physical phenomena, hence a zoo of possible numerical

approximations exists. The common principle is to find a numerical

expression for the ODE type ü = f (u) at time t discretized by steps

�t after applying the inverse mass matrix (M−1), and calculating

internal (e.g. Ku) and external (f) forces. In seismology, a second-

order Newmark scheme has primarily been applied to solve such

systems (Komatitsch & Vilotte 1998). Here, we employ this New-

mark scheme, but will also argue for symplectic integration based on
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Figure 7. Left-hand panel: Relative cross-correlated traveltime error (with respect to normal modes) for the surface wave time window in Fig. 6 and both time

schemes. Right-hand panel: Surface wave rms amplitude error after shifting the traces to eliminate the traveltime error.

superior accuracy at small additional cost and straightforward im-

plementation. We explicitly present the respective schemes in this

section and provide a tutorial-style introduction and summary of

symplectic integration in Appendix A. For brevity, let us concatenate

internal and external forces for the fluid as Ξf(u,χ) = −Kfχ+Bfu
and solid domains as Ξs(u, χ̈) = −Ksu − Bsχ̈ + f.

3.4.1 Second-order Newmark scheme

The second-order, acceleration-driven explicit Newmark scheme we

employed in Nissen-Meyer et al. (2007b) is extended to the solid–

fluid case as (Chaljub & Valette 2004)

χ(t + �t) = χ(t) + �tχ̇(t) + 1
2
�t2χ̈(t), (23)

u(t + �t) = u(t) + �tu̇(t) + 1
2
�t2ü(t), (24)

χ̈(t + �t) = M−1
f Ξf [u(t + �t),χ(t + �t)] , (25)

ü(t + �t) = M−1
s Ξs [u(t + �t), χ̈(t + �t)] , (26)

χ̇(t + �t) = χ̇(t) + 1
2
�t [χ̈(t) + χ̈(t + �t)] , (27)

u̇(t + �t) = u̇(t) + 1
2
�t [ü(t) + ü(t + �t)] . (28)

This scheme is fully explicit and requires one evaluation of the

global forces per time step which is the dominant factor for CPU

time. Note that the order of evaluation is important as we need χ̈ on

solid–fluid boundaries from eq. (25) for the internal forces on the

solid side eq. (26).

3.4.2 Fourth-order symplectic scheme

Alternatively, we implemented a fourth-order symplectic scheme

which has been suggested for the elastodynamic spectral-element

method by Ampuero & Nissen-Meyer (2008), following Omelyan

et al. (2002, eq. 22) and Omelyan et al. (2003). This means that

we evaluate all terms four times in between t and t + �t . Setting

u0 = u(t), u̇0 = u̇(t) and u5 = u(t + �t), u̇4 = u̇(t + �t) (ditto

for χ, χ̇) and rewriting Ξs[u,Ξf(u,χ)] = −Ksu−BsΞf(u,χ) + f
to eliminate χ̈, the scheme reads

χi = χi−1 + κi�tχ̇i−1, (29)

ui = ui−1 + κi�tu̇i−1, (30)

χ̇i = χ̇i−1 + πi�tM−1
f Ξf (ui ,χi ) , (31)

u̇i = u̇i−1 + πi�tM−1
s Ξs[ui ,Ξf(ui ,χi )], (32)

χ5 = χ4 + κ5�tχ̇4, (33)

u5 = u4 + κ5�tu̇4, (34)

where i = 1, . . . , 4 denotes an inner loop of updates that requires

a four-fold evaluation of all forces per time step. This scheme is

explicit, does not require storage of past time steps and avoids the

usage of the acceleration resulting in less run-time memory oc-

cupation than the Newmark scheme eqs (23)–(28). Factorization

coefficients κ i , π i are usually determined by symbolic algebra; the

position extended Forest-Ruth like (PEFRL) scheme we adopted

takes the values

κ1 = κ5 = α, κ2 = κ4 = γ, κ3 = 1 − 2(γ + α), (35)

π1 = π4 = 1/2 − β, π2 = π4 = β, (36)

where

α = +0.1786178958448091, (37)

β = −0.2123418310626054, and (38)

γ = −0.06626458266981849. (39)

See Appendix A for details on symplectic time integration and an

outline to obtain factorization coefficients. In general, this scheme

satisfies more stringent conditions on preserving geometrical prop-

erties such as total energy, (angular) momentum or time-reversal

symmetry which are not respected by other schemes such as New-

mark. While short-time phenomena are expected to be sufficiently

discretized using standard, non-symplectic techniques, any long-

time issues including propagation over many wavelengths shall be

much better represented by minimizing numerical dissipation of

these invariants. More importantly, as shown in Ampuero & Nissen-

Meyer (2008), it is conceivable to consider that seismic-wave prop-

agation is at, or at least will soon enter, the stage of deducing in-

formation from high-frequency arrivals at large offsets for which

minimal dispersion and accurate techniques are crucial.
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Fig. 6 compares Newmark to symplectic time schemes through

a spherical version of Lamb’s problem (vertical single-force acting

on the surface above a homogeneous model space). The left-hand

panel shows both normal-mode summation seismograms and syn-

thetics from the SEM using the symplectic scheme for T0 = 100

s. The right section depicts single seismograms for both Newmark

and symplectic time schemes versus normal modes, respectively,

and the residual times 10 below. Evidently, both methods are excel-

lent fits to the reference solution, but the symplectic scheme on top

is virtually perfect in that even the magnified residual trace shows

no sign of inaccuracies whereas the residual between modes and

Newmark scheme (bottom panel) is characterized by a small dif-

ference for the two surface wave passings. By windowing on one

such specific phase (surface wave, left-hand panel in Fig. 6), one

can furthermore deduce the behaviour and accuracy as a function

of propagated wavelengths, and apply quantitative measures such

as cross correlation, the same way as used in obtaining traveltime

differences between observed and synthetic data. As seen in Fig. 7,

both schemes exhibit a linear increase in traveltime error with dis-

tance on a log-log plot, but with different values. The symplectic

scheme is about 40 times more accurate, and requires 2.5 times

more CPU time since (i) it involves a four-fold force-evaluation and

(ii) the Courant number C0 may be chosen 1.5 times larger com-

pared to the Newmark case. For propagation distances over 100

wavelengths (linearly extrapolating the cross-correlated traveltime

error function in Fig. 7), the symplectic scheme becomes feasible

in cost if one decreases the time step of the Newmark scheme to

obtain similar accuracies. A quantitative cost-accuracy trade-off to

deduce optimal simulation parameters and facilitate the decision on

which spatial and temporal approximation orders are most appropri-

ate is detailed in Ampuero & Nissen-Meyer (2008). The right-hand

panel in Fig. 7 shows a similar error behaviour, but for the amplitude

RMS fit after aligning the two time-series by the traveltime error ob-

tained in the cross-correlation plot. The respective ‘bumps’ at about

14 propagated wavelengths are from receivers near the antipode,

where amplitudes are much larger due to the coincidental arrival of

the surface wave from all directions (see Fig. 6, left-hand panel), and

hence these error ratios slightly more sensitive to inaccuracies. For a
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Figure 8. Radial displacement time-series distributed along the Earth’s surface, calculated using both the SEM and normal-mode summation for the isotropic

PREM background model at T0 = 20 s and a full moment-tensor event at radius r s = 5720.3 km. The traces are virtually indistinguishable, that is, the SEM

agrees with the reference solution for all distances and phases. Small (acausal) ‘noise’ comes from truncated normal-mode summation.
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Figure 9. Selected SEM and normal-mode seismograms for the Vanuatu event at 15 km depth and the PREM model and T0 = 30 s. The vertical axes denote

the respective components of the actual ground displacement, and the titles the epicentral distances. All complex details in the seismograms including direct

body waves, dispersive surface waves, and reflected phases, are correctly modelled except for small differences at the highest frequencies of the surface waves

for which the mode catalogue is insufficient and hence the reference solution not entirely reliable.

detailed analysis of dispersion errors and the symplectic time

scheme including derivations of appropriate schemes, expressions of

error and cost functions, and an approach to choose cost-minimizing,

‘optimal’ simulation parameters, consult Ampuero & Nissen-Meyer

(2008).

4 S N R E I VA L I DAT I O N

After detailing the meshing process, the cost efficiency of the

scheme, discretization of the solid–fluid configuration, and the

implementation and validation of a symplectic time scheme, we

now turn to comparing the SEM to reference solutions for spheri-

cally symmetric background models. For the specific case of non-

gravitating SNREI (spherically symmetric, non-rotating, elastic and

isotropic) earth models, we use a normal-mode summation method

that allows for neglecting gravity completely. We will consider

PREM (two-layered crust, isotropic mantle) for varying resolutions

down to 10 s. Simulations are (unless otherwise noted) done us-

ing temporal Dirac-delta functions for various full moment-tensor

sources and seismograms convolved a posteriori with a Gaussian of

half-width T0. In an attempt to cover the most critical regions and

configurations with regards to whole-wavefield applications for sen-

sitivity kernels, we consider shallow and deep sources, show seismo-

grams upon a full moment tensor collected over the 3-D globe, show

wavefield snapshots around the CMB and upper mantle to verify the

lack of significant amounts of spurious energy in the wavefield, and

time-dependent energy plots to validate both the time scheme and

the absence of any numerical dispersion throughout the domain.

4.1 Global synthetics

In this section, we show simulations of events at a shallow (15 km)

and larger (650 km) depth to validate both strong surface waves

and weaker body waves (e.g. Pdiff) and cover the approximate depth

ranges of earthquakes and surface distribution of receivers to be

included in a database for arbitrary source-receiver pairs. We will

not differentiate between different source types as this has been ex-

tensively treated in the preceding paper but show results for full

moment tensors taken from actual CMT solutions. Additionally, we

do not deem it appropriate to quantify the misalignment by any

fixed-station metric (such as the ‘energy misfit’) due to the abun-

dance of complex-geometry paths and different accuracies for each

path and phase. The simulations in this section were done on four

processors for a mesh resolution down to 10 s (see Fig. 4, left-hand

panel) and took 6 hours. Fig. 8 shows a section of radial displace-

ment time-series distributed along a great circle path of epicentral

distances between 7.5◦ and 172.5◦ for a CMT solution from an event

in Brazil but moved to 650 km depth. The traces compare the SEM

(straight lines) to mode summation (dashed lines) for T0 = 20 s and

are virtually identical for all distances and phases. This means that

the meshing process is approved and the solid–fluid configuration

is correctly formulated and implemented. Note that any slight dif-

ferences are due to acausal noise from the mode summation. This

simulation has been undertaken using the Newmark time scheme

eqs (23)–(28), but the symplectic scheme gives indistinguishable

results for these settings.

Fig. 9 compares single seismograms from simulations of a Van-

uatu event (depth: 15 km) with strong and dispersive surface waves

for T0 = 30 s for both SEM and normal-mode summation. All parts

of the seismograms expose an excellent fit between the SEM and

normal-mode summation even for the dispersive surface wave trains

at all distances and on all three channels with the exception for the

last few parts of the surface wave train in the top panels (r and θ

components) for which the mode summation is inaccurate due to

truncation. In any case, this event within the crust is arguably one

of the most difficult settings for global simulation to obtain correct

results due to the thin crustal layer sensitivity and strong dispersion.

In conclusion, this sampling of two extreme event depths and globe-

spanning receiver locations strongly suggests that the method runs

very accurately for the entire wavefield. The restriction to dominant
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Figure 10. Wavefield snapshots for a monopole Mzz source at 650 km depth for T0 = 10 s, including magnified panels of the crust-upper mantle and core–mantle

boundary regions; labels refer to major seismic phases.

periods greater than 20 s is solely based upon our inability to obtain

reliable normal-mode reference solutions for shorter periods.

4.2 Wavefield snapshots

In this sense, we shall find it helpful to additionally illuminate waves

at depth via wavefield snapshots. In light of saving entire time–space

wavefields to construct sensitivity kernels, it is also important to

zoom into critical regions (e.g. surface, upper mantle discontinuities,

CMB, core, coarsening levels, processor boundaries).

Fig. 10 (top left-hand panel) shows the northern hemisphere of

the z component wavefield upon a Mzz source at 650 km for T0 =
10 s. All phases (see labels) are present, and no unrefined noise is

apparent. The straight, white lines appear due to processor-specific

plotting interpolation and denote inter-processor boundaries for this

four-processor simulation. A close-up view of the upper mantle in

the upper right-hand panel for the s component at two different

times reveals some of the reflections off the surface and disconti-

nuities such as depth phases (pS, pP) and surface multiples (SS).

Dotted lines are discontinuities, and the actual mesh is plotted in

the background, including a coarsening level just below the crust.

No apparent unphysical waveform distortion occurs, and any nu-

merical noise is suppressed by the input Gaussian source time func-

tion of appropriate resolution. Finally, the bottom panel is a zoom

into the CMB region (straight line, D′′ discontinuity: dotted line),

including a processor boundary. The z-component wavefield ex-

hibits various reflections (PcP, PcS, ScS), converted transmissions

(SK), refractions and diffractions (Pdiff) as expected from this re-

gion. The velocity contrast across the CMB for P waves is evident

by the wave front kinks for PKP, and the smooth passing for con-

verted waves such as SK verifies that the velocity contrast for S-to-P
conversions is small. The passing of the fluid-core coarsening and

the crossing of the processor boundary leave, as expected, no artifi-

cial noise or amplitude deprecations. Clearly, these snapshots con-

tain no quantitative control over the numerical scheme; they mainly

serve as a conceptually accessible view on propagation details, and

may furthermore, due to their ease in plotting in 2-D, be a useful

tool to assess high-frequency 3-D wavefield behaviour anywhere in

the (spherically symmetric) earth.

4.3 Energy conservation

We now examine the total energy conservation, which for purely

elastic-wave propagation within enclosed domains and especially

with various time schemes is another tangent of validation: Dissi-

pation over time may then stem from either non-conserving time

schemes (e.g. Newmark) or leaking (and hence incorrect) bound-

ary and discontinuity conditions (such as the free surface, the axial,

masked boundary, or solid–fluid interface terms). With our case of

both essential and natural boundary conditions, and a new potential

formulation resulting in material-independent boundary terms in ad-

dition to two different types of time schemes, it is indeed conceivable
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Figure 11. Kinetic, potential and total energy of seismic waves in a solid–fluid sphere for a Mzz source with T0 = 20 s at 650 km depth. Left-hand panels:

Energy in the solid (top panel) and fluid (bottom panel) domains, respectively. Right-hand panel: Global energy for the Newmark (top panel) and the symplectic

(bottom panel) time schemes.

to address total energy conservation. The kinetic energy at time t is

given by

Ekin = 1

2

∫
⊕

ρu̇2 d3x ≈ 1

2
u̇TMsu̇ + 1

2
χ̇T Kfχ̇, (40)

where we have used the fluid potential definition given by eq. (11).

The stored, potential or elastic energy in an isotropic, non-gravitating

earth at time t is

Epot = 1

2

∫
⊕

{
λ [∇ · u]2 + μ∇u :

[
∇u + (∇u)T

] }
d3x

≈ 1

2
uTKsu + 1

2
χ̈T Mfχ̈, (41)

where we have invoked both the potential formulation eq. (11) and

the fluid-domain wave equation eq. (12). Note that the expressions

for the fluid potential (i.e. the respectively second terms) are given

by the opposite actions of stiffness and mass matrices compared

to the solid displacement terms. Fig. 11 shows some examples for

the kinetic, potential, and total energy of the solid (top left-hand

panel), fluid (bottom left-hand panel), and global domains (right-

hand panel), for the Newmark (top right-hand panel) and the sym-

plectic scheme (bottom right-hand panel) using a Mzz source at

650 km depth with T0 = 20 s. While the breakdown of energy con-

tent into fluid and solid domains bears no inference on the accuracy

of the method, it is nevertheless an added ‘gift’ of the calculation

and included mainly as a curious divergence. Note the sudden onset

upon the entry of the P wave into the fluid core at 200 s. The promi-

nent peak in the fluid domain between 500 and 1000 s is related to

the propagation of the direct P and converted SK waves, whereas

later peaks refer to reflected phases. The total energy inside the

FOC (and conversely, the solid regions) oscillates with a recurrence

period of about 1000 s, and converges to a constant value (about

2.2 × 105 J) for later times. Both time schemes are consistent

in that the total energy is conserved, and only exhibits negli-

gible fluctuations at later times which are related to the globe-

encircling surface waves and multiples that converge at the an-

tipode at those times. The differences between the time schemes

are too small for these settings to differentiate them in any

illustrative manner (see top and bottom right-hand panels in

Fig. 11).
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5 C O N C L U S I O N S

This paper presents the constituents that are necessary to discretize

a spherically symmetric earth model and its accompanying elasto-

dynamic weak form using a spectral-element method upon a 2-D

semi-disk after collapsing the third dimension by exploiting sym-

metries in the radiation pattern. The meshing process is described

in detail to highlight its flexibility with regard to arbitrary back-

ground models and resolutions. The central region is discretized

via a rotated-coordinate polynomial that minimizes grid spacing

variations. We quantify various numerically important parameters

such as the characteristic lead time and the local oversampling ratio
in a non-dimensionalized fashion, allowing for easy adaption and

comparison to virtually any other meshing procedures in similar

domains. Meshing determines the numerical cost of the simulation

inasmuch as it defines the grid spacing and total number of ele-

ments (instantaneous cost) along with the time step (extrapolation
cost). Again, we quantify the cost non-dimensionally to remain in-

dependent of actual resolutions and transparent to other schemes.

The meshing approach is relatively cheaper with increasing resolu-

tion, that is, primarily depends on the locations of discontinuities

which in turn hamper the efficiency at low resolution but converge

to a steady cost for resolutions that exceed the geometric constraints

imposed by discontinuities. Arbitrary resolutions force us to paral-

lelize the method even in its 2-D world. We take advantage of the

D-shaped domain and decompose it into exactly load-balanced cake-

piece processor domains which contain maximally two neighbours,

that is, the ideal minimization of the number of network messages.

The method scales extremely well, and at moderate resolutions is

largely blind to the network traffic introduced by the parallelization

(Nissen-Meyer 2007). We anticipate this benevolent ignorance to be

even enhanced when extensive I/O of time–space wavefields shall

take up significant amounts of CPU time.

The solid–fluid system is discretized closely following the

previous solid-only incarnation of the method, using a displacement-

potential formulation for the fluid that differs from other spectral-

element methods by the inclusion of the density, resulting in

solid–fluid boundary terms that are independent of material proper-

ties and identical on fluid and solid sides in their discretized form.

The synthetics expose excellent overlaps with normal-mode sum-

mation for all distances and phases. We also implemented a sym-

plectic fourth-order time extrapolation scheme which proves useful

for certain applications needing high accuracy over large propa-

gation distances. The total energy of the method is conserved, and

wavefield snapshots near the CMB illustrate the lack of any spurious

energy.

This method is to be considered complete for non-gravitating

SNREI earth models. Future developments on these grounds shall

entail transverse isotropy, gravity, viscoelasticity, oceans, and rota-

tion, but with respect to seismic sensitivity at the global scale, it

is now worthwhile to compute Green functions for the purpose of

full-wave based finite-frequency inversions.
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A P P E N D I X A : S Y M P L E C T I C

I N T E G R AT I O N

Dealing with a linear version of solid–fluid elastodynamics, we can

readily extend concepts from celestial mechanics, molecular dy-

namics, electrodynamics, accelerator physics, statistical or quantum

wave mechanics to our specific case, drawing similarities within

the ubiquitous kinetic, potential and source terms. In this section,

we will summarize and outline the symplectic integrator scheme

as used in this paper. Symplectic refers to systems in which the

phase-space volume is preserved such that temporal motions of

phase-space points Y = (q, p) (q: displacement, p: momentum)

from 0 to t preserve the Poincaré invariants
∫ ∫ ∑

i dqi dpi and∫ ∫ ∫ ∫ ∑
i �= j dqi dpi dq j dp j (i.e. encapsulating Liouville’s Theo-

rem dY
dt = 0). All topics revolving around cost-effective temporal

integration of this kind are vast, active research areas; here we de-

note some simple concepts to justify the usage of the scheme for

our settings. See for example, (Omelyan et al. 2002; Channell &

Scovel 1990; McLachlan & Quispel 2006; Dixon & Reich 2004;

Chin 2006; McLachlan 2002) for more in-depth information.

A1 Hamiltonian dynamics & conservation of geometric

structure

Let us start by rewriting the temporal system of ODEs eqs (20)–(22)

as

∂t χ̇ = M−1
f Ξf (u,χ) , ∂t u̇ = M−1

s Ξs (u,χ) , (A1)

where Ξf (u,χ) = −Kfχ + Bfu and

Ξs(u,χ) = −Ksu − BsM
−1
f (−Kfχ + Bfu) + f.

To utilize symplectic integrators, we need to examine eqs (A1) in

terms of Hamilton’s canonical equations of motion

q̇ = ∂pH, ṗ = −∂qH, (A2)

where the Hamiltonian (energy function) takes the separable form

H (q, p) = H 1(p) + H 2(q). Let now q = u, v = u̇, Ξ = Ξs in

the solid or q = χ, v = χ̇, Ξ = Ξf in the fluid, then, considering

our kinetic and potential energy in the discretized form (e.g. Nissen-

Meyer et al. 2007b), respectively,

Ek(v) = 1

2
vTMv, Ep(q) = 1

2
qTKq + 1

2
qTBq, (A3)

we obtain

v = M−1p, ṗ = −Ξ(q), (A4)

where p = ∂ v H =Mv.

We can now express the equations of motion as

∂tY = {Y, H (Y)} = ∂qY∂pH − ∂pY∂qH = L̂HY, (A5)

where the concatenated full set of phase variables Y = (q, v) com-

prises the canonical, global coordinates, {·, ·} is the Poisson bracket

and L̂H = {·, H} = ∂pEk∂q + ∂pEp∂p = v · ∂q − Ξ(q) · ∂p is

the Liouville operator. Due to the conservation of such global ge-

ometric properties as energy, time-reversal symmetry or (angular)

momentum, any discretization based upon representing the Hamil-

tonian such as symplectic schemes belongs to the class of geomet-
ric integration. Note that discretization inevitably introduces energy

dissipation; the symplectic approach however lacks any long-term

drifts and is only subject to small periodic errors.

A2 Splitting/decomposition schemes

Systems of the form ∂tY(t) = L̂HY(t) = [L̂k(t) + L̂p]Y(t) have a

unique solution at time t after nt = t/�t integrations

Y(t) =
[
exp

(
(L̂k + L̂p)�t

)]nt

Y(0), (A6)

if initial condition Y(0) is known. We now decompose and approx-

imate the ‘total propagator’ to order K,

e(L̂k+L̂p)�t+O(�t K+1) =
J∏

j=1

eL̂kκ j �t eL̂pπ j �t . (A7)

The splitting into the ‘subpropagator’ terms eL̂kκ j �t and eL̂pπ j �t in

eq. (A7) leads to analytical solutions:

eL̂kκ j �t (q, v) = e
v·∂qκ j �t = (

q + κ j�tv, v
)
, (A8)

eL̂pπ j �t (q, v) = e
Ξ·∂pπ j �t = (

q, v + π j�tΞ
)
. (A9)
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These resultant coordinate translations outline the preservation of

the phase-space volume, that is, symplectic structure. Note that

J ≥ K controls the ‘cost’ of the scheme by virtue of the number of

force Ξ evaluations per time step. For any given order of accuracy K,

we now need to determine the factorization coefficients κ j and π j ,

j = 1, . . . , J . At first, we shall appropriate constraints to repro-

duce self-adjoint time reversibility of solutions S−1 (t) = S(− t) by

imposing symmetry conditions on the respective subpropagators:

κ1 = 0, κ j+1 = κJ− j+1, π j = πJ− j+1, or (A10)

κ j = κJ− j+1, π j = πJ− j , πJ = 0, (A11)

where the former version leads to so-called velocity schemes, and

the latter to position schemes. Additionally, this choice cancels all

odd-order terms withinO(�K+1) automatically such that only even-

order schemes may be developed in this context. We henceforth aim

at cancelling all even-order terms up to a finite number k > K,

starting for first-order terms with
∑J

j=1 κ j = ∑J
j=1 π j = 1. The

K = 4 algorithm we adopted is based upon J = 5, resulting in

J − 1 = 4 force evaluations per time step. Using time-reversibility

constraints eq. (A10) and the cancellation of first-order terms, the

propagator then takes the form

e(L̂k+L̂p)�t+C3�t3+C5�t5+O(�t7) =
eL̂pξ�t eL̂k(1−2λ)�t/2eL̂pχ�t eL̂kλ�t eL̂p[1−2(χ+ξ )]�t

× eL̂kλ�t eL̂pχ�t eL̂k(1−2λ)�t/2eL̂pξ�t , (A12)

where the number of single-exponential operators reflects the num-

ber of stages in the resultant scheme, 2J − 1 = 9. What remains

to be done to arrive at an explicit scheme is to determine the opti-

mal choice of coefficients ξ , χ , λ, which is done by expanding both

sides of eq. (A7) into Taylor series and collecting terms with the

same powers of �t to obtain a set of non-linear algebraic equations

for κ j , π j . This can readily be solved for low orders, but becomes

elaborate even for K = 4 such as eq. (A12). Methods to determine

optimal factorization coefficients can be found in Yoshida (1990),

Chin (2006), Omelyan et al. (2003). Our choice of coefficients in

Section 3.4.2 follows the latter article, table 2 algorithm No. 20.

Optimal coefficients depend on the definition of the cost function

to minimize, and may be specified for each Hamiltonian separately.

In this regard, our choice of coefficients and overall scheme is not

necessarily optimal.
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