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Abstract. Over the past decades, direct three-dimensional
numerical modelling has been successfully used to reproduce
the main features of the geodynamo. Here we report on ef-
forts to solve the associated inverse problem, aiming at in-
ferring the underlying properties of the system from the sole
knowledge of surface observations and the first principle dy-
namical equations describing the convective dynamo. To this
end we rely on twin experiments. A reference model time se-
quence is first produced and used to generate synthetic data,
restricted here to the large-scale component of the magnetic
field and its rate of change at the outer boundary. Starting
from a different initial condition, a second sequence is next
run and attempts are made to recover the internal magnetic,
velocity and buoyancy anomaly fields from the sparse surfi-
cial data. In order to reduce the vast underdetermination of
this problem, we use stochastic inversion, a linear estimation
method determining the most likely internal state compatible
with the observations and some prior knowledge, and we also
implement a sequential evolution algorithm in order to invert
time-dependent surface observations. The prior is the multi-
variate statistics of the numerical model, which are directly
computed from a large number of snapshots stored during a
preliminary direct run. The statistics display strong correla-
tion between different harmonic degrees of the surface obser-
vations and internal fields, provided they share the same har-
monic order, a natural consequence of the linear coupling of
the governing dynamical equations and of the leading influ-
ence of the Coriolis force. Synthetic experiments performed
with a weakly nonlinear model yield an excellent quantita-
tive retrieval of the internal structure. In contrast, the use
of a strongly nonlinear (and more realistic) model results in
less accurate static estimations, which in turn fail to constrain
the unobserved small scales in the time integration of the
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evolution scheme. Evaluating the quality of forecasts of the
system evolution against the reference solution, we show that
our scheme can improve predictions based on linear extrapo-
lations on forecast horizons shorter than the systeme-folding
time. Still, in the perspective of forthcoming data assimila-
tion activities, our study underlines the need of advanced es-
timation techniques able to cope with the moderate to strong
nonlinearities present in the geodynamo.

1 Introduction

The Earth’s fluid core is a dynamic, yet sparsely observed
system. Direct or indirect measurements of the planet mag-
netic field are the main source of data used to probe the dy-
namical state of the core, giving access only to the large-
scale image of the magnetic field poloidal component over
the external surface of the system. Integral constraints based
on geodetic data also provide a useful secondary source of
data. Under the assumption that the large-scale field tem-
poral variations are dominated by a diffusionless induction
process (Roberts and Scott, 1965), the radial magnetic field
and its rate of change (called the secular variation) have been
used over the past decades to estimate the fluid flow be-
low the core surface, at the origin of the temporal variations
(see e.g.Finlay et al., 2010a, for a review). In conjunction
with length-of-day data and dynamical models of torsional
waves, the knowledge of these core flows can be used to
probe the magnetic field strength deep in the core (most re-
cently Buffett et al., 2009; Gillet et al., 2010). Other dis-
sipative constraints on the magnetic field strength can also
be derived from short timescale (daily) measurements of the
Earth’s nutations, as recently done byBuffett (2010). Strate-
gies aiming at inferring the properties of Earth’s core dynam-
ics from surface observations commonly encounter problems
of non-uniqueness, and spatial resolution problems. The er-
rors induced by these problems now tend to exceed by far
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the measurement errors, which have become very small at
the age of satellite magnetic observation. As an illustration
of a non-uniqueness problem, closure constraints are needed
in order to perform core flow inversions (most recently the
quasi-geostrophic assumption,Pais and Jault, 2008). The
nonlinearity involved in the core flow problem is an instance
of a spatial resolution problem, in the sense that the unre-
solved small scales of the magnetic field are responsible for
part of the observed secular variation at large scale, in a way
which is difficult to predict. This, in turn, complicates the
evaluation of the flow large scales (Eymin and Hulot, 2005;
Gillet et al., 2009). One elegant, yet not much explored way
to handle both problems is through enforcing dynamical con-
sistency of the solutions, that is, solving for a velocity field
with a time evolution consistent with first principle evolu-
tion equations. The problem of determining core flow then
becomes an inverse problem where an initial condition is
sought, the evolution of which will subsequently explain and
predict the observations at various points in time, hereby all
dynamically connected together. Along these lines, the now
expanding field of geomagnetic data assimilation aims at op-
timally combining physical laws and observations of Earth’s
core dynamics (seeFournier et al., 2010, for a recent review).
This expansion capitalizes on the progress made over the last
twenty years by data assimilation techniques in other fields
of research, most importantly (from the viewpoint of core
dynamics), atmospheric dynamics and physical oceanogra-
phy. Regarding the specific three-dimensional Kalman filter
which is central to the following, the interested reader is re-
ferred to the authoritative monograph byEvensen(2009) for
a detailed description of its theoretical foundations, and its
extension to nonlinear problems in the form of the so-called
ensemble Kalman filter. For further reading,Kalnay(2010),
Brasseur(2006), Elbern et al.(2010) andHouser et al.(2010)
review recent applications of the Kalman filter to the analy-
sis of the atmosphere, of the ocean, of air quality and of land
surfaces, respectively.

First principle equations suitable for the direct modelling
of core dynamics (Braginsky and Roberts, 1995) are now
routinely solved numerically, and have had considerable suc-
cess in reproducing the first-order features of the geomag-
netic field: morphology and dipole dominance of the field,
secular variation and reversals (main advances recently re-
viewed byChristensen, 2011). These equations include the
induction equation, Navier-Stokes equation with convection
described in the Boussinesq approximation, and an equation
for the transport of a buoyancy field (which, in the Earth’s
core, is of both thermal and chemical origin). The main
difficulty faced by these three-dimensional, self-consistent
simulations is the current impossibility to reach numerically
the physical parameters of natural dynamos. This is related
to the great disparity between the diffusion coefficients of
the thermal, chemical, magnetic and velocity fields. As the
situation is not likely to improve in the foreseeable future,
progress in the field has been achieved over the recent years

by identifying and scaling phenomena where some or all of
these diffusivities play only a secondary role. For instance, a
large set of numerical models has revealed that the magnetic
field strength does not depend on any diffusion coefficient,
only on the available power to drive the dynamo (Christensen
and Aubert, 2006; Aubert et al., 2009). A connected study
(Christensen et al., 2010) showed that a morphological simi-
larity can be obtained between the geomagnetic field and the
output of numerical dynamos if only three time scales are in
reasonable proportion when compared to their Earth counter-
parts: the rotation period of the planet, the characteristic time
scale of advection of the magnetic field by the fluid flow, and
the characteristic time for the diffusion of the magnetic field.

Here we wish to use the information and dynamically con-
sistent solutions provided by numerical geodynamo models
in order to carry out inverse modelling. Our long-term aims
are (i) to estimate the dynamical state of Earth’s core from
surface observations, (ii) to assess the extent to which such
estimations are affected by (or immune to) non-uniqueness
and spatial resolution problems, and (iii) to determine the
magnitude of the associated errors. Linear estimation of the
system state invisible parts (also called Kalman filtering or
stochastic inversion) is a method of choice for this type of
problem. Its efficiency is classically tested through the pro-
cedure of synthetic (twin) experiments: a reference solution
is first computed, and used to generate a catalog of surface
data, which are in turn used to recover the solution, start-
ing from a wrong initial guess. Previous attempts (Liu et al.,
2007) used parameterised, ad-hoc covariance properties to
perform such estimations, and focused mostly on the evolu-
tion of the observed, surficial part of the system. The nov-
elty of our approach stands in a preliminary numerical com-
putation of the system multivariate covariance properties.
This approach has already been used in a companion paper
(Fournier et al., 2011), addressing the two-dimensional core
flow problem described above. Here we proceed to the deter-
mination of the three-dimensional internal structure, which
can then be used as an initial condition for time evolution,
opening the way to data assimilation practice. In the fol-
lowing, Sect.2 presents the numerical model and inversion
technique. Section3 presents the results of the numerical
experiments, which are then discussed in Sect.4.

2 Model and methods

2.1 Numerical geodynamo model

Our numerical model is formulated as inAubert et al.(2009).
We solve for the velocity fieldu, magnetic fieldB, and co-
density (or density anomaly) fieldC in a spherical fluid shell
between radiiri andro, of aspect ratiori/ro = 0.35 rotating
about an axisez, using the equations
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∂u
∂t

= −u ·∇u−2 ez ×u−∇P

+RaQ

r
ro

C +(∇ ×B)×B+E∇
2u, (1)

∂B
∂t

= ∇ ×(u×B)+Eλ∇
2B, (2)

∂C

∂t
= −u ·∇C +Eκ∇

2C +ST/ξ , (3)

∇ ·u = 0, (4)

∇ ·B = 0. (5)

Here r is the radius vector. The fundamental scales under-
lying the dimensionless scheme are the inverse shell rotation
rate�−1 for time, the shell gapD for length, (ρµ)1/2�D

for magnetic induction, whereρ is the fluid density andµ
the magnetic permeability of the fluid. The kinematic, mag-
netic and thermal Ekman numbers are defined as

E =
ν

�D2
, (6)

Eλ =
λ

�D2
, (7)

Eκ =
κ

�D2
. (8)

Hereν, λ, κ are respectively the viscous, magnetic, and ther-
mochemical diffusivities of the fluid. As detailed inAubert
et al. (2009), the distribution of boundary mass anomaly
fluxes can be determined from a parameterised thermody-
namical model of Earth’s core evolution. Here we choose
an idealised situation which is thought to be representative
of Earth at present (Lister, 2003), where the mass anomaly
flux F originates entirely from the inner boundary, and the
outer boundary has null mass anomaly flux. The Rayleigh
numberRaQ is thus

RaQ =
goF

4πρ�3D4
, (9)

wherego is gravity at radiusr = ro. As shown inAubert et al.
(2009) the dimensionless volume sink term for mass anomaly
corresponding to this situation isST/ξ = −3/(r3

o − r3
i ). The

other boundary conditions at both boundaries are no-slip for
velocity, and insulating for the magnetic field. The numerical
implementation PARODY-JA is used in this study (Dormy
et al., 1998; Aubert et al., 2008). The fieldsu, B are expanded
into toroidal and poloidal scalars, which, together with the
scalarC, are described using a finite-difference scheme in
the radial direction with up to 160 grid points, and a spherical
harmonic decomposition in the lateral directions up to degree
and order 133.

Table 1 summarizes the properties of the two models
which have been integrated for this study. The models have
been chosen so as to provide end-members in physical com-
plexity and semblance to the geomagnetic field. Model

Table 1. Properties of the numerical models used for the study. First
row: input parameters (see main text for definitions). Second row:
output parameters. Earth’s core values are estimated inChristensen
and Aubert(2006). The mean harmonic degreeslu,B in the velocity
and magnetic field are as defined inChristensen and Aubert(2006).
The median harmonic ordersmmed

u,B
are the orders which, on aver-

age, separate the velocity and magnetic power spectra in two do-
mains of equal energy. Thee-folding timeτe and secular variation
time τsecare as defined inLhuillier et al. (2011a,b). The morpho-
logical semblance to the geomagnetic fieldχ2 is defined according
to Christensen et al.(2010). Bottom two rows: parameters rele-
vant to the determination of the model covariance matrixP. Unless
otherwise noted, the numerical experiments use a covariance ma-
trix which is determined from the numbern of free run samples
reported in the table. Also reported are the number of radial nodes
used for the determination of the matrix, the degree and orderlPmax
up to which this matrix is determined, the size of the state vector
(complex coefficients) and the number of coefficients involved in
the determination ofP (or reduced state vector size).

Model RaQ E Eλ Eκ

1 5.8 10−3 10−3 2.5 10−4 10−3

2 2.7 10−5 3 10−5 1.2 10−5 3 10−5

Earth O(10−13) 3 10−15 3 10−9 O(10−15)

Model Re, Rm lu,B mmed
u,B

τe/τsec χ2

1 25,100 6,6 4,2 0.6 6
2 343,858 20,28 8,9 0.04 1

Earth O(109),O(103)

Model n radial nodes forP lPmax

1 4098 41 out of 90 15
2 978 81 out of 160 30

Model full state vector size reduced state vector size

1 (2145·90·5) = 965 250 (136·41·5) = 27 880
2 (9045·160·5) = 7 236 000 (496·81·5) = 200 880

1 is a weakly nonlinear model, as can be seen from the
quoted values of the Reynolds and magnetic Reynolds num-
bersRe = UD/ν and Rm = UD/λ, whereU is the root-
mean-squared velocity in the shell. The model has a simple
magnetic structure (Fig.1) with apparently strong correla-
tion between the surface and deep magnetic field. Model 1 is
however morphologically quite different from the geomag-
netic field, as measured by the misfit quantityχ2 defined in
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Model 1

Model 2

Fig. 1. Dynamical magnetic fieldline imaging (DMFI) representation of the numerical models magnetic field
line structure. The magnetic field lines are rendered as grey tubes, with thicknesses proportional to the local
magnetic energy density. The inner core surface is color-coded according to the radial magnetic field strength.
The outer surface is color coded similarly, and made transparent with an opacity proportional to the radial
magnetic field strength (see Aubert et al., 2008, for further details).

25

Fig. 1. Dynamical magnetic fieldline imaging (DMFI) representa-
tion of the numerical models magnetic field line structure. The mag-
netic field lines are rendered as grey tubes, with thicknesses propor-
tional to the local magnetic energy density. The inner core surface
is color-coded according to the radial magnetic field strength. The
outer surface is color coded similarly, and made transparent with
an opacity proportional to the radial magnetic field strength (see
Aubert et al., 2008, for further details).

Christensen et al.(2010). The main morphological differ-
ence arises from the high concentration of magnetic flux into
a small number of patches, and also in the lack of equatorial
field features (which was not taken into account in the rat-
ings ofChristensen et al., 2010). Model 2 fares much better
with respect to semblance to the geomagnetic field. It can
also be considered a physically more suitable model because
the three time scales mentioned in the introduction (magnetic
advection, magnetic diffusion, rotation period) are in better

proportion when compared to the Earth than for model 1.
The ratio of the magnetic diffusion and magnetic advection
time scale is the magnetic Reynolds numberRm, which is
very close to the value of about 800 which can be expected
in the Earth’s core if surface velocity estimations are rep-
resentative of the deep flow (Christensen and Tilgner, 2004).
The ratio of the length of day and the magnetic diffusion time
scale is the magnetic Ekman numberEλ, which in model 2
is one order of magnitude closer to the valueEλ ≈ 10−9 ex-
pected in the core (e.g.Christensen and Aubert, 2006). As a
consequence of the higher Reynolds numbers, model 2 also
has stronger nonlinearities than model 1, and the effect of a
stronger magnetic advection results in an apparent decorrela-
tion between the surface and internal magnetic structures (see
Aubert et al., 2008, and also Fig.1). The increased temporal
complexity of model 2 can be quantified using the ratio of the
e-folding time of the systemτe, or time constant for the expo-
nential divergence of two infinitesimally close solutions (Hu-
lot et al., 2010b; Lhuillier et al., 2011a), to the characteristic
time scale for secular variationτsec(Christensen and Tilgner,
2004; Lhuillier et al., 2011b). The increased spatial complex-
ity can be evaluated through the mean harmonic degreeslu,B ,
as defined inChristensen and Aubert(2006), and median har-
monic ordersmmed

u,B in the power spectrum of the velocity and
magnetic field. It is important to mention that although they
are quite different, both models have more than half of their
energy within the harmonic order rangem = 0−13, which
means that there is reasonable hope that surface observations
supplied within the same spectral range could constrain well
the internal structure.

2.2 Rescaling the model output

Although this is not fundamental when only synthetic data
are used, any attempt to integrate time-dependent geomag-
netic data into a numerical model will require the dimension-
less model output to be rescaled to the geophysical world.
If the model operated at the same parameter values as the
Earth’s core, it would be enough to use the canonical scales
presented in the last section. However, as the model operates
far from Earth’s core conditions, we have to resort to units
underlain by scaling principles known (or thought) to hold
both in the model and in the Earth’s core, so that the various
quantities, once presented in these new units, should have
similar values in the model and in the core.

Following previous work on the secular variation time
scale (Christensen and Tilgner, 2004; Lhuillier et al., 2011b;
Fournier et al., 2011), time will be presented in units of
τsec, which is roughly 500 yr in the Earth’s core. Veloc-
ity will be presented in units ofD/τsec, which is roughly
4.4 km yr−1 in the core. Following theChristensen and
Aubert (2006) scaling, magnetic field will be presented in
units off 1/2

ohm(ρµ3p2D2)1/6, wherep is the convective power
density in the shell andfohm the fraction of this power which
is dissipated through Ohmic effects. Using the high-power
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scenario presented inAubert et al.(2009), one magnetic
field unit then amounts to 1.7 mT for the present Earth. Fi-
nally, the relationship between the convective power, co-
density and velocity (Eq. A1 inChristensen and Aubert,
2006) prompts to present the co-density field in units of
pτsec/goD. Using again the high-power scenario, one co-
density unit amounts to 10−5 kg m−3.

2.3 Best linear unbiased estimate of the internal
structure from surface data

For a given discrete instantti in a numerical dynamo simula-
tion, we define a (column) state vector (superscriptT denotes
the transpose)

x(ti) =[u
p
lm(rj ,ti),u

t
lm(rj ,ti),B

p
lm(rj ,ti),

B t
lm(rj ,ti),Clm(rj ,ti)]

T ,
(10)

which contains the complex values of the poloidal (super-
script p), toroidal (superscriptt) harmonic scalars of the
fields u,B and the co-densityC, for each harmonic degree
and orderl,m on the nodesj of the radial grid. The full
size ofx is on the order of one to ten million elements (see
Table 1). Covariance matrix calculations presented in this
study however use a version ofx which is decimated by tak-
ing a subset of radial nodes and harmonic coefficients (see
Sect.3.1and Table1), yielding a typical size on the order of
ten to a hundred thousand elements. The state vector is cen-
tered and normalised for the time series to have zero mean
and unit variance.

We assume that the various elements inx have a Gaussian
distribution, with probability density function (pdf)P(x) ∝

exp(−x′P−1x/2), whereP is called the covariance matrix of
the model and the prime symbol denotes the transpose com-
plex conjugate. The validity of the Gaussian assumption is
explored inFournier et al.(2011). Some deviations from a
Gaussian behavior can be expected, in which case the best
linear estimate about to be derived is not optimal anymore in
the sense of maximum a-posteriori pdf, but still remains the
estimate of minimum variance.

The state vector has an observable part and a hidden part.
Our goal is to provide an estimate of the hidden part from the
observable part. We define an observation operatorH which
extracts its observable part fromx. The observation opera-
tor is thus a rectangular matrix with a number of rows equal
to the size of the observationsy and a number of columns
equal to the size of the state vectorx. Because we are dealing
with the equivalent of global field models at the core-mantle
boundary, and given their current resolution limits (e.g.Olsen
et al., 2010), we define the observable part of the state vector
as the poloidal magnetic fieldBp

lm(ro) at the outer boundary
up to degree and order 13. The corresponding observation
operator contains ones in the entries corresponding to an ob-
served quantity and zeros otherwise. The operator contains
an additional sub-block when the rate of change ofB

p
lm(ro)

is observed as well (up to degree 13). Considering the ra-
dial part of the induction Eq. (2) on the fluid side of the outer
boundary, where the velocity field vanishes, we obtain

∂B
p
lm

∂t
(ro) = Eλ∇

2B
p
lm(ro). (11)

Prescribing the time derivative of the outer boundary poloidal
magnetic field is thus equivalent to prescribing the ra-
dial component of∇2B

p
lm. The sub-block dedicated to

∂B
p
lm(ro,ti)/∂t thus contains a discrete Laplacian operator

written on the fluid side of the outer boundary. The vector
Hx comprises up to 210 elements.

Our inverse problem seeks a state vectorx such that

Hx +εo
= y, (12)

wherey is a set of observations, statistically centered and
normalised using the same means and variances as those used
for x. In a general context, the observations bear some error
εo, with a covariance matrixR = E(εoεo′), whereE stands
for the expected value. In other words, the likelihood ofy
if x is realised isP(y|x) ∝ exp(−(y−Hx)′R−1(y−Hx)/2).
Given the above mentioned sizes ofx and y, the problem
posed by Eq. (12) is vastly underdetermined. Our preferred
estimate ofx is the best linear unbiased estimate, which min-
imizes the functional

J (x) = (y−Hx)′R−1(y−Hx)+x′P−1x. (13)

This estimate is the most likely given the data and model co-
variance properties (seeFournier et al., 2011, for details).
Looking for the extrema ofJ (x) one finds the best linear in-
verse solution, which takes a simple form whenx is centered:

x = Ky , (14)

with the Kalman gain matrix

K = PH′
(
HPH′

+R
)−1

. (15)

Equation (15) is ubiquitous in geomagnetic field modelling
(Gubbins, 1983) and core flow modelling (review inFin-
lay et al., 2010a). In both cases it is usually referred to as
stochastic inversion, but we also note that it is formally iden-
tical to one of the Kalman filter equations (e.g.Fournier et al.,
2010). The stochastic inversion will be more efficient when
P contains strong correlations between the observed and un-
observed parts of the state vector. Our primary goal being to
test the accuracy and prediction power of the inversion with
synthetic data, we consider the data error-free i.e.εo

= 0 and
R = 0, in an attempt to isolate errors resulting from the inver-
sion from all other error sources which can arise in a realistic
context.
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In a time-dependent context, the stochastic inverse can be
used to initialise the numerical model and perform forecasts
of the system evolution. This forms the backbone of se-
quential data assimilation. At a given later time where the
numerical model has updated the state vector to a valuexf

(theforecast), ananalysisof the system can be performed by
comparing the observed part of the forecastHxf to the ob-
servationsy available at the analysis time. The state vector is
then corrected to the new valuexa such that

xa
= xf

+K
(
y−Hxf

)
, (16)

The analysed state vector is then used as a new starting condi-
tion, completing an assimilation cycle. Each time the system
is corrected,P should be updated according to a correspond-
ing evolution equation (the set of equations updatingP and
the state vector and describing their time evolution is called
the Kalman filter,Kalman, 1960). As this is a computation-
ally very intensive task,P is often assumed to be time inde-
pendent, which amounts to assuming that although the anal-
ysis tends to reduce the error on the system state knowledge,
the nonlinear dynamics operating between two analyses re-
stores this error back to its natural (free run) value. When
using such a frozen covariance matrix, the assimilation tech-
nique is referred to as optimal interpolation (or OI, see e.g.
Kalnay, 2003, for a review).

Atmospheric and oceanic data assimilation usually resort
to matrices operating in physical space (Kalnay, 2003, §5.4).
There, the choice of an a-priori defined correlation length re-
sults in sparse banded structures which are easy to process,
even with state vectors with sizes comparable to what is re-
ported in Table1. The accuracy of such an approach depends
on whether in-situ measurements are available with sufficient
quantity. The geomagnetic assimilation case is completely
different because of the lack of in-situ measurements. In that
context, the information cannot be efficiently and accurately
propagated radially downward past the correlation length if
the above approach is employed. We thus need to process a
covariance matrix with a full structure, obtained in spectral
space, in order to perform an accurate and efficient propa-
gation of this information. It can then be understood that
practical computational considerations set a limit on the size
of such a matrix, which can thus update only a subset of the
state vector. This limitation was not present in our previ-
ous study (Fournier et al., 2011), where the two-dimensional
character of the problem permitted high-resolution inver-
sions. When used with this limitation, scheme (16) can be
unstable due to the deleterious influence of the uncorrected
variables. Here we control these instabilities using a slightly
modified version of the OI scheme, where only a fractionβ

(0≤ β ≤ 1) of the forecast is re-injected at analysis stage

xa
= βxf

+K
(
y−βHxf

)
, (17)

If β = 0 then at each analysis time, the system is set tox = 0
(time average of the dynamo simulation) before the analysis

Table 2. Summary of the time-dependent assimilation scheme used
in this study (noise-free data).

Preliminary
computations

Covariance matrixP determined from a free
run (Sect.3.1), frozen for the entire duration
of the assimilation run,
Observation operatorH (Sect.2.3),

Kalman gain matrixK = PH′
(
HPH′

)−1.

Initialisation
step

xf (t0) = 0 (time average of the simulation).

Analysis step

xa(ti) = βxf (ti)+K
[
y(ti)−βHxf (ti)

]
,

0≤ β < 1.
The first analysis (i = 0, xf

= 0) reduces to
xa(t0) = Ky(t0).

Forecast step
xf (ti+1) = M(xa(ti)),
M is the nonlinear dynamo model.

is performed; each analysis is thus an inverse of the cor-
responding data with no memory from previously inversed
data. Ifβ = 1 the analysis corrects the full forecast resulting
from the previous time integration; the whole forecast is thus
re-injected for the next analysis cycle. A value ofβ between
0 and 1 will help mitigate the two possibilities. There is no
theoretical justification for the introduction ofβ in the analy-
sis. The justification is practical, as we observed that the use
of the regular Kalman filter analysis (β = 1) resulted in over-
energetic estimates of those variables not directly impacted
by the observations and the truncated covariance matrixP.

3 Results

3.1 Computation and structure of the model covariance
matrix

A correct determination ofP is central to the quality of the
inversion (14)–(15). Here we approximateP using the mul-
tivariate statistics of the numerical model. This matrix is
thus computed during a preliminary “free run” of the model,
where a numerical integration is performed and a large num-
ber n (see Table1) of state vector snapshotsx(ti) are ex-
tracted, with a typical time lag between the snapshots on the
order of thee-folding time of the system to ensure decorre-
lation between snapshots. In terms of classical dynamo time
scales, the duration of the free run is 17.5 magnetic diffu-
sion timesD2/λ. In terms of the advective time rescaling
used in this study, the duration is about 580τsec, amounting
to 290 000 yr ifτsec= 500 yr. Once each time series of the
state vector components is centered and normalised to unit
variance, if the vectorsx(ti) are stored as columns into a ma-
trix X, thenP can be estimated through
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Fig. 2. Representation of the coefficients of the covariance matrix P involved in the determination of the
stochastic inverse matrix K. At five different radial levels (vertical axis), the colored squares map the modulus
of the correlation coefficients between the surface poloidal magnetic field harmonic coefficients (first horizontal
axis) and the poloidal velocity field coefficients (second horizontal axis). Harmonic coefficients are ordered
according to a one-dimensional scheme where all admissible values of l are grouped together for each given
value of m. These correlation coefficients are computed from a free model run (here from model 1) where n =

4098 instantaneous state vectors spaced by 0.3τsec (half an e-folding time) each are extracted. The coefficients
are computed up to degree and order lP

max = 15, which corresponds to the one-dimensional parameter lm = 120.
Two vertical tracks are drawn, representing the evolution of the correlation coefficients with depth for m = 4,
between harmonics lobs = 5 of the observed field and ldeep = 4 of the deep field (track 1), and between harmonics
lobs = 5 and ldeep = 12 (track 2).
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Fig. 2. Representation of the coefficients of the covariance matrixP involved in the determination of the stochastic inverse matrixK . At
five different radial levels (vertical axis), the colored squares map the modulus of the correlation coefficients between the surface poloidal
magnetic field harmonic coefficients (first horizontal axis) and the poloidal velocity field coefficients (second horizontal axis). Harmonic
coefficients are ordered according to a one-dimensional scheme where all admissible values ofl are grouped together for each given value of
m. These correlation coefficients are computed from a free model run (here from model 1) wheren = 4098 instantaneous state vectors spaced
by 0.3τsec(half ane-folding time) each are extracted. The coefficients are computed up to degree and orderlPmax= 15, which corresponds to
the one-dimensional parameterlm = 120. Two vertical tracks are drawn, representing the evolution of the correlation coefficients with depth
for m = 4, between harmonicslobs= 5 of the observed field andldeep= 4 of the deep field (track 1), and between harmonicslobs= 5 and
ldeep= 12 (track 2).

P=
1

n−1
XX ′. (18)

For reasons of storage and cpu time limitations, about half
of the numerical grid radial nodes are used to determineP,
the remaining nodes (see Table1) being computed by linear
interpolation. We have checked that this has no impact on
the quality of the inversion. Likewise, only harmonic coef-
ficients up to degree and orderlPmax are retained. In order
to capture the correlations involving the dominant scales of
the system, we setlPmax so that it exceeds bothmmed

u,B andlu,B

(see Table1). The convergence of the coefficients definingP
is checked by monitoring the effect of doubling and decimat-
ing the number of samples used to build the matrix (see also
Fig. 8a).

According to Eq. (15), not all coefficients ofP are actu-
ally needed to compute the matrixK : only the correlations
involving one observed quantity have an effect on the result.
We thus represent on Fig.2 sub-blocks ofP displaying the

correlations betweenBp
lm(ro) and one of the fields (hereup

lm

at various radii; the structure is similar for other fields, with
some differences detailed below). Harmonic coefficientslm

have been ordered along a one-dimensional lexicographic
scheme gathering all possible degrees (up tolPmax= 15 in this
case) for each given order.

In the case of model 1, Fig.2 shows that the internal
structure is linearly coupled with the surface observations, as
could be expected from the visualisation presented in Fig.1.
Correlation coefficients are indeed up to 0.9 when correla-
tions betweenBp

lm(ro) (or its time derivative) with another
field at depth are considered. Correlations between harmonic
coefficients of same orderm result from the linear coupling
terms present in Eqs. (1)–(3). In particular, the Coriolis force
(which is a dominant force acting on the fluid) produces cor-
relations between harmonic coefficients which have different
degreesl, provided again that they share the same harmonic
order. Correlations between harmonic coefficients of differ-
ent orders are almost non-existent, an indication of weak
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nonlinear couplings. The dominant azimuthal wavenumber
of the surface magnetic field thus reflects that of the internal
convection flow, as expected from a dynamo mechanism (e.g
Olson et al., 1999; Aubert et al., 2008) where the magnetic
energy is sustained through stretching, twisting and folding
of the magnetic field lines by a columnar convection flow.
The correlations tend to peak at or around the dominant az-
imuthal wavenumber of the dynamo, as measured bymmed

u,B

in Table 1. The influence of the leading equatorial sym-
metry properties of the flow and magnetic field is seen in
the checkerboard pattern of the correlations: iflobs andldeep
are respectively the harmonic degree ofB

p
lm(ro) (or its time

derivative) and the internal field, thenlobs+ ldeep needs to
have odd parity if the internal field isup

lm, Clm or B t
lm, and

even parity if the internal field isBp
lm andut

lm. As the ra-
dius decreases towards the inner-core boundary, the correla-
tion matrix displayed in Fig.2 exhibits an upper triangular
structure: coefficients withlobs> ldeeptend to preserve their
correlation with depth (track 1 of Fig.2) while coefficients
with lobs< ldeep tend to lose their correlation as depth in-
creases (track 2). We ascribe this effect to the dominance
of the Coriolis force, leading to a strong correlation between
magnetic field patches at the surface (largelobs) and convec-
tion columns at depth (lowerldeep).

The covariance matrix of model 2 (not shown) has a simi-
lar visual structure, with less marked correlations peaking at
about 0.7 for the magnetic field and 0.3 for its secular varia-
tion. The increased nonlinear dynamics indeed tends to blur
the linear relationships between the surface and deep fields.
One could expect to see increased correlations between har-
monic coefficients of different orderm as a result of the same
nonlinear dynamics. This is indeed the case but the signal re-
mains small, with cross correlations peaking at less than 0.1.
In general, nonlinear dynamics is thus not beneficial to the
correlation between the surface and deep fields, but a rea-
sonable predictive power of the deep structure from surface
observations can still be expected.

3.2 Synthetic inversion tests, model 1

Once the matricesP andK are computed (see Table2), we
then proceed to the computation of a reference time series
of the model which will be used to benchmark the efficiency
of the inversion. About one hundred to a few hundreds of
snapshots spaced by 0.01, 0.05, 0.1 and 0.2 time units (re-
spectively equivalent to 5, 25, 50 and 100 Earth years if
τsec≈ 500 yr) are extracted (in selected cases, a spacing of
0.02 time units or 10 yr is also used). The surface poloidal
magnetic field and secular variation harmonic coefficients in
this reference time series will be subsequently referred to as
the “data”. A twin run is next initialized from a wrong initial
guess (the time average of the free run, see Table2). The
data are then injected in the assimilation algorithm and the
quality of the reference trajectory recovery is evaluated. In
addition to being started from different initial conditions, the

reference run and its twin may have different physical pa-
rameters, in order to simulate the effects of modelling errors
arising from an imperfect physical description of the system
(Liu et al., 2007). Here, however, we wish to isolate the er-
rors associated with the inversion for the deep structure from
all other sources of errors, and we thus use the same set of
physical parameters for the free run determiningP, the refer-
ence and the assimilation runs.

A first qualitative evaluation of the static and time-
dependent inversions is presented in Fig.3. The first col-
umn represents the reference state at an arbitrary timet of
the reference time series. The quality of the internal struc-
ture retrieval depends on the stage that the assimilation has
reached at timet (see Table2). If the assimilation is ini-
tialised exactly at that time, its state (second column) is the
time average of the model, the best guess one can make in
the absence of data. If the assimilation is initialised and anal-
ysed at that time, the resulting static inversion (third column)
considerably improves the estimation. The knowledge ofP
allows for instantaneous propagation of the information to all
fields throughout the whole shell, giving very reasonable (but
visibly underpowered) estimates of the internal fields. The
low strength of the estimated fields is a general property of
the linear estimation based on correlations (see for instance
Fournier et al., 2011). The detailed agreement between the
reference and the recovery is further improved if the assim-
ilation has already performed several cycles when timet is
attained (fourth column): this shows that the dynamics has
a beneficial effect in determining the amplitude of the scales
which are neither observed, nor correlated to the surface ob-
servations. A quantitative assessment of the recovery quality
is presented in Fig.4, where we compute the energetic mis-
fit Mu and correlation coefficientCu between the estimated
(est) and reference (ref) velocity fields,

Mu =

∫
V

(uest−uref)
2 dV

/∫
V

u2
ref dV, (19)

Cu =

∫
V

uest·uref dV
/√∫

V

u2
ref dV

√∫
V

u2
estdV . (20)

HereV is the shell volume. The corresponding quantities
MB andCB are also presented for the magnetic field. For the
sequence shown in Fig.3, misfits are moderately low, with
the energy of the difference between estimated and reference
amounting to about 20 % to 50 % of the reference energy.
Correlation coefficients are very high, on the order of 0.7 to
0.9. The recovery is better for the velocity field than for the
magnetic field, because of the richer small-scale content of
the latter (due to a magnetic Prandl number larger than one).
It is worth noticing that the recovery quality undergoes size-
able fluctuations and does not monotonically increase with
the number of analyses. In the present case, strong fluctua-
tions are experienced as the reference time series happens to
pass through a state of abnormally low kinetic energy (lowest
energy at time 1.97), only experienced a few times in the free
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Fig. 3. Results of a twin experiment with model 1, where the surface radial magnetic field (first line) and its secular variation (not shown),
both given up to degree and order 13, are used to retrieve the internal structure (second to fourth line). Column 1 is the state of the reference
at timet = 1.3τsec. Column 2 is the assimilation state if only the initialisation step has been performed at timet (it thus represents the time
average of the simulation, see Table2). Column 3 is the assimilation state if only the initialisation step and the first analysis step as been
performed at timet . Column 4 is the assimilation state if it has been initialised at timet = 0, and if 14 analyses and forecast steps have been
subsequently performed with a time lag 0.1τsec(about 50 yr in Earth time) until timet = 1.3τsec(note that this column then represents the
forecast, not the analysis). For this run we usedβ = 0.75. All fields are presented in the units proposed in Sect.2.2, with their tentative
rescaling to Earth’s core values in parentheses.

run computation used to buildP. The internal structure esti-
mates are thus worse in the vicinity of this statistical outlier.

The fact that the recovery quality fluctuates stands in con-
trast with the ideal Kalman filter which, when used in con-
junction with a linear model and when updating a properly
initialized error covariance matrix of the model, statistically
reduces the misfit between the recovery and the reference
(see e.g.Fournier et al., 2010). Our assimilation scheme
loses this property because of its imperfections: a time-
independent covariance matrix is used and a part of the so-
lution length scales spectrum (forl andm abovelpmax) is left
untouched at analysis time and remains only determined by
the dynamics. These uncorrected, dynamically determined
scales tend to backreact on the other scales through the non-
linear couplings present in the dynamical equations, thus di-
verting the system trajectory away from the reference. The
fluctuating recovery quality is then the result of a balance

between the error decrease due to the introduction of new
information and the error increase due to the scheme imper-
fections. Using a factorβ (Eq. 17) smaller than 1, we can
increase the correction brought by the data, while decreas-
ing the part of dynamically determined scales which is re-
injected at analysis time. Comparing assimilation sequences
performed withβ = 0.75 andβ = 1 in Fig. 4, we see that
the recovery quality remains similar at the first few analyses
and subsequently becomes better, with smaller fluctuations
if β = 0.75. Note that this does not result from the removal
of the energy contained in the dynamically determined scales
(this represents a small part of the total energy), but reflects
a better determination of the whole state vector. As we shall
see later, there exists an optimum value forβ (which is close
to 0.75 for model 1), meaning that it is important to main-
tain dynamically determined scales, although not at the level
they tend to freely reach. It should be noted that additional
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Fig. 4. Correlation and misfit coefficients after analysis, for the same series of twin experiments as in figure
3, for which β= 0.75 (black), and for a similar series where β= 1 (grey). Time is in units of τsec, as detailed
in section 2.2, with a tentative rescaling in real time in parentheses. The assimilation is initialised and first
analysed at time t = 0, the values of M and C reported at negative times are those obtained between the first
reference sample and the model time average (which is the initialisation step estimate, second column of figure
3). The vertical dashed line is the time at which the fourth column of figure 3 has been obtained.
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Fig. 4. Correlation and misfit coefficients after analysis, for the
same series of twin experiments as in Fig.3, for which β = 0.75
(black), and for a similar series whereβ = 1 (grey). Time is in
units of τsec, as detailed in Sect.2.2, with a tentative rescaling in
real time in parentheses. The assimilation is initialised and first
analysed at timet = 0, the values ofM andC reported at negative
times are those obtained between the first reference sample and the
model time average (which is the initialisation step estimate, second
column of Fig.3). The vertical dashed line is the time at which the
fourth column of Fig.3 has been obtained.

experiments with variable noise levels added to the obser-
vations (not shown here) show that the benefits of setting
β = 0.75 are preserved when observations are imperfect.

To illustrate the issue of observed, estimated and dynami-
cally determined scales, we next focus on energy spectra of
the surface magnetic field (Fig.5). Since the data are con-
sidered perfect, performing an analysis always results in a
perfect match between the observed part of the system and
the observations, as illustrated by the vanishing residual be-
tween the spectra of the analyses and the reference up to de-
gree 13. The first analysis (red curve in Fig.5) uses the cor-
relations contained inP to additionally estimate the unob-
served surface field coefficients between degree 14 and de-
greel

p
max= 15. Coefficients with degrees larger thanl

p
max are

not estimated by the first analysis. In contrast, the 15th anal-
ysis (green curve, performed immediately after the forecast
presented in the fourth column of Fig.3) benefits from a dy-
namical determination of these coefficients, and reduces the
misfit to the reference by a factor of 2 for harmonic degrees
between 15 and 30.

An important aspect of data assimilation is the evaluation
of the forecast quality. When dealing with a real system, it
is indeed impossible to evaluate the recovery quality of the
internal structure as it was done in Fig.4. It is however pos-
sible to use surface data in order to evaluate a-posteriori how
well the system has predicted a given time evolution. This
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Fig. 5. Top: energy spectra of the magnetic field at the model surface for the reference solution (black), the
first analysis (red) and the 15th analysis (green). The procedure through which these analyses are obtained is
described in figure 3. Bottom: energy spectra of the differences between the reference, the first and the 15th
analyses. Units as described in section 2.2, with their tentative rescaling in parentheses.
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Fig. 5. Top: energy spectra of the magnetic field at the model sur-
face for the reference solution (black), the first analysis (red) and
the 15th analysis (green). The procedure through which these anal-
yses are obtained is described in Fig.3. Bottom: energy spectra of
the differences between the reference, the first and the 15th analy-
ses. Units as described in Sect.2.2, with their tentative rescaling in
parentheses.

provides a combined assessment of the performance of the
assimilation scheme, of its possible biases and of the suit-
ability of the model for describing the real system (dealing
with synthetic data, our study does not cover this last as-
pect). The quality of thei-th forecastxf

i can only be assessed
from the standpoint of the observer and its limited access to
the system. It is thus evaluated on the observed part of the
system only, using the instantaneous innovation (or instan-
taneous forecast error) vectordi = yi −Hxf

i (which indeed
represents the difference between the observable part of the
forecast and the data), or more precisely through its norm

di = ||di ||. (21)

Here our norm definition is adapted such that each harmonic
coefficient is multiplied withl(l +1)/ro prior to the evalu-
ation of the norm, such that the result is a rms value of the
radial magnetic field at the outer boundary (or its time deriva-
tive). One important property of the innovation vectordi is
that its statistical expected value should be zero for an unbi-
ased assimilation scheme (e.g.Talagrand, 2003). Computing
the cumulative mean innovation

dk =

∣∣∣∣∣
∣∣∣∣∣1

k

k∑
i=1

di

∣∣∣∣∣
∣∣∣∣∣ (22)

provides a quantitative way to test this prediction. Figure6
presents both quantities for various assimilation sequences.
We recall that in our case, the observed part of the system
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between analyses), from 0.01τsec to 0.2τsec (solid black lines, each circle represents an analysis, forecast horizon
increases vertically). The innovation is computed only with the magnetic field (not the secular variation). Also
plotted are an assimilation sequence with β = 1 (solid grey line, forecast horizon 0.1τsec) and the root-mean
squared radial magnetic field amplitude at the outer boundary for the reference sequence (dashed line). Units
as in previous figures.
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Fig. 6. Instantaneous innovation (or instantaneous forecast error)
di and cumulative mean innovationdk as a function of assimilation
time, for the sequence presented in Fig.3 and other sequences with
same access to observable quantities and assimilation parameters
but varying forecast horizon (which is the same as the time lag be-
tween analyses), from 0.01τsec to 0.2τsec (solid black lines, each
circle represents an analysis, forecast horizon increases vertically).
The innovation is computed only with the magnetic field (not the
secular variation). Also plotted are an assimilation sequence with
β = 1 (solid grey line, forecast horizon 0.1τsec) and the root-mean
squared radial magnetic field amplitude at the outer boundary for
the reference sequence (dashed line). Units as in previous figures.

comprises the poloidal magnetic field up to degree and or-
der 13 and its secular variation up to a variable degree and
order (13 in the case of Figs.3 to 6). However, to facili-
tate comparison between sequences where secular variation
is assimilated to a variable degree (see Fig.7 below), we will
evaluate the forecast quality only on the observed magnetic
field poloidal coefficients up to degree 13. As expected from
the discussion of Fig.4, di does not decrease with the number
of assimilation cycles, but oscillates about a slowly increas-
ing baseline. This long-term trend does not mean that the
assimilation gets worse over time, but is simply the conse-
quence of an increase of the reference sequence magnetic en-
ergy through time (dashed line in Fig.6). In line with Fig.4,
di is significantly reduced whenβ is decreased from 1 to
0.75. Regardless of the forecast horizon (which is the same
as the time lag between analyses),dk decreases sharply af-
ter one system overturn time (which is about 0.3 in units of
τsec, a value which is quite independent of the chosen model,
Christensen and Tilgner, 2004; Lhuillier et al., 2011a). At
very long assimilation times,dk ceases to decrease, revealing

the existence of a forecast bias in our scheme. The bias sig-
nificantly decreases whenβ is decreased from 1 to 0.75. This
shows that it is connected to the influence of the uncorrected
variables of the state vector on the corrected variables. Al-
though it would certainly be desirable to implement a bias re-
moval strategy in the assimilation scheme, the present bias is
not likely to be a limiting factor in practical applications, its
level being typically one order of magnitude lower than the
intrinsic forecast error introduced by the assimilation. Fur-
thermore, long assimilation times (here 8500 yr) are needed
to reveal the presence of this bias. Our synthetic experi-
ments, where high-quality data are assimilated in such long
sequences, obviously do not represent a practical situation,
given the presently available record of Earth’s magnetism on
centennial to millenial timescales (e.g.Hulot et al., 2010a).

To really become meaningful, the absolute forecast quality
should be compared to that obtained with other prediction
strategies, the simplest of which is the “no-cast”, or use of the
present magnetic field as a forecast for the future. Another
still simple strategy is the linear extrapolation of the existing
surface magnetic field, making use of the secular variation
data. The results of series of no-casts, linear extrapolations
and assimilations are reported in Fig.7, for various forecasts
horizons never exceeding the systeme-folding time 0.6τsec.
The average forecast error is defined as

d =
1

na

na∑
1

di, (23)

wherena is the total number of assimilation cycles. The aver-
age forecast errord should not be confused with the cumula-
tive mean innovation,dk. It can be first noted thatd approxi-
mately follows a power-law of the forecast horizon, for all the
prediction strategies which we have studied. The left panel of
Fig.7 shows that regardless of the forecast horizon, an assim-
ilation of surface magnetic field coefficients always makes a
better forecast of these coefficients (by about a factor of 2)
than a no-cast performed with the same amount of data. This
is also true (middle panel) if the linear forecast is refined us-
ing the secular variation data up to degree 8 (the correspond-
ing assimilation then also uses this additional data). Finally,
if secular variation coefficients up to degree 13 are used, lin-
ear extrapolations will perform better than the assimilation
for forecast horizons shorter than 0.03τsec(to confirm the ro-
bustness of this result, an additional assimilation sequence
has been carried out with spacing 0.02τsec). Here, the errors
introduced in the retrieval of the internal structure are too
large to provide a forecast which can match the high accu-
racy of the linear extrapolation. In this latter case, the typical
forecast bias of our scheme (5 10−4 mT for an 0.01τsechori-
zon) is less than a third of the gap separating the assimilation
and the linear forecast (about 1.7 10−3 mT). Removing the
forecast bias would thus not entirely bring the assimilation in
line with the linear forecast.
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interval for all sequences presented in this figure is from 0 to 6τsec.
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Fig. 7. Average forecast errord of surface poloidal magnetic field coefficients up to degree and order 13, for various prediction strategies
and variable forecast horizon. From left to right: the no-cast (poloidal magnetic field coefficients up to degree 13 at a given time are used to
forecast at a later time), the linear forecasts (poloidal magnetic field coefficients (B) up to degree 13 and secular variation (SV) up to degree
8 or 13 are used for a linear extrapolation) are compared with the assimilation using the exact same amount of data. For each panel, the
average forecast error is computed on an equal number of cycles for the assimilation and the linear prediction. All sequences haveβ = 0.75
as in Fig.3. Units as in previous figures. The averaging time interval for all sequences presented in this figure is from 0 to 6τsec.

In a final series of experiments (Fig.8), we use the fore-
cast quality as an indicator to perform a number of checks
on our data assimilation framework. The first of these is an
evaluation of the adequate numbern of free run snapshots
needed for building a robust estimate ofP, as well as their
spacing. Figure8a shows that more than 1000 samples with
a spacing at least equal to thee-folding time of the system
are needed for a reasonable determination of the covariance
matrix. Conversely, using a too small set of samples leads
to forecast errors which may exceed the error made with a
no-cast strategy. The next test evaluates the impact of the
factorβ which controls the amount of correction brought by
the data at analysis time. Figure8b shows that an optimum in
the forecast quality is reached forβ = 0.75, which underlines
again the potentially deleterious effect of re-injecting all the
dynamically determined scales into the system after analysis.
Re-injecting some of these dynamically determined scales is
however beneficial to the forecast quality, as seen from the
regular decrease of the average error fromβ = 0 toβ = 0.75.
Finally, we have performed experiments (Fig.8c) where the
correction at analysis time has been turned off for one or sev-
eral fields. Obviously, correcting only the magnetic field har-
monic potentials results in a better forecast than not assimi-
lating anything, but the forecast quality will outperform that
of a no-cast strategy only if the flow and buoyancy harmonic
potentials are also corrected. Note that the best improvement
comes from updating the buoyancy potential, presumably be-
cause the flow driven by the buoyancy anomaly is then also
well estimated. This last test emphasizes the benefit of using

multivariate statistics for the estimation, and also illustrates
the difficulties encountered by monovariate, modelled co-
variances (Kuang et al., 2009) in forecasting the field with
better accuracy than that of a linear extrapolation.

3.3 Synthetic inversion tests, model 2

The satisfying results obtained with model 1 can be under-
stood through the strong linear couplings existing between
the observed and unobserved part of the system. To eval-
uate the impact of stronger nonlinearities, we now turn to
synthetic experiments performed with model 2. Following
the prescriptions obtained through the analysis of model 1,
the co-variance matrix for model 2 was built usingn = 978
samples in the free run, with a spacing between samples of
0.125τsec, which is about three times longer than the sys-
tem e-folding time τe = 0.04τsec. The duration of the free
run is 0.65 magnetic diffusion times or 122τsec, amounting
to 61 000 yr ifτsec= 500 yr. It should be noted from Fig.8
that if we were to usen = 978 also in model 1, this would
not substantially degrade the quality of the inversions. The
differences present in the following results should thus not be
ascribed to the size of the error space (which is the rank of the
covariance matrix and is equal ton). The matrix coefficients
were computed up to degree and orderlPmax= 30. All assim-
ilation experiments have been performed usingβ = 0.75.

Figure9 presents an equivalent to Fig.3 for model 2, with
an additional line presenting the observable part of the sur-
face radial magnetic field, which is now clearly different
from the complete magnetic field (for model 1 most of the
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Fig. 8. Average forecast error d for series of experiments where the surface magnetic field is assimilated up to
degree 13 (the secular variation is not assimilated here), and the forecast horizon is 0.1τsec. a.: the factor β is
set to 0.75 and the number n of samples used to build P is varied by decimating an ensemble of 8155 snapshots
obtained during the model free run, the spacing between each snapshot being 0.13τsec. Two vertical dashed
lines indicate the values of n for which the spacing between snapshots is equal to the e-folding and overturn
times of the system. b. The number n of samples is set to 4098 and the factor β is varied from 0 (the system
is reset to its time average state prior to each analysis) to 1 (the analysis is performed on the forecast resulting
from the previous time integration). c. The correction at analysis time has been turned off for some, or all fields
(n = 4098, β= 0.75). Same time averaging interval as in previous figure.
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Fig. 8. Average forecast errord for series of experiments where
the surface magnetic field is assimilated up to degree 13 (the sec-
ular variation is not assimilated here), and the forecast horizon is
0.1τsec. (a) the factorβ is set to 0.75 and the numbern of sam-
ples used to buildP is varied by decimating an ensemble of 8155
snapshots obtained during the model free run, the spacing between
each snapshot being 0.13τsec. Two vertical dashed lines indicate
the values ofn for which the spacing between snapshots is equal
to thee-folding and overturn times of the system.(b) The number
n of samples is set to 4098 and the factorβ is varied from 0 (the
system is reset to its time average state prior to each analysis) to 1
(the analysis is performed on the forecast resulting from the previ-
ous time integration).(c) The correction at analysis time has been
turned off for some, or all fields (n = 4098,β = 0.75). Same time
averaging interval as in previous figure.

surface magnetic field was observable). With the exception
of this additional line, all other lines have the same color
bars as the corresponding lines of Fig.3, in order to high-
light the relevance (and possible shortcomings) of the scaling
procedure which we have adopted (see Sect.2.2). From an
order-of-magnitude standpoint, the rescaling is indeed satis-
factory, but there are variations within the order of magni-
tude which the scaling theory fails to describe. For instance,
model 2 has a slightly larger internal magnetic energy than
model 1 (third line of Fig.9) but less magnetic flux escapes
at the surface (second line). The large-scale velocity and
buoyancy anomaly fields have roughly the same amplitude as
in model 1, but more powerful small-scales, located mostly
within the strong plumes emerging from the inner boundary.

When compared to model 1, the static stochastic inversion
of one data sample (second column of Fig.9) captures less
of the internal structure of the dynamo. The system is in-
deed less observable, in the sense that a reduced state vector
which is now ten times larger (see Table1) needs to be con-
strained by the same amount of observation. Furthermore,
the stronger nonlinearities present in model 2 tend to even
out correlation peaks resulting from the linear couplings in
the covariance matrix of model 2, resulting in less accurate
estimations. Still, at the exception of the deep magnetic field
(third line), which is too small-scaled to be well constrained
by the surface observations (first line), a number of gross de-
tails of the internal solution are retrieved. The first estimate
is underpowered as it was for model 1. If more data samples
have been previously assimilated through integration of the
time evolution scheme (third column), the estimate reaches
the same power as the reference. After a time of 0.7τsec
(corresponding to about two overturns), the deep fields are
only qualitatively recovered in a morphological sense. The
gross details of the convection flow and thermal plumes are
roughly into place. However, small scale details created by
the nonlinear dynamics, which are especially prominent in
the deep magnetic field map, are clearly not constrained by
the surface observations and the scheme. The frozen co-
variance matrix which we have obtained for model 2 lacks
the ability to reliably estimate small-scale details from the
large-scale observations. Indeed we have seen in Sect.3.1
that couplings between different harmonic orders are non-
existent, and that couplings between harmonic degrees are
prominent under the condition that the solution is rather well
controlled by the linear part of the equations (including the
Coriolis force). The strong nonlinear dynamics is thus left
free to populate these small-scales in a rather unconstrained
way. This deleterious effect is also enhanced by the fact that
the size of the uncorrected part of the state vector is ten times
larger in model 2 when compared to model 1 (Table1).

Although the deep structure of model 2 is not well re-
trieved, the assimilation seems to make (at least visually, see
the first line of Fig.9) decent forecasts of the system evolu-
tion. On Fig.10 we again compare the quality of these fore-
casts with that of other prediction strategies. In contrast to
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Fig. 9. Results of a twin experiment with model 2, where the surface radial magnetic field (first line) and its secular variation (not shown),
both given up to degree and order 13, are used to retrieve the internal structure (second to fifth line). The first column is the reference.
Similarly to Fig.3, column 2 is the estimate if only the initialisation and the first analysis steps have been performed, and column 3 is the
estimate obtained after performing a full data assimilation sequence where 7 data samples spaced 0.1τsectime units each are injected in the
model. Note that for this last column, the state of the system is represented after the forecast (not after the analysis). For this run we used
β = 0.75. For comparison purposes, units and color bars for lines 2 to 5 are the same as in Fig.3.

Fig. 7, the error for the various strategies no longer follow a
power-law of the forecast horizon as this horizon approaches
the systeme-folding timeτe = 0.04τsec. Indeed it is expected
(Hulot et al., 2010b; Lhuillier et al., 2011a) that the error
starts to become of macroscopic (same order of magnitude
as the reference) amplitude beyond this point, as confirmed
by our experiments. The left panel of Fig.10 shows that the
assimilation never performs significantly better than the no-
cast. Moreover, when secular variation data up to degree 13
are also used, the linear extrapolations are shown to be much
better than the assimilation forecasts, for all horizons below
thee-folding time where both strategies again yield the same
error. Given thatRe = 858 for model 2, the secular variation

at the outer boundary is now mostly controlled by flow ad-
vection underneath the outer boundary. The flow responsible
for the secular variation is nonlinearly coupled to the obser-
vations, and thus not well grasped by our linear estimation
technique. This explains the worse results obtained by the
assimilation.

Here, our assimilation scheme faces a problem of rele-
vance: it is less efficient than the linear forecast for horizons
below the systeme-folding time, and for longer horizons,
prediction strategies can only be envisioned if the analysis
done before the time integration has very low errors in the
determination of the internal structure. As, for the Earth, we
may not be able to observe enough of the system to perform
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Fig. 10. Average forecast errord of surface poloidal magnetic field
coefficients, for model 2, various prediction strategies and various
forecasts horizons, computed as in Fig.7.

such low error analyses, this reduces the prospect of im-
plementing a reasonably complex and realistic geomagnetic
data assimilation framework in an operational context. How-
ever, assuming that the errors of the assimilation and linear
extrapolation strategies are decorrelated, and if their statistics
are known, the predictions from both strategies can be com-
bined in order to provide a third prediction which is better
than the two original ones. Such an additivity of accuracies
is a concept at the root of the linear estimation theory. Here
again, a Kalman filter is the adequate tool to perform this
task. If we assume that we can estimate the error covariance
matrix R of linear extrapolations, and if, for a given forecast
horizon, we have both the linear extrapolation forecastxf l

and the assimilation forecastxf , then the combined forecast
xf c is such that

xf c
= xf

+K(Hxf l
−Hxf ). (24)

In a more readable presentation which involves the observ-
able partsyf l

= Hxf l , yf
= Hxf andyf c

= Hxf c, and the
model covariance matrix reduced to the observable partO =

HPH′, the combined forecast writes:

(O+R)yf c
= Oyf l

+Ryf . (25)

The combined forecast is thus simply an optimal interpola-
tion of the two other forecasts. Figure11 illustrates this con-
cept on a forecast horizon 0.05τsec, roughly equal to the sys-
tem e-folding time. Diagonal coefficients of the matrixR
(Fig. 11a) are estimated following the same procedure as in
Sect.3.1, using 100 linear forecasts performed in a prelimi-
nary run of the model. Cross-correlations in the error statis-
tics are neglected (non diagonal coefficients are set to 0). Er-
rors are naturally statistically centered, and according to the
formalism outlined in Sect.2.3, they are normalised with the
corresponding diagonal variances used forP. An error equal
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Fig. 11. a.: empirically-estimated diagonal coefficients Rlm,lm of the error covariance matrix R for linear fore-
casts of model 2 at the horizon 0.05τsec. Coefficients are normalised with the corresponding variances of the
free run, and are ordered according to the same one-parameter lm ordering scheme as in figure 2. Non-diagonal
coefficients are set to 0. b.: instantaneous innovation (or instantaneous forecast error) di (circles) for the assim-
ilation sequence shown in figure 9 with forecast horizon 0.05τsec. Also represented are the results of a linear
extrapolation using the exact same amount of data, i.e. the surface magnetic field and secular variation coeffi-
cients up to degree 13 (squares), and the results of a combined forecast (diamonds) as defined in equation (25),
using the empirically-estimated matrix R.
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Fig. 11. (a): empirically-estimated diagonal coefficientsRlm,lm of
the error covariance matrixR for linear forecasts of model 2 at the
horizon 0.05τsec. Coefficients are normalised with the correspond-
ing variances of the free run, and are ordered according to the same
one-parameterlm ordering scheme as in Fig.2. Non-diagonal coef-
ficients are set to 0.(b): instantaneous innovation (or instantaneous
forecast error)di (circles) for the assimilation sequence shown in
Fig. 9 with forecast horizon 0.05τsec. Also represented are the re-
sults of a linear extrapolation using the exact same amount of data,
i.e. the surface magnetic field and secular variation coefficients up
to degree 13 (squares), and the results of a combined forecast (dia-
monds) as defined in Eq. (25), using the empirically-estimated ma-
trix R.

to one thus means that the linearly forecast harmonic coeffi-
cient varies as much as what was observed for the coefficient
itself during the model free run. From Fig.11.a it appears
that the linear forecast performs better on large scales than
on small scales. The optimal interpolation outlined above
has the effect to mitigate this error by injecting more of the
assimilation forecast when the linear forecast error is large.
The overall root-mean-squared forecast error thus decreases
(Fig.11b). The quality of the combined forecast outperforms
that of the linear extrapolation by about 10 %, and that of the
assimilation by about 40 %. More importantly, the combined
forecast is shown to be always better than the best of the
two strategies. This clearly underlines the interest of hav-
ing several independent prediction strategies at hand when
attempting to perform forecasts, especially if each strategy is
far from perfect.

4 Discussion

In this study, we have explored how a linear estimation tech-
nique, the stochastic inverse (or Kalman filter), together with
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a sequential assimilation scheme, can provide inferences on
the internal structure of numerical dynamos from surface ob-
servations only. The way the stochastic inverse handles the
non-uniqueness problem is through the use of prior informa-
tion, obtained by directly computing the multivariate statis-
tics of the numerical models from a suitably large set of snap-
shots with enough spacing between each other. Strong corre-
lations were found between the surface observations and the
internal fields, which arise from the linear part of the dynam-
ical equations and the leading influence of the Coriolis force
in the dynamics. This led to excellent synthetic recovery
results with a weakly nonlinear model (model 1). Stronger
nonlinearities (model 2) however defeat the linear estimation
technique to some extent, even though nonlinearity itself can
be used with some success in estimating the part of the under-
lying field spectrum which is neither observed nor correlated
to surface observations (Fig.5). This could provide a possi-
ble path towards improving spatial resolution problems of the
existing inversion strategies mentioned in the introduction.

With kinematic Reynolds numbers of order 109 and mag-
netic Reynolds number of order 103 (e.g. Christensen and
Tilgner, 2004; Aubert et al., 2009) it is certain that nonlinear-
ities are important in Earth’s core dynamics. Our results are
encouraging but highlight the need for estimation techniques
specifically designed to handle a large amount of nonlinear-
ity. When dealing with such magnetic Reynolds number (as
is the case in model 2), advection by the flow underneath
the outer boundary is responsible of most of the secular vari-
ation in the observed range. The linear estimation of core
flow performed in this study is clearly insufficient and could
be replaced by a classical inversion of the radial induction
equation (see for instanceFinlay et al., 2010a), which han-
dles the nonlinear nature of core flow advection correctly.
Another important point is to implement a time evolution al-
gorithm for the model covariance matrix, in order to have an
instantaneous matrix which, for each analysis time, should
be more adapted to the evaluation of nonlinear correlations
than the generic, frozen covariance matrix in which, as we
have seen, only the correlations subsequent to the linear part
of the system arise. A promising method is for instance the
ensemble Kalman filter (Evensen, 1994), where the model er-
ror statistics are evolved through the use of an ensemble of
models states created around the actual model trajectory with
the help of a Monte-Carlo method. Such a method is how-
ever much more costly in terms of computer power than the
method which we have presented here, which had require-
ments on disk space (400 GB for model 2) and random ac-
cess memory (30 GB) only at the time of the computation of
the frozen model covariance matrix.

Geomagnetic data assimilation is however still in its in-
fancy, and more acute problems need to be solved before
geomagnetism can integrate the advanced data assimilation
techniques routinely used in atmospheric and ocean sciences.
One of these issues is the choice of a numerical model for
performing an operational inversion for the internal structure

of the geodynamo. As discussed in the introduction, the
Earth’s core has an extraordinary disparity in the diffusivi-
ties of the involved fields, as measured for instance by the
magnetic Prandtl numberPm ≈ 10−6 of liquid iron. Nu-
merical models are not able to handle such diffusivity con-
trasts and operate at Prandtl numbers close to unity. Even
if we can reach an acceptable level of magnetic turbulence
(Rm = O(1000)), current computer power limitations make
it impossible to reach a level of hydrodynamic turbulence
which approaches that of the Earth’s core. As a result, even
if the magnetic induction phenomenon is correctly simulated,
we should be cautious about the relevance of the large-scale
velocity output of our simulations and inversions. In the ab-
sence of a clear path towards improving this situation, our
understanding of the physical grounds underlying the mor-
phological semblance between numerical dynamos and the
geomagnetic field (Christensen et al., 2010) suggests that we
should select a model which has the lowest possible ratio
between the length of the day and the magnetic dissipation
time scale (the magnetic Ekman number) and a ratio between
the magnetic advection and diffusion time scale approaching
1000 (the magnetic Reynolds number). In that sense model 2
should be much better suited than model 1 for the task of
inverting real geomagnetic data, but here a trade-off should
be made between the physical relevance of the model and
the ability to linearly estimate hidden state variables, which,
as we have seen, is precisely hampered by the fact that the
magnetic Reynolds number is large.

It is interesting to briefly review how geomagnetic data as-
similation strategies currently in development deal with the
issue of this improper rendering of the real physics.Kuang
et al. (2010) propose that these modelling errors evolve
on a time scale longer than that at which observation data
can be made. In that case they can be mitigated by per-
forming two closely spaced assimilation sequences. The
method is promising and already resulted in a secular vari-
ation model for the latest generation of the IGRF (Finlay
et al., 2010b). It is however limited to surface field forecast-
ing activities. Progress in determining the internal dynamical
structure could be achieved through combining data assimi-
lation with asymptotic assumptions on core dynamics, for in-
stance the quasi-geostrophic assumption (Canet et al., 2009),
or building Taylor states (Livermore et al., 2010) compatible
with surface observations. In any case, using several inter-
nal structure modelling approaches within their spatial and
temporal range of validity could help overcome the intrinsic
limitations of each strategy. For instance, a quasi-geostrophic
framework is more appropriate for rapid (decadal) flow vari-
ations (Jault, 2008) while a three-dimensional numerical dy-
namo is suitable for describing long-term, ageostrophic flows
such as thermal winds (Aubert et al., 2010).

With the help of the scaling procedure presented in
Sect.2.2, it is useful to recast the time axis of our mod-
els to the dimensional world, using the secular variation
timescaleτsec≈ 500 yr, in order to set some bounds on what
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could be expected from an operational implementation of our
method for short-term geomagnetic data assimilation. Given
the macroscopic errors obtained when inverting for the in-
ternal structure, our scheme cannot provide reasonable fore-
casts at horizons longer than the systeme-folding time. For
the Earth’s core, this time was evaluated (Hulot et al., 2010b;
Lhuillier et al., 2011a) at aboutτe = 0.04τsec≈ 25 yr (similar
to model 2). At very short horizons such as 0.01τsec= 5 yr,
we have also seen that linear extrapolations of the magnetic
field evolution usually perform better than the assimilation.
Still, as the two prediction strategies have complementary
strengths and weaknesses, we have applied the principle of
“additivity of accuracies” in order to show how the two pre-
diction strategies can re-inforce each other to provide a bet-
ter third forecast, provided the error statistics of each strat-
egy is known (or can be estimated). Here again it should
be stressed that the current generation of numerical dynamo
models lacks the short timescale dynamics of Earth’s core,
such as the 6-yr oscillation studied byGillet et al. (2010).
The extent to which data assimilation based on these numer-
ical models could improve our knowledge of this fast dy-
namics needs to be clarified. Still, it should not be forgotten
that beyond the classical exercise of forecasting the surface
magnetic field evolution, data assimilation could bring esti-
mates and forecasts for other hidden and internal geodynam-
ical properties for which we currently do not have any other
estimation and forecasting strategy at hand.

Evaluating the typical forecast error of our assimilation
scheme at the surface of the Earth, we find errors on the or-
der of a microtesla for a 50 yr forecast, and of a few tenths of
nanoteslas for a 5 yr forecast. These should be put in perspec-
tive with the typical observation errors present in geomag-
netic field modelling, which amount for instance to tens to
hundreds of nanoteslas in the historical period (Bloxham and
Jackson, 1989) and a few nanoteslas in the satellite observa-
tion period (Olsen et al., 2010). An assimilation performed
on real data will thus need to include a proper estimation of
the observation error for the assimilated quantities. It might
then be impractical to work with the harmonic coefficients
supplied by geomagnetic field models such asgufm1(Jack-
son et al., 2000), as the evaluation of the observation error
covariance matrix is intricate. To tackle this issue, future data
assimilation frameworks should be able to directly integrate
pointwise direct or indirect measurements, along with their
corresponding observation errors, or progress should be en-
couraged towards better evaluating the error associated with
each harmonic coefficient in geomagnetic field models, as
done most recently in the archeomagnetic context byKorte
and Constable(2011).
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Fournier, A., Aubert, J., and Thébault, E.: Inference on core surface
flow from observations and 3-D dynamo modelling, Geophys.
J. Int., 186, 118–136,doi:10.1111/j.1365-246X.2011.05037.x,
2011.

Gillet, N., Pais, M. A., and Jault, D.: Ensemble inversion of time-
dependent core flow models, Geochem. Geophy. Geosyst., 10,
Q06004,doi:10.1029/2008GC002290, 2009.

Gillet, N., Jault, D., Canet, E., and Fournier, A.: Fast torsional
waves and strong magnetic field within the Earth’s core, Nature,
465, 74–77,doi:10.1038/nature09010, 2010.

Gubbins, D.: Geomagnetic field analysis – I. Stochastic inversion,
Geophys. J. R. Astr. Soc., 73, 641–652, 1983.

Houser, P. R., De Lannoy, G. J. M., and Walker, J. P.: Land Surface
Data Assimilation, in: Data Assimilation, edited by: Lahoz, W.,
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