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(1) Introduction

Thermal surface energy is currently used as a time-
independent proxy to assess an effusion rate @ for

lava flows (Harris et al., 2007) :
4 4
eo (T}, — T.l): radiative heat flux Q (Ttop Ta ) + A(jﬂitop - Ta)
A(Tyop — Tw): convective heat flux — T
Ar: l:\va area (CPAT + ¢CL)

pCpAT': heat advected along the the flow
pocr: heat generated by crystallization
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What is the surface thermal evolution of a
flow simultaneously spreading and cooling?
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Infrared image of multiple vents and channels, on
15 October 2010, La Reunion Island (OVPF).

SEVIRI image over La
Reunion lIsland, March
2007 (Hirn et al., 2009)

ﬁZ) Reference model = horizontal, isoviscous gravity current supply at constant rate\

a - Theoretical model

Spreading
(Huppert, 1982)
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H Q: flux rate
p: dynamic viscosity

Height « (,uQ)%
Cooling at the surface of the flow
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¢ - Experimental set-up

Optical and infrared cameras
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e - Model results
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b - Scaling

Np = Relative energy content

Total heat flux at the surface
Nsurf =

Vertical heat diffusion in the current

Convective heat flux at the surface

Ny —
A Total heat flux at the surface

d - Experiments with silicone oil
Surface thermal steady state !
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Vm;.n -

Surface temperature (°C)

f - Comparison with
natural lava flows

Etna, 29 July 2001
Airborne sensor MIVIS

Flow F4 (since 18 July)
Radiant heat flux = 4 GW

MODEL
(plateau heat flux)

| Effusion rate Q ~ 6 — 8 m3.s7! |

Ground-based effpsion rate
Q~6-11m3s™!
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Experimental study of the surface thermal signature of gravity currents:
. Application to the assessment of lava flow effusion rate

SAGU
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7~ (3) Solidifying material
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PEG wax,
constant supply rate

k 30°C  35°C  40°C  45°C

ft=278 5|

(5]

1=292's

;\:=452 5|

h=442 5|

Theoretical isoviscous
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Radiated heat flux (W)

steady heat flux = 6 W

- Step-like evolution of
the total radiant heat flux
(non-periodic overflow of
liquid material)

- Apparition of a steady
regime with increasing

temperature threshold

(= "active area")
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/ (4) Topography

Glucose syrup, same input rate
Slope =2°

Slope = 1°
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(Lombardo and Buongiono, 2003)
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- Decrease of transient time - Similar radiated heat
with increasing slope?

flux in the steady regimy

(5) Take-home message

~

For a constant effusion rate, the radiated
heat flux of the "active" part of the flow
reaches a plateau after a transient time

—>» correct order of magnitude of the effusion
rate calculated with the simple model

Assessing the effusion rate of lava flows

—> difficulty to interpret an
instantaneous thermal information

—> is there a threshold temperature defining
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the active part of a lava flow?
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