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E-mail: antonio.ferraz@ign.fr

ABSTRACT

Consistent and accurate information on 3D forest canopy structure
is required by many applications like forest inventory, management,
logging, fuel mapping, habitat studies or biomass estimate. Com-
pared to other remote sensing techniques (e.g., SAR or photogram-
metry), airborne laser scanning is an adapted tool to provide such
information by generating a three-dimensional georeferenced point
cloud. Vertical structure analysis consists in detecting the number of
layers within a forest stand and their limits. Until now, there is no
approach that properly segments the different strata of a forest. In
this study, we directly work on the 3D point cloud and we propose
a mean shift (MS) based procedure for vertical forest segmentation.
The approach that is carried out on complex forest plots improves
the discrimination of vegetation strata.

Index Terms— Airborne Laser Scanning, Forest Vertical Struc-
ture, Mean shift, Segmentation

1. INTRODUCTION

All plant communities have a vertical structure based on the size and
growth pattern of the dominant species. This pattern, called vertical
stratification, largely depends on the climatic zone. The main layers
are the canopy layer or overstory, the understory, the surface layer
or shrub layer, and the ground layer. These layers may have differ-
ent densities, thicknesses and water contents. Vertical stratification
plays an important role in the distribution of fuels, and consequently
in fire behaviour, habitat quality, micro-climatic conditions, carbon
storage, etc. Airborne Laser Scanning (ALS) is an active remote
sensing technology that provides distance measurements between
an aircraft (or any other platform) and the surface illuminated by
the laser beam. Such range measurements are georeferenced using
a GPS/INS system. Depending on the nature of the target, a sin-
gle pulse emission may be the cause of one to several backscattered
echoes. Thereby, ALS is able to penetrate beneath forest canopies
down to the ground. Thus, it provides an unstructured 3D point cloud
that is a discrete model of the target. Many authors show the po-
tential of multi-echo ALS data to compute Digital Terrain Models
(DTM) over vegetated areas, and also to the extract of forest vari-
ables [1].
However, emphasis is almost always given to the estimation of tree
and crown metrics within the overstory, which do not fully charac-
terize the vertical stratification of heterogeneous forests such as in
Mediterranean ecosystems. Only few studies using ALS data fo-
cus on the vertical segmentation of forest structures. They mainly

take advantage of the height distribution of the 3D points, and then
search threshold values based on histograms by means of different
techniques [2, 3, 4, 5]. One can distinguish two approaches: in the
plot-based approach, the histogram is calculated over a defined area
containing several trees, so that both the mean overstory base height
and the mean understory height highly depend on the plot homo-
geneity. In the tree-based approach, the histogram is defined locally
and centred on prior knowledge of the tree positions. This informa-
tion is thus crucial. Although these approaches work quite well in
boreal or managed forests, due to distinguishable gaps between the
layers, homogeneous plots and good tree detection, they generally
fail in complex environments. The overstory layer can also be bi-
storied or multi-storied. Some authors tried to figure out the nature
of this layer. To segment trees, the individual 2D tree crown regions
detected in each layer of a voxel space are combined [6]. However,
this method remains dependent on the correct finding of tree tops
used as seed points. A more sophisticated method based on normal-
ized cut segmentation is applied by [3]. However it requires prior
knowledge such as the stem position and it is site-dependent since
several empirical parameters are involved.
In this paper, we study the potential of the MS algorithm to segment
forest. Since its reformulation by [7], the mean shift (MS) has been
mainly applied to image segmentation. The MS is a non-linear fil-
ter that looks for local maxima (modes) of a density function. It is
a non-parametric and unsupervised approach, which only requires a
single criterion (the kernel bandwidth). Moreover, the MS can be
applied to a joint spatial/spectral space. Here, we explore its prop-
erties in the spatial domain. The processing of unstructured ALS
point clouds using the MS algorithm was first proposed by [8] who
differentiate power lines from vegetation. In this work, we present a
new MS-based procedure dedicated to forest stratification. Since the
forest point cloud is a multi-modal distribution, the MS technique is
used to find the modes that are supposed to be the barycenter of veg-
etation features. Once it is achieved, the modes are grouped together
by height ranges and assigned to vegetation strata.
The MS theory is described in Section 2. Section 3 presents the
mathematical bases of the procedure as well as the experimental data
set. Section 4 details the results. Finally conclusions are drawn in
Section 5.

2. MEAN SHIFT THEORY

The mean shift (MS) is a non-parametric density estimator technique
based on the Parzen window kernel. Given n data points xi=1,...,n in a
three-dimensional space, the kernel density estimator at point x can
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be written as

f̂h,K(x) =
ck,d

nhd

n∑
i=1

k
(∥∥∥∥∥x − xi

h
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)

(1)

with ck,d a normalization constant, h the bandwidth, K the kernel,
and k(.) the kernel profile. k(.) describes how strongly the data points
are taken into account in the estimation. The MS tries to determine
the local modes of the density function f (x), which correspond to the
zeros of the gradient ∇ f (x) = 0. Thus, the density gradient estimator
can be obtained by

∇ f̂h,K(x) =
2

h2c
f̂h,G(x).mh,G(x) (2)

with G the kernel profile defined as g(x) = −k′(x), cg,d a normaliza-
tion parameter, and c = cg,d/ck,d a normalization constant. In Eq.
(2), the first term is the density estimate at x with kernel G, where
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cg,d

nhd
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)

(3)

and the second term is the so-called MS vector

mh,G(x) =

∑n
i=1 xi.g(‖ x−xi

h ‖2)∑n
i=1 g(‖ x−xi

h ‖2)
− x (4)

Eq. (4) shows that the MS vector is the difference between the
weighted mean (“G-distance”) and x, the center of the kernel.
Eq. (2) can be rewritten as

mh,G(x) =
1

2
h2c
∇ f̂h,K(x)

f̂h,K(x)
(5)

that shows that the MS vector at point x with kernel G is proportional
to the normalized density gradient estimate obtained with kernel K.
Thus, it always points towards the direction of the maximum slope
of the density function. By setting

xt+1 ← xt + mh,G(xt) (6)

we converge towards the local maxima (t denotes iterations number).
Therefore, the MS procedure does not need to evaluate the density

function f̂h,K itself but only the induced kernel g(.). In this study, we
use the Epanechnikov kernel,

k(x) =

{
ck,d(1 − ‖x‖2) if inside the unit sphere
0 if outside

Then g(.) becomes the indicator function of the unit sphere. In this
way, the ratio in Eq. (4) is simply computed as the mean of the points
counted within the hyper-sphere of radius h centred on x. [7] proved
that the MS algorithm converges on a stationary point. The MS algo-
rithm can easily be extended to a distance-based segmentation tech-
nique, grouping together all the modes that are closer than a certain
distance r ∈ �. Finally, the MS segments are retrieved by aggre-
gation of the basins of attraction of the corresponding convergence
points. In accordance with [7], we set r= h for all experiments.

3. METHODOLOGY

3.1. Airborne Laser Scanning Data Set

The ALS data were acquired in June 2008 in north-west Portugal,
over a forest dominated by eucalyptus (Eucalyptus globulus), in the

framework of a research project financed by the Portuguese Foun-
dation for Science and Technology (FCT). The Riegl LMS-Q560
scanner was run in a full-waveform mode with a pulse repetition of
150 kHz. The average flying altitude of 700 m a.g.l. permitted an
average footprint density of 10 pt/m2. The point cloud was deliv-
ered by the manufacturer after processing the full-waveform data.
In order to calculate the height of the objects, the slope effect is re-
moved. For this purpose, the ground points are classified using the
TerraScan software [9] and then a Digital Terrain Model (DTM) is
generated. Finally, the absolute height of the raw points is calcu-
lated. The points classified as ground are kept in the data set and are
considered as vegetation hits.

3.2. Adaptive Kernel Bandwith Selection

Once the Epanechnikov kernel is chosen, the only parameter that
needs to be specified is the kernel bandwidth h, i.e., the diameter of
the hyper-sphere. This choice is critical because it strongly impacts
on the results. A small kernel width leads to more distinct modes
(small basins of attraction, more and smaller objects), while a large
kernel width aggregates small structures into larger ones (small num-
ber of modes with large basins of attraction). The determination of
an optimal value of h is actually a major challenge for an efficient
MS segmentation.
As far as the vertical component is concerned, the forest layer depth
increases with height. Typically, scrubby vegetation strata are thin-
ner than mature tree layers. Thus, in the ALS point cloud, the lower
layers are denser than the higher layers. The optimal value of h that
allows to distinguish shrubs from understory may fragment a large
tree into many segments (lower branches, top foliage, etc.). Fig. 1(a)
displays the MS segmentation technique with h=1m. While the sur-
face vegetation has a coherent shape, the higher features are over-
segmented. Increasing h improves the overstory segmentation, but
it may cause merging between close small vegetation features. For
example, if h= 4 m the dense surface vegetation attracts the sparse
understory causing undersegmentation (Fig. 1(b)). Thus, using a
unique scale over the entire space is not recommended for the analy-
sis of forest environments, justifying an adaptive kernel bandwidth.
Several statistical approaches deal with the scale selection [10]. The
kernel bandwith can also be provided by the user [7], namely for
task-dependent applications [11, 12]. Here, is based on the ground
forest pattern and we increase h as a function of vegetation height.
We establish: h=1m as the optimal value if the forest layer is less
than 1m ; h= 2m if its height ranges between 1m and 5 m; finally, we
increase the kernel bandwidth to h= 4 m if the forest layer is more
than 5 m high.

(a) (b)

Fig. 1. Mean shift segments using (a) r= h=1m and (b) r= h= 4m.
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3.3. MS-based Procedure

The procedure is iterative and detection of the strata from the bot-
tom to the top of the forest structure is performed, by adapting the
kernel bandwidth within the defined height ranges. First, the 5%
height percentile w0 of the data points xi = (xi, yi, zi) is calculated.
The adaptive kernel bandwidth is set by its value within the height
ranges defined in Section 3.2. Therefore, the modes x∗i = (x∗i , y

∗
i , z
∗
i )

for each xi are computed using the corresponding value of h. Then,
all modes that are closer than r are grouped together creating MS
segments, Cp∈N. A forest layer, Fl, is a set of xi for which the cor-
responding MS segments are closer than s from w0, with s/2 = h.
The value of s defines the resolution of the forest stratification, i.e.,
the number of strata. The ALS assigned points are not taken into
account to further calculations. This step improves the segmenta-
tion by removing the influence of the lower layers, which are usually
denser than the higher. When two regions with different densities are
close together, the points of the sparser region are likely to be shifted
towards the denser one (Fig. 1(b)). This is more critical when h in-
creases between two iterations. In the second iteration the 5% height
percentile of the remaining points is calculated in order to define the
new value of h. The procedure keeps on until all points are assigned
to one layer. The control parameter equals zero because that guaran-
tees that all points be labeled. If some sparse zones remain unlabeled
after the first iterations, the iterative calculation ensures that they are
assigned to one layer.

Procedure 1
1: repeat
2: ∀zi ∈ xi, wl = P0.05

3: ∀xi, x∗i = lim
t→∞ xt

i � according to Eq. (6)

4: ∀xi, Cp =
{

xi | ∀u = 1, ..., n ‖x∗i − x∗u‖2 ≤ r2
}

p∈N

5: ∀p, Fl =
{

xi | ∃x∗i ∈ Cp ‖z∗i − wl‖2 ≤ s2
}

l∈N
6: ∀xi, xi =

{
xi | xi � Cl

}
� removal of the assigned points

7: x∗i = ∅ � reinitialize modes

8: until n = 0

4. RESULTS AND DISCUSSION

To assess the reliability of the procedure, we use circular plots
(200 m2) delimited by systematic sampling. Fig. 2 shows the pro-
cedure iterations over a plot with a complex canopy structure. It
is clear that the original points progressively converge producing
coherent segments by means of the MS algorithm, at least along
the vertical component. It can be visually assessed that they are
well assigned to layers. This proves that the MS-based procedure
is reliable to find the center of mass of vegetation layers. Since
these barycenters are represented by the MS modes, our procedure
succeeds in stratifying the forest.
A distinctive characteristic of our procedure is the removal of the
assigned points during the iterations for the further calculations. By
increasing h, the MS vector is computed within a large neighbour-
hood. When two layers are very close, the boundary points from
the sparser layer are shifted towards the denser layer. This phe-
nomenon that may occur between the understory and the overstory
is more critical in the transition between surface vegetation and the
understory. A small kernel bandwidth (h=1m) better applies to

(a) (b)

(c) (d)

Fig. 2. Procedure iterations using the parameters defined in Sec-

tion 3.2. (a) Original ALS points (black). (b) 1st iteration,

points assigned to first layer (green) with w1= 0 m and therefore

s/2= r= h=1m. (c) 2nd iteration, points assigned to second layer

(red) with w2 = 3m, thus s/2= r= h= 2m. (d) 3rd iteration, points

assigned to third layer (blue) with w2 = 8m, thus s/2= r= h= 4m.

dense surface vegetation. When h is increased to segment under-
story features, step 6 of the procedure allows these vegetation hits
to converge, avoiding the influence of near denser zones. The more
complex the forest structure, the more meaninful this step.
Up to now, separation of the forest layers was performed using 3D

point cloud derived products by means of different methods. Our
procedure takes advantage of the mode space, where the layers are
more likely to be identified.An advanced analysis of the segmenta-
tion between the understory and the overstory confirms it. One can
notice that our procedure leads to the same result (Fig. 2) when the
upper height threshold moves within a 4 m range. When h increases
from 2 m to 4 m (Section 3.2), the upper height threshold w may
be defined from 4 m until 8 m. This is definitely an improvement
in forest stratification. In complex forest structures where point
cloud based methods fail, our procedure allows height thresholds to
be defined in a broader range. This is because forest stratification
is performed on the mode space where the ALS points are shifted
towards (down or up) the center of mass of the vegetation strata
creating a gap between the layers.
When increasing the resolution, i.e., keeping h= 2 m until w ≤ 10 m,
a fourth layer is detected (Fig. 3) which suggests a layer of domi-
nated trees. This shows the potential of the procedure to differenciate
the main layers into single-storied and bi-storied. However, setting
the w value for these thinner resolutions is tricky, because keeping
h= 2 m to higher elevations may split a single tree into two or more
layers. The post-processing of each layer derived from a coarser
analysis is a field to investigate. This analysis also shows that setting
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Fig. 3. Result of the procedure using h=1m if wl ≤ 1m, h= 2m if

1m< wl ≤ 10 m, and h= 4m if wl > 10 m. Compared with Fig. 2(d),

one more layer is detected (violet) within the points assigned to the

upper layer (blue).

three thresholds does not necessarily result in three layers. The
number of layers is actually inherent to the forest structure.
To assess the robustness of the procedure, a larger plot (2500 m2)
with a heterogeneous structure is tested. The data are processed
in two ways. First, we analyse the entire plot. Second, the plot is
divided into four parts of equal area, then processed independently,
and finally the results reassembled. The parameters are those defined
in Section 3.2. The results are very similar. Fig. 4 illustrates the
second method. The good separation between the three main layers
is clear. Fig. 4 also shows that the procedure applies to various forest
realities, from simple to complex structures. Moreover, it does not
split the layers horizontally. Vegetation structures are well repre-
sented and their ranges can be locally calculated. Additionally, the
procedure works well within very complex and heterogeneous areas
where the layers are sometimes mixed, i.e., the top of the understory
is higher than the bottom of the overstory within a neighbourhood.

Fig. 4. Forest layers resulting from the procedure using the height

ranges defined in Section 3.2. The forest plot (2500 m2) is strati-

fied into surface vegetation (green), understory (red), and overstory

(blue).

5. CONCLUSIONS

In this work, we introduce the MS potential to segment vegetation
features working directly on the ALS 3D point cloud. Unlike other
methods, forest segmentation is carried out in three dimensions
provinding genuine 3D segments. Additionally, a procedure is pro-
posed to detect forest layers. We simplify such structures using
the MS algorithm and then segment the forest layers in the mode
space. We show that the proposed procedure is very valuable to
analyse complex forest structures. In order to improve its robust-

ness, more efforts must be put into the adaptive kernel bandwidth
settings. Studying the mode height distributions should improve
the procedure, by making it more independent of the forest type
and the point cloud characteristics. Since the MS applies to a joint
space (spatial and attributes), additional attributes of the ALS points
(intensity, number of echoes, etc.) may be introduced in the MS
vector calculation. The analysis of different kernel functions may
not only help to diminish the dependency of the procedure on the
input parameters, but also to better fit the tree crowns aiming at
single tree extraction. In the near future, we pretend to validate our
procedure using forest inventory data adquired in the framework of
the above referred FCT project.
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